
Composite Quantization for Approximate Nearest Neighbor Search

Ting Zhang∗ ZTING@MAIL.USTC.EDU.CN

University of Science and Technology of China, Hefei, P.R. China

Chao Du∗ DUCHAO0726@GMAIL.COM

Tsinghua University, Beijing, P.R. China

Jingdong Wang JINGDW@MICROSOFT.COM

Microsoft Research, Beijing, P.R. China

Abstract

This paper presents a novel compact coding ap-

proach, composite quantization, for approximate

nearest neighbor search. The idea is to use the

composition of several elements selected from

the dictionaries to accurately approximate a vec-

tor and to represent the vector by a short code

composed of the indices of the selected ele-

ments. To efficiently compute the approximate

distance of a query to a database vector using the

short code, we introduce an extra constraint, con-

stant inter-dictionary-element-product, resulting

in that approximating the distance only using

the distance of the query to each selected ele-

ment is enough for nearest neighbor search. Ex-

perimental comparison with state-of-the-art algo-

rithms over several benchmark datasets demon-

strates the efficacy of the proposed approach.

1. Introduction

Nearest neighbor (NN) search has been a fundamental re-

search topic in machine learning, computer vision, and in-

formation retrieval (Shakhnarovich et al., 2006). The goal

of NN search, given a query q, is to find a vector NN(q)
whose distance to the query is the smallest from the N d-

dimensional database vectors.

The straightforward solution, linear scan, is to com-

pute the distances to all the database vectors whose time
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cost is O(Nd) and is not practical for large scale high-

dimensional cases. Multi-dimensional indexing methods,

such as the k-d tree (Friedman et al., 1977), have been

developed to speed up exact search. However, for high-

dimensional cases it turns out that such approaches are not

much more efficient (or even less efficient) than linear scan.

Therefore, there have been a lot of interests in algorithms

that perform approximate nearest neighbor (ANN) search.

Many data structures and algorithms are developed to elim-

inate the number of distance computations. For exam-

ple, the algorithm with a k-d tree is used to find ANNs

by limiting the search time. Exploiting random multi-

ple k-d trees and priority search (Silpa-Anan & Hartley,

2008) result in good performance in terms of accuracy

and efficiency. FLANN (Muja & Lowe, 2009) finds a

good configuration of random k-d trees and hierarchial

k-means trees to optimize the performance. Other tree

structures, such as the cover tree (Beygelzimer et al., 2006)

and the trinary-projection tree (Jia et al., 2010; Wang et al.,

2014), and so on, have also been designed. Neigh-

borhood graph (Arya & Mount, 1993; Wang & Li, 2012;

Wang et al., 2013b;c) is also adopted for ANN search.

The algorithms that convert the database vectors into

short codes have been attracting a lot of attention re-

cently as their storage cost is small, making the in-

memory search feasible, and the distance computa-

tion cost is also reduced. The seminal work on

locality sensitive hashing (LSH) (Gionis et al., 1999)

uses random projections to compute Hamming embed-

dings, and is later followed by a lot of extensions,

such as Mahalanobis distance (Jain et al., 2008), kernel-

ization (Kulis & Grauman, 2009), complementary hash-

ing (Xu et al., 2011), and so on. Subsequent efforts have

been devoted to learn good hashing functions, such as

learnt binary reconstruction (Kulis & Darrells, 2009), se-

mantic hashing (Salakhutdinov & Hinton, 2009), shift ker-

nel hashing (Raginsky & Lazebnik, 2009), spectral hash-
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ing (Weiss et al., 2008), graph-based hashing (Liu et al.,

2011), iterative quantization (Gong & Lazebnik, 2011),

isotropic hashing (Kong & Li, 2012), minimal loss hash-

ing (Norouzi & Fleet, 2011), order preserving hash-

ing (Wang et al., 2013a), and so on. The Hamming em-

bedding algorithms are only able to produce a few distinct

distances resulting in limited ability and flexibility of dis-

tance approximation.

