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Abstract
We study the problem of selecting K arms with
the highest expected rewards in a stochastic
n-armed bandit game. Instead of using existing
evaluation metrics (e.g., misidentification
probability (Bubeck et al., 2013) or the metric
in EXPLORE-K (Kalyanakrishnan & Stone,
2010)), we propose to use the aggregate regret,
which is defined as the gap between the average
reward of the optimal solution and that of our
solution. Besides being a natural metric by
itself, we argue that in many applications, such
as our motivating example from crowdsourcing,
the aggregate regret bound is more suitable.
We propose a new PAC algorithm, which, with
probability at least 1 − δ, identifies a set of
K arms with regret at most ε. We provide the
sample complexity bound of our algorithm.
To complement, we establish the lower bound
and show that the sample complexity of our
algorithm matches the lower bound. Finally, we
report experimental results on both synthetic and
real data sets, which demonstrates the superior
performance of the proposed algorithm.

1. Introduction
We study the multiple arm identification problem in a
stochastic multi-armed bandit game. More formally,
assume that we are facing a bandit with n alternative
arms, where the i-th arm is associated with an unknown
reward distribution supported on [0, 1] with mean θi. Upon
each sample (or “pull”) of a particular arm, the reward is
an i.i.d. sample from the underlying reward distribution.
We sequentially decide which arm to pull next and then
collect the reward by sampling that arm. The goal of
our “top-K arm identification” problem is to identify a
subset of K arms with the maximum total mean. The
problem finds applications in a variety of areas, such as in
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industrial engineering (Koenig & Law, 1985), evolutionary
computation (Schmidt et al., 2006) and medical domains
(Thompson, 1933). Here, we highlight another application
in crowdsourcing. In recent years, crowdsourcing services
become increasingly popular for collecting labels of the
data for many data analytical tasks. The readers may
refer to (Raykar et al., 2010; Karger et al., 2012; Zhou
et al., 2012; Ho et al., 2013; Chen et al., 2013b) and
references therein for recent work on machine learning in
crowdsourcing. In a typical crowdsourced labeling task,
the requestor submits a batch of microtasks (e.g., unlabeled
data) and the workers from the crowd are asked to complete
the tasks. Upon each task completion, a worker receives
a small monetary reward. Since some workers from the
crowd can be highly noisy and unreliable, it is important
to first exclude those unreliable workers in order to obtain
high quality labels. An effective strategy for this purpose
is to test each worker by a few gold samples, i.e., data
with the known labels usually labeled by domain experts.
We note that workers will not be informed that they are
tested using gold samples. Since the requestor has to
pay for each labeling of gold samples, it is desirable to
select the best K workers with the minimum number of
queries. This problem can be cast into our top-K arm
identification problem, where each worker corresponds to
a Bernoulli arm and the mean θi characterizes the i-th
worker’s underlying reliability/quality. In particular, an
answer from the i-th worker is correct (which corresponds
to obtain reward 1) with probability θi and is wrong (which
corresponds to obtain reward 0) with probability 1− θi.

More formally, assume that the arms are ordered by their
means: θ1 > θ2 > . . . > θn and let T be the set of selected
arms with size |T | = K. We define the aggregate regret
(or regret for short) of T as:

LT =
1

K

(
K∑
i=1

θi −
∑
i∈T

θi

)
. (1)

Our goal is to design an algorithm with low sample
complexity and PAC (Probably Approximately Correct)
style bounds. More specifically, given any fixed positive
constants ε, δ, the algorithm should be able to identify a
set T of K arms with LT ≤ ε (we call such a solution an
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ε-optimal solution), with probability at least 1− δ.

We first note that our problem strictly generalizes the
previous work by (Even-Dar et al., 2006; Mannor &
Tsitsiklis, 2004) for K = 1 to arbitrary positive
integer K and hence is referred to as multiple arm
identification problem. Although the problem of choosing
multiple arms has been studied in some existing work,
e.g., (Bubeck et al., 2013; Audibert et al., 2013;
Kalyanakrishnan & Stone, 2010; Kalyanakrishnan et al.,
2012), our notion of aggregate regret is inherently
different from previously studied evaluation metrics such
as misidentification probability (MISID-PROB) (Bubeck
et al., 2013) and EXPLORE-K (Kalyanakrishnan & Stone,
2010; Kalyanakrishnan et al., 2012). As we will explain
in Section 2, our evaluation metric is a more suitable
objective for many real applications, especially for the
aforementioned crowdsourcing application.

