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Abstract

In this supplementary material, we give the ful-
l hierarchical Bayesian model for MoG-RPCA
and present the details of the variational infer-
ence process for inferring the posterior of the
model.

1. Hierarchical Model for MoG-RPCA
We adopt the RPCA model

Y = L + E.

Denote by yij and eij the elements in the i-th row and j-th
column of Y and E, respectively. We formulate the matrix
L ∈ Rm×n with rank l ≤ min(m,n) as the product of two
matrices U ∈ Rm×R and V ∈ Rn×R as:

L = UVT =
∑R

r=1
u·rv

T
·r,

whereR ≥ l, and u·r and v·r are the r-th columns of U and
V, respectively. The full hierarchical form of the proposed
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MoG-RPCA model can then be expressed by:

yij = ui·v
T
j· + eij

u·r ∼ N (u·r|0, γ−1r Im)

v·r ∼ N (v·r|0, γ−1r In)

γr ∼ Gam(γr|a0, b0)

eij ∼
∏K

k=1
N (eij |µk, τ

−1
k )zijk

zij ∼ Mutinomial(zij |π)

π ∼ Dir(π|α0)

µk, τk ∼ N (µk|µ0, (β0τk)−1)Gam(τk|c0, d0).

The full likelihood of this generative model can be ex-
pressed as:

p(U,V,Z,µ, τ ,π,γ,Y)

= p(Y|U,V,Z,µ, τ )p(Z|π)p(µ|τ )p(τ )p(U|γ)p(V|γ)p(γ)

=
∏

ij

∏K

k=1
p(yij |ui·,vj·, µk, τ

−1
k )zijk

∏
ij
p(zij |π)p(π)∏K

k=1
p(µk, τk)

∏R

r=1
{p(u·r|γr)p(v·r|γr)p(γr)}

=
∏

ij

∏K

k=1
N (yij |ui·v

T
j· + µk, τ

−1
k )zijk

∏
ij

∏K

k=1
π
zijk
k

Dir(π|α0)
∏K

k=1

{
N (µk|µ0, (β0τk)

−1)Gam(τk|c0, d0)
}

∏R

r=1

{
N (u·r|0, γ−1

r Im)N (v·r|0, γ−1
r In)Gam(γr|a0, b0)

}
.

2. Update Equations
The variational update equations for inferring the posteri-
or of the variables involved in the MoG-RPCA model are
given as follows.

Infer U:
q(ui·) = N (ui·|µui·

,Σui·),
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where 〈·〉 denotes the expectation, and

Σui· =
(∑K

k=1
〈τk〉

∑n

j=1
〈zijk〉〈vT

j·vj·〉+ Γ
)−1

,

µT
ui·

= Σui·

{∑K

k=1
〈τk〉

∑n

j=1
〈zijk〉(yij − 〈µk〉)〈vj·〉

}T

.

Infer V:
q(vj·) = N (vj·|µvj·

,Σvj·),

where

Σvj· =
(∑K

k=1
〈τk〉

∑m

i=1
〈zijk〉〈uT

i·ui·〉+ Γ
)−1

,

µT
vj·

= Σvj·

{∑K

k=1
〈τk〉

∑m

i=1
〈zijk〉(yij − 〈µk〉)〈ui·〉

}T

.

Infer γ:
q(γr) = Gam(γr|ar, br),

where

ar = a0 +
m+ n

2
,

br = b0 +
1

2

(
〈uT
·ru·r〉+ 〈vT

·rv·r〉
)
.

Infer Z:
q(zij) =

∏K

k=1
rijk

zijk ,

where

rijk =
ρijk∑
k ρijk

,

ρijk =
1

2
〈ln τk〉 −

1

2
ln 2π〈(yij − ui·v

T
j· − µk)2〉

− 1

2
〈τk〉+ 〈lnπk〉.

Infer µ, τ :

q(µk, τk) = N (µk|mk, (βkτk)−1)Gam(τk|ck, dk),

where

βk = β0 +
∑

ij
〈zijk〉,

mk =
1

βk
(β0µ0 +

∑
ij
〈zijk〉(yij − 〈ui·〉〈vj·〉T )),

ck = c0 +
1

2

∑
ij
〈zijk〉,

dk = d0 +
1

2
{
∑

ij
〈zijk〉〈(yij − ui·v

T
j·)

2〉+ β0µ
2
0

− 1

βk
(
∑
ij

〈zijk〉(yij − 〈ui·〉〈vj·〉T ) + β0µ0)2}.

Infer π:
q(π) = Dir(π|α),

where
α = (α1, . . . , αK),

αk = α0k +
∑

ij
〈zijk〉.

3. Calculation of Expectations
The expectations in the variational update equations can be
calculated with respect to the current variational distribu-
tions, as listed in the following:

〈τk〉 =
ck
dk

〈zijk〉 = rijk

〈ln τk〉 = ψ(ck)− ln dk

〈lnπk〉 = ψ(αk)− ψ(α̂), α̂ =
∑K

k=1
αk

〈(yij − ui·v
T
j· − µk)2〉 = 〈(yij − ui·v

T
j·)

2〉
− 2〈µk〉(yij − 〈ui·〉〈vj·〉T ) + 〈µ2

k〉
〈µk〉 = mk

〈µ2
k〉 = (βkτk)−1 +m2

k

〈(yij − ui·v
T
j·)

2〉 = y2ij + tr
(
〈uT

i·ui·〉〈vT
j·vj·〉

)
− 2yij〈ui·〉〈vj·〉T

〈uT
i·ui·〉 = Σui· + 〈ui·〉〈ui·〉T

〈vT
j·vj·〉 = Σvj· + 〈vj·〉〈vj·〉T

Γ = diag (〈γ〉) , 〈γr〉 =
ar
br

〈uT
·ru·r〉 = 〈u·r〉T 〈u·r〉+

∑m

i=1
(Σui·)rr

〈vT
·rv·r〉 = 〈v·r〉T 〈v·r〉+

∑n

j=1

(
Σvj·

)
rr
,

where ψ(·) is the digamma function defined by ψ(x) =
d
dx ln Γ(x).