Product quantization (PQ), a data compression technique

in signal processing, is recently used for efficient near-

est neighbor search (Jégou et al., 2011a). The idea is to

decompose the space into a Cartesian product of low-

dimensional subspaces and to quantize each subspace sep-

arately. A vector is then represented by a short code com-

posed of its subspace quantization indices. The distance

between a query and a database vector is approximated by

using the query and the short code corresponding to the

database vector. Specifically, it first computes the distance

of the query to the quantized center of the database vec-

tor in each subspace, and then sums up the distances to-

gether, where the distance lookup table is used for fast dis-

tance evaluation. The advantage over Hamming embed-

ding methods is that the number of possible distances is sig-

nificantly higher and hence the distance approximation is

more accurate. It is shown in (Jégou et al., 2011a) that PQ

achieves a much better search performance with compara-

ble efficiency than hamming embedding algorithms. Carte-

sian k-means (Norouzi & Fleet, 2013) improves product

quantization by finding better subspace partitioning and

achieves a better search performance.

In this paper, we propose a novel approach, composite

quantization, to convert vectors to compact codes. The idea

is to approximate a vector using the composition of several

elements selected from several dictionaries and to repre-

sent this vector by a short code composed of the indices

of the selected elements. The advantage is that the vec-

tor approximation, and accordingly the distance approxi-

mation of a query to the database vector, is more accurate,

yielding more accurate nearest neighbor search. To effi-

ciently evaluate the distance between a query and the short

code representing the database vector, we introduce an

extra constraint, called constant inter-dictionary-element-

product, i.e., the summation of the inner products of all

pairs of elements that are used to approximate the vector

but from different dictionaries is constant. As a result, the

approximate distance can be calculated from the distance

of the query to each selected element, which is efficient by

using a few distance table lookups. We present an alterna-

tive optimization algorithm to simultaneously find the dic-

tionaries and the compact codes. In addition, we show that

production quantization (Jégou et al., 2011a) and Cartesian

k-means (Norouzi & Fleet, 2013) can be regarded as con-

strained versions of our approach. Experimental results

over several datasets demonstrate the proposed approach

achieves state-of-the-art performances.

2. Formulation

Given a query vector q ∈ R
d and a set of N d-dimensional

vectors X = {x1, . . . ,xN}, the nearest neighbor search

problem aims to find the item NN(q) from X such that

its distance to the query vector is minimum. In this paper,

we study the approximate nearest neighbor search problem

under the Euclidean distance and propose a compact coding

approach, called composite quantization.

The idea is to approximate a vector x by the composition

of several (M ) elements {c1k1
, c2k2

, . . . , cMkM
}, each of

which is selected from a dictionary with K elements, Cm =
{cm1, . . . , cmK}, e.g., c1k1

is the k1th element in dictio-

nary C1, and to represent a vector by a short code composed

of the indices of the selected elements, resulting in a com-

pact representation of length M logK with each dictionary

element coded by logK bits.

Let x̄ =
∑M

m=1
cmkm

be the approximation of the vec-

tor x. The accuracy of nearest neighbor search relies on

the degree of the distance approximation, i.e., how small

is the difference between the distance of a vector q to the

vector x and the distance to the approximation x̄. Accord-

ing to the triangle inequality, |‖q− x‖2 − ‖q− x̄‖2| 6

‖x− x̄‖2, minimizing the distance approximation error can

be transformed to minimizing the vector approximation er-

ror, which is formulated as follows,

mincmkn
m

∈Cm

∑N

n=1

‖xn −
∑M

m=1

cmkn
m
‖2
2
, (1)

where cmkn
m

is the element selected from the dictionary Cm
for the nth database vector xn.

Given the approximation x̄, the distance of a query q to the

approximation x̄ is ‖q − x̄‖2 = ‖q −
∑M

m=1
cmkm

‖2. It

is time-consuming to reconstruct the approximate vector x̄

(taking O(Md)) and then compute the distance between q

and x̄ (taking O(d)). Considering the expansion,

‖q−
∑M

m=1

cmkm
‖2
2
=

∑M

m=1

‖q− cmkm
‖2
2

− (M − 1)‖q‖2
2
+
∑M

i=1

∑M

j=1,j 6=i
cTiki

cjkj
, (2)

we can see that, given the query q, the second term −(M−
1)‖q‖2

2
in the right-hand side is constant for all the database

vectors and hence unnecessary to compute for nearest

neighbor search. The first term
∑M

m=1
‖q − cmkm

‖2
2

is

the summation of the distances of the query to the selected

dictionary elements and can be efficiently computed using

a few (M ) distance table lookups, where the distance table

is precomputed and stores the distances of the query to the

dictionary elements. Similarly, we can build a table storing
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the inner products between dictionary elements and com-

pute the third term using O(M2) distance table lookups.