We summarize our results in this paper as follows:

1. Section 3 & 4: We develop a new PAC algorithm
with sample complexity O

(
n
ε2

(
1 + ln(1/δ)

K

))
for

any ε > 0, 0 < δ < 1, and K ≤ n/2.
For K ≥ n/2, the sample complexity becomes
O
((

n−K
K · nε2

)(
n−K
K + ln(1/δ)

K

))
. It is interesting

to compare this bound with the optimal bound
O( nε2 ln (1/δ)) for K = 1 in (Even-Dar et al., 2006;
Mannor & Tsitsiklis, 2004). ForK = 1 (i.e., selecting
the best arm), our result matches theirs. Interestingly,
whenK is larger, our algorithm suggests that even less
samples are needed. Intuitively, a larger K leads to a
less stringent constraint for an ε-optimal solution and
thus can tolerate more mistakes. Let us consider the
following toy example. Assume all the arms have the
same mean 1/2, except for a random one with mean
1/2+2ε. IfK = 1, to obtain an ε-optimal solution, we
essentially need to identify the special arm and thus
need a lot of samples. However, if K is large, any
subset of K arms would work fine since the regret is
at most 2ε/K. Our algorithm bears some similarity
with previous work, such as the halving technique
in (Even-Dar et al., 2006; Kalyanakrishnan & Stone,
2010; Karnin et al., 2013) and idea of accept-reject in
(Bubeck et al., 2013). However, the analysis is more
involved than the case forK = 1 and needs to be done
more carefully in order to achieve the above sample
complexity.

2. Section 5: To complement the upper bound,
we further establish a matching lower bound
for Bernoulli bandits: for K ≤ n/2, any
(deterministic or randomized) algorithm requires at
least Ω

(
n
ε2

(
1 + ln(1/δ)

K

))
samples to obtain an

ε-optimal solution with probability at least 1 −

δ; for K ≥ n/2, the lower bound becomes
Ω
((

n−K
K · nε2

)(
n−K
K + ln 1/δ

K

))
. This shows that

our algorithm achieves the optimal sample complexity
for Bernoulli bandits and for all values of ε, δ and
K. To this end, we show two different lower bounds
for K ≤ n/2: Ω( nε2 ) and Ω( nε2

ln(1/δ)
K ). The first

bound is established via an interesting reduction from
our problem to the basic problem of distinguishing
two similar Bernoulli arms (with means 1/2 and
1/2 + ε respectively). The second one can be shown
via a generalization of the argument in (Mannor &
Tsitsiklis, 2004) for K = 1. The lower bound for
K ≥ n/2 can be easily derived by a reduction to the
case for K ≤ n/2.

3. Section 6: Finally, we conduct experiments on both
simulated and real data sets. The experimental results
demonstrate that, using the same number of samples,
our algorithm not only achieves lower regret but also
higher precision than existing methods. Moreover,
using our algorithm, the maximum number of samples
taken from any individual arm is much smaller than
that in the SAR algorithm (Bubeck et al., 2013). In
fact, one can show that, if we fix the sample budget to
be Q, the maximum number of samples for an arm is
Q/nΩ(1) for our algorithm (Theorem 4.3), while SAR
might query an arm by Ω(Q/ log(n)) times. This
property is particularly desirable for crowdsourcing
applications since it can be quite problematic, at least
time-consuming, to test a single worker with too many
samples.

2. Related Works
Multi-armed bandit problems have been extensively
studied in the machine learning community over the past
decade (see for example (Auer et al., 2002a;b; Beygelzimer
et al., 2011; Bubeck & Cesa-Bianchi, 2012; Chen et al.,
2013a) and the references therein). In recent years,
multiple arm identification problem has received much
attention and has been investigated under different setups.
For example, the work (Even-Dar et al., 2006; Mannor
& Tsitsiklis, 2004; Audibert et al., 2010; Karnin et al.,
2013) studied the special case when K = 1. When
K > 1, Bubeck et al. (2013) proposed the SAR (Successive
Accepts and Rejects) algorithm which minimizes the
misidentification probability (MISID-PROB), i.e., Pr(T 6=
{1, . . . ,K}), given a fixed budget (queries). Another line
of research (Kalyanakrishnan et al., 2012; Kalyanakrishnan
& Stone, 2010) proposed to select a subset T of arms, such
that with high probability, for all arms i ∈ T , θi > θK − ε,
where θK is the mean of the K-th best arm. We refer this
metric to as the EXPLORE-K metric.
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Our notion of aggregate regret is inherently different from
MISID-PROB and EXPLORE-K, and is a more suitable
objective for many real applications. For example,
MISID-PROB requires to identify the exact top-K arms,
which is more stringent. When the gap of any consecutive
pair θi and θi+1 among the first 2K arms is extremely
small (e.g., o( 1