This results in the distance computation cost is changed

from O(Md) to O(M2), which is still a little large.

To further reduce the computation cost, we introduce

an extra constraint, letting the third term be a constant,

i.e.,
∑M

i=1

∑M
j=1,j 6=i c

T
iki

cjkj
= ǫ, called constant inter-

dictionary-element-product. As a result, we only need to

compute the first term for nearest neighbor search, and the

computation cost is reduced to O(M).

In summary, the optimization problem is formulated as

min
{Cm},{bn},ǫ

∑N

n=1

‖xn − [C1C2 · · ·CM ]bn‖
2

2
(3)

s. t.
∑M

i=1

∑M

j=1,j 6=i
bT
niC

T
i Cjbnj = ǫ

bn = [bT
n1b

T
n2 · · ·b

T
nM ]T

bnm ∈ {0, 1}K, ‖bnm‖1 = 1

n = 1, 2, · · · , N,m = 1, 2, · · · ,M.

Here, Cm is a matrix of size d×K , and each column cor-

responds to an element of the mth dictionary Cm. bn is the

composition vector, and its subvector bnm is an indicator

vector with only one entry being 1 and all others being 0,

showing which element is selected from the mth dictionary

for composite quantization.

3. Optimization

The problem formulated in 3 is a mixed-binary-integer pro-

gram, which consists of three groups of unknown vari-

ables: dictionaries {Cm}, composition vectors {bn},

and ǫ. In addition to the binary-integer constraint over

{bn}, there are quadratic equality constraints over {Cm},∑M
i6=j b

T
niC

T
i Cjbnj = ǫ. We propose to adopt the

quadratic penalty method and add a penalty function that

measures the violation of the quadratic equality constraints

into the objective function,

φ({Cm}, {bn}, ǫ) =
∑N

n=1

‖xn −Cbn‖
2

2

+ µ
∑N

n=1

(
∑M

i6=j
bT
niC

T
i Cjbnj − ǫ)2, (4)

where µ is the penalty parameter, C = [C1C2 · · ·CM ] and∑M
i6=j =

∑M
i=1

∑M
j=1,j 6=i.

3.1. Algorithm

We use the alternative optimization technique to iteratively

solve the problem. Each iteration alternatively updates

{bn}, ǫ and {Cm}. The details are given below.

Update {bn}. It can be easily seen that bn, the composi-

tion indicator of a vector xn, given {Cm} and ǫ fixed, is

independent to {bt}t6=n for all the other vectors. Then the

optimization problem is decomposed to N subproblems,

φn(bn)

= ‖xn −Cbn‖
2

2
+ µ(

∑M

i6=j
bT
niC

T
i Cjbnj − ǫ)2, (5)

where there are three constraints: bn is a binary vector,

‖bnm‖1 = 1, and bn = [bT
n1b

T
n2 · · ·b

T
nM ]T . Gener-

ally, this optimization problem is NP-hard. We notice that

the problem is essentially a high-order MRF (Markov ran-

dom field) problem. We again use the alternative optimiza-

tion technique like the iterated conditional modes algorithm

that is widely used to solve MRFs, and solve the M sub-

vectors {bnm} alternatively. Given {bnl}l 6=m fixed, we

update bnm by exhaustively checking all the elements in

the dictionary Cm, finding the element such that the objec-

tive value is minimized, and accordingly setting the corre-

sponding entry of bnm to be 1 and all the others to be 0.

Update ǫ. We can see that the objective function is a

quadratic function with respect to ǫ. Given C and {bn}
fixed, it is easy to get the optimal solution to ǫ,

ǫ =
1

N

∑N

n=1

∑M

i6=j
bT
niC

T
i Cjbnj . (6)

Update {Cm}. Fixing {bn} and ǫ, the problem is an un-

constrained nonlinear optimization problem with respect

to C. There are many algorithms for such a problem.

We choose the quasi-Newton algorithm and specifically

the L-BFGS algorithm, the limited-memory version of the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. It

only needs a few vectors to represent the approximation of

the Hessian matrix instead of storing the full Hessian ma-

trix as done in the BFGS algorithm. We adopt the pub-

licly available implementation of L-BFGS†. The partial-

derivative with respect to Cm, the input to the L-BFGS

solver, is computed as follows,

∂

∂Cm
φ({Cm}, {bn}, ǫ)

=
N∑

n=1

[2(
M∑

l=1

Clbnl − xn)b
T
nm+

4µ(
M∑

i6=j

bT
niC

T
i Cjbnj − ǫ)(

M∑

l=1,l 6=m

Clbnl)b
T
nm]. (7)

3.2. Implementation details

The proposed algorithm is warm-started by using the solu-

tion of a relatively easy problem, which is formed by drop-

ping the constant inter-dictionary-element-product con-

†http://www.ece.northwestern.edu/˜nocedal/lbfgs.html
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straint, i.e., the problem in Equation 1, for the initializa-

tion. The easy problem is also solved by alterative opti-

mization, iteratively updating C and {bn}. The scheme

of updating {bn} is almost the same to the above scheme

with dropping ǫ-related terms. Updating C is relatively

easy. Given {bn} fixed, the objective function is quadratic

with respect to C, and there is a closed-form solution:

C = XBT (BBT )−1, where X is a matrix with each col-

umn corresponding to a database vector, and B is a matrix

composed of the composition vectors of all the database

vectors, B = [b1 b2 · · · bn].

The penalty method usually needs to solve a series of un-

constrained problems by increasing the penalty parame-

ter µ into infinity to make the constraint completely satis-

fied. In our case, we find that the inter-dictionary-element-

product is not necessarily exactly constant and the search

performance is not affected if the deviation of the inter-

dictionary-element-product from a constant is relatively

small compared with the distortion error. Therefore, our

algorithm instead relaxes this constraint and selects the pa-

rameter µ via validation. The validation dataset is a subset

of the database (selecting a subset is only for validation ef-

ficiency, and it is fine that the validation set is a subset of

the learning set as the validation criterion is not the objec-

tive function value but the search performance). The best

parameter µ is chosen so that the average search perfor-

mance by regarding the validation vectors as queries and

finding {5, 10, 15, · · · , 100} nearest neighbors from all the

database vectors is the best.

3.3. Analysis

We present the time complexity of each iteration. At the

beginning of each iteration, we first compute inner prod-

uct tables, {cTircjs|i 6= j, r, s = 1, 2, · · · ,K}, between the

dictionary elements, taking O(M2K2d), so that comput-

ing bT
niC

T
i C

T
j bnj can be completed by one table lookup.

The time complexities of the three updates are given as fol-

lows. (1) It takes O(MKdTb) with Tb being the number

of iterations (= 3 in our implementation achieving satis-

factory results) to update bn, i.e., optimize the objective

function in 5, and thus the time complexity of updating

{bn} is O(NMKdTb). (2) It takes O(NM2) to update

ǫ, which can be easily seen from Equation 6. (3) The main

cost of updating {Cm} lies in computing the partial deriva-

tives and the objective function value that are necessary in

L-BFGS. For clarity, we drop the complexity terms that are

independent ofN and can be neglected for a largeN . Then,

the time complexity for updating {Cm} is O(NMdTlTc)
with Tc being the number of iterations (= 10 in our imple-

mentation) and Tl (set to 5 in our implementation) being

the number of line searches in L-BFGS.

The objective function value at each iteration in the algo-
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Figure 1. Convergence curve of our algorithm. The vertical axis

represents the objective function value of Equation 4 and the hori-

zontal axis corresponds to the number of iterations. The objective

function value at the initialization is about 2.3 × 1012 and not

shown for clarity. The curve is obtained from the result over a

representative dataset 1M SIFT with 64 bits.

rithm always weakly decreases. It can be validated that

the objective function value is lower-bounded (not smaller

than 0). The two points indicate the convergence of our al-

gorithm. The theoretic analysis of the rate of convergence

is not easy, while the empirical results show that the algo-

rithm takes a few iterations to converge. Figure 1 shows an

example convergence curve.