n )), it requires a huge amount (e.g., ω(n2))
of samples to make the misidentification probability less
than ε (Bubeck et al., 2013). While in our metric, any
K arms among the first 2K arms constitute an ε-optimal
solution. In crowdsourcing applications, our main goal is
not to select the exact top-K workers, but a pool of good
enough workers with a small number of samples. Another
metric that is related to MISID-PROB is the expected
regret 1

K

(∑K
i=1 θi −E[

∑
i∈T θi]

)
, which has also been

considered in a number of prior works (Audibert et al.,
2010; Bubeck et al., 2013; Audibert et al., 2013). In
(Audibert et al., 2010; Bubeck et al., 2013), the expected
regret was shown to be sandwiched by ∆·MISID-PROB and
MISID-PROB (for K = 1), where ∆ = θ1 − θ2. However,
∆ can be arbitrarily small, hence MISID-PROB can be an
arbitrarily bad bound for the regret. It is worthwhile noting
that it is possible to obtain an expected regret of ε with at
most O(n/ε2) samples, using the semi-bandit regret bound
in (Audibert et al., 2013). In contrast, the goal of this paper
is to develop an efficient algorithm to achieve an ε-regret
with high probability.

To compare our aggregate regret with the EXPLORE-K
metric, let us consider another example where
θ1, . . . , θK−1 are much larger than θK and θK+i > θK − ε
for i = 1, . . . ,K. It is easy to see that the set
T = {K + 1, . . . , 2K} also satisfies the requirement
of EXPLORE-K However, the set T is far away from the
optimal set with the aggregate regret much larger than ε. In
crowdsourcing, the labeling performance can significantly
drop if the best set of workers (e.g., θ1, . . . , θK−1 in the
example) is left out of the solution.

3. Algorithm
In this section, we describe our algorithm for the multiple
arm identification problem. Our algorithm OptMAI
(Algorithm 1) takes three positive integers n,K,Q as the
input, where n is the total number of arms,K is the number
of arms we want to choose and Q is an upper bound on
the total number of samples1. OptMAI consists of two
stages, the Quartile-Elimination (QE) stage (line 4-6) and
the Accept-Reject (AR) stage (line 8).

The QE stage proceeds in rounds. Each QE round calls
the QE subroutine in Algorithm 2, which requires two

1If Algorithm 1 stops at round r = R, the total number of
samples is (1− βR)Q, which is less than Q.

Algorithm 1 Optimal Multiple Arm Identification
(OptMAI)

1: Input: n,K,Q.
2: Initialization: Active set of arms S0 = {1, . . . , n}; set

of top arms T0 = ∅; β = e0.2 · 3
4 . Let r = 0.

3: while |Tr| < K and |Sr| > 0 do
4: if |Sr| ≥ 4K then
5: Sr+1 = QE(Sr, β

r(1− β)Q)
6: Tr+1 = ∅
7: else
8: (Sr+1, Tr+1) = AR(Sr, Tr, β

r(1− β)Q,K)
9: end if

10: r = r + 1.
11: end while
12: Output: The set of the selected K-arms Tr.

Algorithm 2 Quartile-Elimination(QE) (S,Q)

1: Input: S,Q.
2: Sample each arm i ∈ S for Q0 = Q

|S| times and let θ̂i
be the empirical mean of the i-th arm.

3: Find the first quartile (lower quartile) of the empirical
mean θ̂a, denoted by q̂.

4: Output: The set V = S\{i ∈ S : θ̂i < q̂}.

parameters S and Q. Here, S is the set of arms which
we still want to pull and Q is the total number of samples
required in this round. We uniformly sample each arm in S
forQ/|S| times and then discard a quarter of arms with the
minimum empirical mean, which is the average reward in
this round. We note that in each call of the QE subroutine,
we pass differentQ values (exponentially decreasing). This
is critical for keeping the total number of samples linear
in n and achieving the optimal sample complexity. See
Algorithm 1 for the setting of the parameters. The QE
stage repeatedly calls the QE subroutine until the number
of remaining arms is at most 4K.