4. Discussions

Relation to k-means and sparse coding. Composite

quantization, when only one dictionary is used (i.e., M =
1), is degraded to the k-means approach. Compared with

k-means, composite quantization is able to produce a larger

number of quantized centers (KM ) using a few dictionary

elements (KM ), resulting in that the composite quantizer

can be indexed in memory for large scale quantized centers.

Composite quantization is also related to coding with block

sparsity (Yuan & Lin, 2006), in which the coefficients are

divided into several blocks and the sparsity constraints are

imposed in each block separately. Composite quantization

can be regarded as a sparse coding approach, where the

coefficients that can be only valued by 0 or 1 are divided

into M groups, for each group the non-sparsity degree is 1,

and an extra constraint, constant inter-dictionary-element-

product, is considered.

Connection with product quantization and Cartesian k-

means. Product quantization (Jégou et al., 2011a) decom-

poses the space into M low dimensional subspaces and

quantizes each subspace separately. A vector x is decom-

posed into M subvectors, {x1, · · · ,xM}. Let the quantiza-

tion dictionaries over the M subspaces be C1, C2, · · · , CM
with Cm being a set of centers {cm1, · · · , cmK}. A vec-

tor x is represented by the concatenation of M centers,

[cT
1k∗

1

cT
2k∗

2

· · · cTmk∗

m
· · · cTMk∗

M
]T , where cmk∗

m
is the one

nearest to xm in the mth quantization dictionary.

Rewrite each center cmk as a d-dimensional vector c̃mk so
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Table 1. The description of the datasets.

BASE SET QUERY SET DIM

MNIST 60, 000 10, 000 784
LABELME22K 20, 019 2, 000 512
1M SIFT 1, 000, 000 10, 000 128
1M GIST 1, 000, 000 1, 000 960
1B SIFT 1, 000, 000, 000 10, 000 128

that c̃mk = [0T · · · (cmk)
T0T ]T , i.e., all entries are zero

except that the subvector corresponding to the mth sub-

space is equal to cmk. The approximation of a vector x us-

ing the concatenation x = [cT
1k∗

1

cT
2k∗

2
c · · · c

T
Mk∗

M
]T is then

equivalent to the composition x =
∑M

m=1
c̃mk∗

m
. Simi-

larly, it can also be shown that there is a same equivalence

in Cartesian k-means (Norouzi & Fleet, 2013).

The above analysis indicates that both product quantization

and Cartesian k-means can be regarded as a constrained

version of composition quantization, with the orthogonal

dictionary constraint: CT
i Cj = 0, i 6= j, which guaran-

tees that the constant inter-dictionary-element-productcon-

straint in our approach holds. In addition, unlike product

quantization and Cartesian k-means in which each dictio-

nary (subspace) is formed by d/M dimensions, our ap-

proach when ǫ = 0 is able to automatically decide how

many dimensions belong to one dictionary.

An upper-bound minimization view. Let us introduce

several notations: d(q,x) = ‖q − x‖2; d(q, x̄) = ‖q −

x̄‖2 = ‖q −
∑M

m=1
cmkm

‖2; d̃(q, x̄) = (
∑M

m=1
‖q −

cmkm
‖2
2
)1/2; d̂(q,x) = (‖q − x‖2

2
+ (M − 1)‖q‖2

2
)1/2

(d̂(q, x̄) = (‖q − x̄‖2
2
+ (M − 1)‖q‖2

2
)1/2) which is the

square root of the summation of the square of the true (ap-

proximate) Euclidean distance and a query-dependent term

(M − 1)‖q‖2
2

that is a constant for the search with a spe-

cific query. Let δ =
∑

i6=j c
T
iki

cjkj
. By definition, we have

d̂(q, x̄) = (d̃2(q, x̄) + δ)1/2.

Our approach uses d̃(q, x̄) as the distance approximation

and essentially aims to use it to approximate d̂(q,x). Ide-

ally, if d̃(q, x̄) = d̂(q,x), the search accuracy would

be 100%. In general, the absolute difference |d̃(q, x̄) −

d̂(q,x)| is expected to be small to guarantee high search

accuracy. We have the following theorem:

Theorem 1. The reconstruction error of the distances is

upper-bounded: |d̃(q, x̄)− d̂(q,x)| ≤ ‖x− x̄‖2 + |δ|1/2.

This theorem suggests a solution to minimizing the dis-

tance reconstruction error by minimizing the upper-bound:

min ‖x − x̄‖2 + |δ|
1/2

. With the assumption δ = ǫ for

∀x ∈ X , this minimization problem is transformed to a

constrained optimization problem: min ‖x − x̄‖2 subject

to δ = ǫ. Accumulating the distortion errors over all the
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Figure 2. Average query time on 1M SIFT, 1M GIST and 1B
SIFT.

database vectors yields formulation 3.

5. Experiments

We perform the ANN experiments on five datasets:

MNIST‡ (LeCun et al., 2001), 784D grayscale images of

handwritten digits; LabelMe22K (Russell et al., 2008) a

corpus of images expressed as 512D GIST descriptors; 1M
SIFT (Jégou et al., 2011a), consisting of 1M 128D SIFT

features as base vectors, 100K learning vectors and 10K
queries; 1M GIST (Jégou et al., 2011a), containing 1M
960D global GIST descriptors as base vectors, 500K learn-

ing vectors and 1K queries; and 1B SIFT (Jégou et al.,

2011b), composed of 1B SIFT features as base vectors,

100M learning vectors and 10K queries. The detailed de-

scription is presented in Table 1.

We compare our approach, composite quantization (CQ),

with several state-of-the-art methods: product quan-

tization (PQ) (Jégou et al., 2011a), Cartesian k-means

(CKM) (Norouzi & Fleet, 2013). It is already shown that

PQ and CKM achieve better search accuracy than hash-

ing algorithms with the same code length and compara-

ble search efficiency. Thus, we report one result from

a representative hashing algorithm, iterative quantization

(ITQ) (Gong & Lazebnik, 2011). All the results were ob-

tained with the implementations generously provided by

their respective authors. Following (Jégou et al., 2011a),

we use the structured ordering for 1M GIST and the nat-

ural ordering for 1M SIFT and 1B SIFT to get the best

performance for PQ. We choose K = 256 as the dictionary

size which is an attractive choice because the resulting dis-

tance lookup tables are small and each subindex fits into

one byte (Jégou et al., 2011a; Norouzi & Fleet, 2013).

To find ANNs, all the algorithms perform linear scan search

using asymmetric distance: to compare a query with a

database vector, PQ, CKM and CQ conduct a few dis-

tance table lookups and additions, and ITQ uses asymmet-

ric hamming distance for better search accuracy proposed

in (Gordo & Perronnin, 2011). ITQ, PQ, CKM and CQ

takes the same time for linear scan. Their costs of com-

puting the distance lookup table are slightly different, and

‡http://yann.lecun.com/exdb/mnist/
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Figure 3. Illustrating the effect of ǫ on (a) 1M SIFT and (b) 1B SIFT. (T, R) means recall@R when searching for T nearest neighbors.
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Figure 4. Illustrating the effect of translation. (T,R) means

recall@R when searching for T nearest neighbors.

can be negligible as they are very low compared with the

cost for linear scan. For instance, the cost of computing the

distance lookup table in our approach only takes around 2%
of the cost of linear scan on 1M SIFT. Figure 2 shows the

average query times on the 1M SIFT, 1M GIST and 1B
SIFT datasets, from which one can observe that the costs

are similar for the four methods.

The search quality is measured using recall@R. For each

query, we retrieve its R nearest items and compute the ra-

tio of R to T , i.e., the fraction of T ground-truth nearest

neighbors are found in the retrieved R items. The aver-

age recall score over all the queries is used as the measure.

The ground-truth nearest neighbors are computed over the

original features using linear scan. In the experiments, we

report the performance with T being 1, 10, and 50. The

observed conclusions remain valid for other T .