Now, we enter the AR stage, which also runs in rounds.
Each AR round (Algorithm 3) requires four parameters,
S, T,Q,K, where S,Q have the same meanings as in QE
and T is the set of arms that we have decided to include in
our final solution and thus will not be sampled any more. In
each AR subroutine (Algorithm 3), we again sample each
arm for Q/|S| times. We define the empirical gap for the
i-th arm to be the absolute difference between the empirical
mean of the i-th arm and the K ′-th (or (K ′ + 1)-th) largest
empirical mean, where K ′ = K − |T | (see Eq.(2)). We
remove a quarter of arms with the largest empirical gaps.
There are two types of those removed arms: those with
the largest empirical means, which are included in our final
solution set T , and those with the smallest empirical means,
which are discarded from further consideration.
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Algorithm 3 Accept-Reject(AR) (S, T,Q,K)

1: Input: S, T,Q,K and s = |S|.
2: Sample each arm i ∈ S for Q0 = Q

|S| times and let θ̂i
be the empirical mean of the i-th arm.

3: Let K ′ = K−|T |. Let θ̂(K′) and θ̂(K′+1) be the K ′-th
and (K ′ + 1)-th largest empirical means, respectively.
Define the empirical gap for each arm i ∈ S:

∆̂i = max(θ̂i − θ̂(K′+1), θ̂(K′) − θ̂i) (2)

4: while |T | < K and |S| > 3s/4 do
5: Let a ∈ arg maxi∈S ∆̂i and set S = S\{a}.
6: if θ̂a ≥ θ̂(K′+1) then
7: Set T = T ∪ {a}.
8: end if
9: end while

10: Output: The set S and T .

4. Bounding the Regret and the Sample
Complexity

We analyze the regret achieved by our algorithm. All the
detailed proofs in this section are provided in the appendix
due to space constraints. Firstly, let us introduce some
necessary notations. For any positive integer C, we use
[C] to denote the set {1, 2, . . . , C}. For any subset S of
arms, let indi(S) be the arm in S with the i-th largest
mean. We use valC(S) to denote the average mean of the
C best arms in S, i.e., valC(S) , 1

C

∑C
i=1 θindi(S). Let

totC(S) = C · valC(S) be the total sum of the means of
the C best arms in S. We first consider one QE round.
Suppose S is the set of input arms and V is the output set.
We show that the average mean of the K best arms in V
is at most ε-worse than that in S, for some appropriate ε
(depending on Q and |S|).

Lemma 4.1 Assume that K ≤ |S|/4 and let V be the
output of QE(S,Q) (Algorithm 2). For every 0 < δ < 1,
with probability 1−δ, we have that valK(V ) ≥ valK(S)−

ε, where ε =

√
|S|
Q

(
10 + 4 ln(2/δ)

K

)
.

We further provide the regret bound for the AR algorithm
in the following lemma.

Lemma 4.2 Let (S′, T ′) be the output of the algorithm
AR(S, T,Q,K) (Algorithm 3). For every 0 < δ < 1, with
probability 1− δ, we have that

totK−|T ′|(S
′) + tot|T ′|(T

′) ≥ totK−|T |(S) + tot|T |(T )− εK,

where ε =

√
|S|
Q

(
4 + ln(2/δ)

K

)
.

In each round of the AR-stage with S = Sr and top
arms T = Tr, the value totK−|T |(S)+tot|T |(T )

K is the best

possible average mean of the set of K arms in S which
contains T . Lemma 4.2 provides an upper bound for
the gap between this value on the output (T ′, S′) by AR
and the best possible one. Applying this bound over all
rounds would further imply that this value of the output of
Algorithm 1 is not far away from that of the real top-K
arms. With Lemma 4.1 and Lemma 4.2 in place, we prove
the performance of Algorithm 1 in the next theorem.

Theorem 4.3 For every 0 < δ < 1 and sample budget
Q > 0, with probability at least 1−δ, the output of OptMAI
algorithm T is an ε-optimal solution (i.e., valK(T ) ≥

valK([n]) − ε) with ε = O

(√
n
Q

(
1 + ln(1/δ)

K

))
.

Moreover, each arm is sampled by at most O(Q/n0.3)
times.

Theorem 4.3 also provides us the sample complexity of
Algorithm 1 for any pre-fixed positive values ε and δ, as
stated in the next corollary.

Corollary 4.4 For any ε > 0 and 0 < δ < 1, it suffices to
run Algorithm 1 with

Q = O

(
n

ε2

(
1 +

ln(1/δ)

K

))
. (3)

in order to obtain an ε-optimal solution with probability 1−
δ. In other words, the sample complexityQ of the algorithm
is bounded by O

(
n
ε2

(
1 + ln(1/δ)

K

))
.

In fact, for K ≥ n/2, we can obtain a better sample
complexity as follows.

Theorem 4.5 For any 0 < δ < 1 and K ≥ n/2, with
probability at least 1 − δ, there is an algorithm that can
find an ε-optimal solution T and the number of samples
used is at most

O

((n−K
K

· n
ε2

)(n−K
K

+
ln(1/δ)

K

))
. (4)

When K ≥ n/2, instead of identifying the best K arms,
we can easily adapt Algorithm 1 to find the worst (n −
K) arms with the smallest (n −K) θi’s. In particular, the
algorithm in Theorem 4.5 can be constructed as follows.
Whenever we obtain a sample of value x, we use 1 − x as
the sample value and apply Algorithm 1 to identify the top
n−K arms. Then we output the remaining K arms as the
solution. Applying Corollary 4.4, the result of Theorem 4.5
directly follows. According to our proof in the appendix,
the constants hiding in Big-O in (4) and that in (3) are the
same; and since n−K

K ≤ 1 when K ≥ n/2, the bound in
(4) is strictly sharper than that in (3). Also, the complexity
bound in (4) captures the trivial case that when K = n (i.e,
selecting all arms), the sample complexity should be zero.
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Remark 4.1 To achieve the desired bounds on the regret
and sample complexity, the AR stage can be substituted by
a simpler process which takes a uniform number of samples
from each arm and chooses the K arms with the largest
empirical means. The details can be found in the appendix.
We choose to present the AR subroutine in Algorithm 1
because 1) it also meets the theoretical bound in Section 4;
2) it leads to much better empirical performance.

Remark 4.2 The naive uniform sampling algorithm,
which takes the same number of samples from each arm
and chooses the K arms with the largest empirical means,
does not achieve the optimal sample complexity. In general,
it requires at least Ω(n log(n)) samples, which is log(n)
factor worse than our optimal bound. See appendix for a
detailed discussion.

5. A Matching Lower Bound
In this section, we provide lower bounds for Bernoulli
bandits where the reward of the i-th arm follows
a Bernoulli distribution with mean θi. We prove
that there is an underlying {θi}ni=1 such that for
any randomized algorithm A, in order to identify an
ε-optimal solution with probability at least 1 − δ, the
expected number of samples Q is required to be at least
max

{
Ω
(
n ln(1/δ)
ε2K

)
,Ω
(
n
ε2

)}
= Ω

(
n
ε2

(
1 + ln(1/δ)

K

))
when K ≤ n/2. When K ≥ n/2, by a simple argument
as in Theorem 4.5, the lower sample complexity bound
should be Ω

((
n−K
K · nε2

)(
n−K
K + ln 1/δ

K

))
. According

to Corollary 4.4 and Theorem 4.5, for Bernoulli bandits,
our algorithm achieves the lower bound of the sample
complexity for all K. To show the lower bound for K ≤
n/2, and we separate the proof into two parts: Q ≥ Ω

(
n
ε2

)
and Q ≥ Ω

(
n ln(1/δ)
ε2K

)
.

5.1. First Lower Bound for K ≤ n/2: Q ≥ Ω
(
n
ε2

)
Theorem 5.1 Fix the real number ε such that 0 < ε ≤
0.01, and integers K,n such that 10 ≤ K ≤ n/2. Let A
be a possibly randomized algorithm, so that for any set of
n Bernoulli arms with means θ1, θ2, . . . , θn,

• A takes at most Q samples in expectation;

• with probability at least 0.8, A outputs a set T of size
K with valK(T ) ≥ valK([n])− ε.

Then, we have that Q ≥ Ω( nε2 ).