5.1. Empirical analysis

The effect of ǫ. The proposed approach learns the variable

ǫ, inter-dictionary-element-product. Alternatively, one can

simply set it to be zero, ǫ = 0, indicating that the dictio-

naries are mutually orthogonal like splitting the spaces into

subspaces as done in product quantization and Cartesian k-

means. The average distortion error in the case of learning

ǫ potentially can be smaller than that in the case of letting

ǫ = 0 as learning ǫ is more flexible, and thus the search

performance with learnt ǫ can be better. The experimen-

tal results over the 1M SIFT and 1B SIFT datasets under

the two schemes, shown in Figure 3, validate this point:

the performances over 1M SIFT are similar and the per-

formance when ǫ is not limited to be zero over 1B SIFT is

much better.

The effect of translating the vector. One potential ex-

tension of our approach is to introduce an offset, de-

noted t, to translate x. Introducing the offset does not

increase the storage cost as it is a global parameter.

The objective function with such an offset is as follows:

minC,t,b1,··· ,bN

∑N
n=1

‖xn − t − Cbn‖
2

2
. Our experi-

ments indicate that this introduction does not influence the

performance too much. An example result on 1M SIFT

with 64 bits is shown in Figure 4. The reason might be that

the contribution of the offset to the quantization distortion

reduction is relatively small compared with that from the

composition of selected dictionary elements.

5.2. Results

Figure 5 shows the comparison on MNIST and La-

belMe22K. One can see that the vector approximation algo-

rithms, our approach (CQ), CKM, and PQ outperform ITQ.

It is as expected because the information loss in Hamming

embedding used in ITQ is much larger. PQ also performs

not so good because it does not well exploit the data infor-

mation for subspace partitioning. Our approach performs

the best, which validates the aforementioned analysis. The

improvement seems a little small, but it is actually signif-

icant as the datasets are relatively small and the search is

relatively easy.

Figure 6 shows the results of large scale datasets: 1M
SIFT and 1M GIST using codes of 64 bits and 128 bits

for searching 1, 10, and 50 nearest neighbors. It can be

seen that the gain obtained by our approach (CQ) is signifi-

cant for 1M SIFT. For example, the recall@10 with T = 1
for Cartesian k-means and ours are 63.83% and 71.59%
on 64 bits. In other words, the improvement is 7.76% and

the relative improvement reaches 12%. The reason of the

relatively small improvement on 1M GIST over Cartesian

k-means might be that Cartesian k-means already achieves

very large improvement over product quantization and the

improvement space is relatively small.

Figure 7 shows the performance for a very large dataset,

1B SIFT. Similar to (Norouzi & Fleet, 2013), we use the

first 1M learning vectors for efficient training. It can be

seen that our approach gets the best performance and the

improvement is consistently significant. For example, the

recall@100 from our approach on the 1B base set with 64
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Figure 5. The performance for different algorithms on (a) MNIST and (b) LabelMe22K for searching various numbers of ground truth

nearest neighbors (T = 1, 10).

Table 2. The performance of object retrieval over the holiday data

set in terms of MAP.

#BIT ITQ PQ CKM CQ

FISHER

32 0.4132 0.5040 0.5373 0.5500
64 0.5334 0.5476 0.5775 0.6221
128 0.5883 0.5794 0.5978 0.6339

VLAD
32 0.4378 0.5132 0.5453 0.5777
64 0.5371 0.5740 0.5974 0.6320
128 0.6074 0.5861 0.6092 0.6442

bits for T = 1 is 70.12% while from CKM it is 64.57%.

Besides the performance over all the 1B database vectors,

we also show the performance on a subset of 1B base vec-

tors, the first 10M database vectors. As we can see, the

performance on 1B vectors is worse than that on 10M vec-

tors, which is reasonable as searching over a larger dataset

is more difficult. The notable observation is that the im-

provement of our approach over Cartesian k-means on the

larger dataset, 1B database vectors, is much more signifi-

cant than that on 10M database vectors.

Besides, we plot the curve in terms of recall vs. the

code length, as depicted in Figure 8 on a representative

dataset, 1M SIFT, to explicitly show how the improvement

of our approach over other approaches changes under var-

ious code lengths. As expected, the performances of all

the algorithms improve along with the increase of the code

length. Notably, the improvement of our approach over the

other methods, gets more significant as the code length is

larger. In contrast, the improvement of CKM over PQ is re-

duced when the code becomes longer. This shows that the

superiority of our approach in the longer code is stronger.