The high level idea of the proof of Theorem 5.1 is as
follows. Suppose there is an algorithm A which can find
an ε-optimal solution with probability at least 0.8 and uses
at mostQ samples in expectation. We show that we can use

Algorithm 4 Algorithm B (calls A as a subroutine)
1: Choose a random subset S ⊆ [n] such that |S| = K

and then choose a random element j ∈ S.
2: Create n artificial arms as follows: For each i ∈

[n], i 6= j, let θi = 1
2 + 4ε if i ∈ S, let θi = 1

2
otherwise.

3: Simulate A as follows: whenever A samples the i-th
arm:

(1) If i = j, we sample the Bernoulli arm X;
(2) Otherwise, we sample the arm with mean θi.

4: If the arm X is sampled by less than 200Q
n times and

A returns a set T such that j 6∈ T , we decide that X
has the mean of 1

2 ; otherwise we decide that X has the
mean of 1

2 + 4ε.

A as a subroutine to construct an algorithm B, which can
distinguish whether a single Bernoulli arm has the mean
1/2 or 1/2 + 4ε with probability at least 0.51 (above half)
with at most 200Q

n samples (Lemma 5.2). We utilize the
well known result that, for any algorithm (including B),
distinguishing whether a Bernoulli arm has the mean 1/2
or 1/2 + 4ε with probability 0.51 requires at least Ω( 1

ε2 )

samples. Hence, we must have that 200Q
n ≥ Ω( 1

ε2 ), which
gives the desired lower bound for Q.

Lemma 5.2 Let A be an algorithm in Theorem 5.1. There
is an algorithm B, which correctly outputs whether a
Bernoulli arm X has the mean 1

2 + 4ε or the mean 1
2 with

probability at least 0.51, and B uses at most 200Q
n samples.

Assuming the existence of an algorithm A stated in
Theorem 5.1, we construct the algorithm B in Algorithm 4.
Keep in mind that the goal of B is to distinguish whether
a given Bernoulli arm (denoted as X) has the mean 1/2 or
1/2 + 4ε. From Algorithm 4, the number of samples of B
increases by one whenever X is sampled. Since B stops
and outputs the mean 1

2 + 4ε if the number of samples on
X reaches 200Q

n , B takes at most 200Q
n samples from X .

The intuition why the above algorithm can separate X is
as follows. If X has the mean 1/2 + 4ε, X is no different
from any other arm in S. Similarly, if X has the mean 1/2,
X is the same as any other arm in [n] \ S. If A satisfies the
requirement in Theorem 5.1, A can identify a significant
proportion of arms with mean 1/2 + 4ε. So if X has the
mean 1/2 + 4ε, there is a good chance (noticeably larger
than 0.5) that X will be chosen by A. In the appendix, we
formally prove the correctness of B, i.e., it can correctly
output the mean of X with probability at least 0.51; and
thus conclude the proof of Lemma 5.2.
The second step of the proof of Theorem 5.1 is
a well-known lower bound on the expected sample
complexity for separating a single Bernoulli arm (Chernoff,
1972; Anthony & Bartlett, 1999).
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Lemma 5.3 Fix ε such that 0 < ε < 0.01 and let X be a
Bernoulli random variable with mean being either 1

2 + 4ε
or 1

2 . If an algorithm B can output the correct mean of
X with probability at least 0.51, then expected number of
samples performed by B is at least Ω( 1

ε2 ).

By combining Lemma 5.2 and Lemma 5.3, we have
200Q
n ≥ Ω( 1

ε2 ); and therefore prove the claim that Q ≥
Ω( nε2 ) in Theorem 5.1.

5.2. Second Lower Bound for K ≤ n/2:
Q ≥ Ω

(
n ln(1/δ)
ε2K

)
Lemma 5.4 Fix real numbers δ, ε such that 0 < δ, ε ≤
0.01, and integers K,n such that K ≤ n/2. Let A be a
deterministic algorithm (i.e., the only randomness comes
from the arms), so that for any set of n Bernoulli arms with
means θ1, θ2, . . . , θn,

• A makes at most Q samples in expectation;

• with probability at least 1 − δ, A outputs a set T of
size K with valK(T ) ≥ valK([n])− ε.

Then, we have that Q ≥ n ln(1/δ)
20000ε2K .

The proof of Lemma 5.4 generalizes the proof for the
lower bound when K = 1 in (Mannor & Tsitsiklis,
2004). Further, Lemma 5.4 can be easily generalized to
the case where A is randomized, which leads to a stronger
lower bound statement in the next theorem. The proofs of
Lemma 5.4 and Theorem 5.5 are relegated to the appendix.