5.3. Application to object retrieval

We report the results of the applications to object retrieval.

In object retrieval, images are represented as an aggrega-

tion of local descriptors, often thousands of dimension.

We evaluate the performances over the 4096-dimensional

Fisher vectors (Perronnin & Dance, 2007) and the 4096-

dimensional VLAD vectors (Jégou et al., 2010) extracted

from the INRIA Holidays data set (Jégou et al., 2008) that

Table 3. The performance of object retrieval over the UKBench

data set in terms of scores.

#BITS ITQ PQ CKM CQ

FISHER

32 2.1155 2.2031 2.6060 2.7401
64 2.6320 2.6181 2.8943 3.0093
128 2.8808 2.8507 3.0387 3.1539

VLAD
32 2.0935 2.2140 2.6312 2.7455
64 2.6174 2.6290 2.9246 3.0459
128 2.8946 2.8776 3.0688 3.1854
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Figure 8. Illustrating the effect of the code length on 1M SIFT

when searching for 50 nearest neighbors.

contains 500 query and 991 relevant images, and the UK-

Bench data set (Nistér & Stewénius, 2006) that contains

2550 groups of 4 images each (totally 10200 images).

The search performances in terms of mean average preci-

sion (MAP) (Jégou et al., 2008) for the holiday data set and

the score (Nistér & Stewénius, 2006) for the UKBench data

set are shown in Table 2 and Table 3. It can be seen that our

method performs the best, which is because our approach

(CQ) produces better vector approximation.

6. Conclusion

In this paper, we present a compact coding approach,

composite quantization, to approximate nearest neighbor

search. The superior search accuracy stems from that it

exploits the composition of dictionary elements to approxi-

mate a vector, yielding smaller distortion errors. The search

efficiency is guaranteed by making the inter-dictionary-

element-product constant and discarding its computation.

Empirical results on different datasets suggest that the pro-
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Figure 6. The performance for different algorithms on (a) 1M SIFT and (b) 1M GIST (T = 1, 10, 50).
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Figure 7. The performance for different algorithms on 1B SIFT with (a) 64 bits and (b) 128 bits (T = 1, 10, 50).

posed approach outperforms existing methods.
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Supplementary material: Proof of Theorem 1

Proof. We have the following inequality,

|d̃(q, x̄)− d̂(q,x)|

= |d̃(q, x̄)− d̂(q, x̄) + d̂(q, x̄)− d̂(q,x)|

≤ |d̃(q, x̄)− d̂(q, x̄)|+ |d̂(q, x̄)− d̂(q,x)|. (8)

We will show (a) |d̃(q, x̄)− d̂(q, x̄)| ≤ |δ|1/2 and (b) |d̂(q, x̄)−

d̂(q,x)| ≤ ‖x− x̄‖2, respectively.

The proof for (a) is given as follows,

|d̃(q, x̄)− d̂(q, x̄)|2

≤ |d̃(q, x̄)− d̂(q, x̄)||d̃(q, x̄) + d̂(q, x̄)|

= |d̃2(q, x̄)− d̂
2(q, x̄)| (9)

= |δ|. (10)

The last equality from 9 to 10 holds because we have d̂2(q, x̄) =

d̃2(q, x̄) + δ.

The proof for (b) is presented in the following. For convenience,
we denote η = (M − 1)‖q‖22 ≥ 0.

|d̂(q, x̄)− d̂(q,x)|

= |
√

d2(q, x̄) + η −
√

d2(q,x) + η|

=
|(d2(q, x̄) + η)− (d2(q,x) + η)|
√

d2(q, x̄) + η +
√

d2(q,x) + η

≤
|d2(q, x̄)− d2(q,x)|

d(q, x̄) + d(q,x)

= |d(q, x̄)− d(q,x)|

≤ d(x, x̄) (by the triangle inequality)

= ‖x− x̄‖2. (11)

We can easily validate (b) in the case that the denominator hap-
pens to be 0 in the above proof.

Thus, the theorem holds.