Theorem 5.5 Fix real numbers δ, ε such that 0 < δ, ε ≤
0.01, and integers K,n, such that K ≤ n/2. Let A be
a (possibly randomized) algorithm so that for any set of n
Bernoulli arms with the mean θ1, θ2, . . . , θn,

• A makes at most Q samples in expectation;

• With probability at least 1 − δ, A outputs a set T of
size K with valK(T ) ≥ valK([n])− ε.

We have that Q = Ω
(n ln(1/δ)

ε2K

)
.

By combining Theorem 5.1 and Theorem 5.5, we obtain
the lower bound Q = Ω

(
n
ε2

(
1 + ln(1/δ)

K

))
, which

further indicates that our sample complexity bound in
Corollary 4.4 is sharp when K ≤ n/2. By the equivalence
between identifying the best K-arms and the worst n−K
arms as in the argument of Theorem 4.5, we could further
establish the following lower bound, which indicates that
the sample complexity bound in Theorem 4.5 is also sharp.

Theorem 5.6 Fix real numbers δ, ε such that 0 < δ, ε ≤
0.01, and integers K,n such that K ≥ n/2. Let A be a
(possibly randomized) algorithm such that for any set of n
Bernoulli arms. Suppose that A can output an ε-optimal
set T of size K, with probability at least 1 − δ, using at
most Q samples in expectation. We have that

Q = Ω

((n−K
K

· n
ε2

)(n−K
K

+
ln(1/δ)

K

))
.

6. Experiments
In this experiment, we assume that arms follow
independent Bernoulli distributions with different means.
To make a fair comparison, we fix the total budget Q
and compare our algorithm (OptMAI) with the uniform
sampling strategy and two other state-of-the-art algorithms:
SAR (Bubeck et al., 2013) and LUCB (Kalyanakrishnan
et al., 2012), in terms of the aggregate regret in (1).
For each experiment, we plot the average result over 100
independent runs.

The implementation of our algorithm is slightly different
from its description in Section 3. First, observe that in
OptMAI, Q is an upper bound of the number of samples;
while (1 − βR)Q < Q is the actual number of samples
used, where R is the total number of rounds run by
the algorithm. Since all the competitor algorithms use
Q samples in total, to make a fair comparison, we run
OptMAI with the parameter Q′, which is slightly greater
than Q. In particular, since R ≤ lnn

ln(4/3) , we could set

Q′ = Q
1−β(lnn)/(ln 4/3) so that the actual number of samples

used by the proposed algorithm roughly equals to (but no
greater than) Q. Second, in each round of QE or AR, when
computing the empirical mean θ̂i, our implementation uses
all the samples obtained for the i-th arm (i.e. including
the samples from previous rounds). This will lead to better
empirical performance especially when the budget is very
limited. We note that SAR also reuses the samples from
previous rounds. Third, in each round of OptMAI, the
ratio of the number of samples between two consecutive
rounds is set to be β = e0.2 · 0.75 ≈ 0.91. In the real
implementation, one could treat this quantity as a tuning
parameter to make the algorithm more flexible (as long as
β ∈ (0.75, 1)). In this experiment, we report the results
for both β = 0.8 and β = 0.9. Based on our experimental
results, one could simply set β = 0.8, which will lead to
reasonably good performance under different scenarios.

6.1. Simulated Experiments

In our simulated experiment, the number of total arms is set
to n = 1000. We vary the total budgetQ = 20n, 50n, 100n
and K = 10, 20, . . . , 500. We use different ways to
generate {θi}ni=1 and report the comparison results among
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(a) θ ∼ Unif[0, 1], Q = 20 · n
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(b) θ ∼ Unif[0, 1], Q = 50 · n
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(c) θ ∼ Unif[0, 1], Q = 100 · n
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(d) θ = 0.6/0.5, Q = 20 · n
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(e) θ = 0.6/0.5, Q = 50 · n
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(f) θ = 0.6/0.5, Q = 100 · n

Figure 1. Performance comparison on simulated data.
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(b) Regret (Q = 10 · n)
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(c) Regret (Q = 20 · n)
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(d) Regret (Q = 50 · n)
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(g) Precision (Q = 10 · n)
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Figure 2. Performance comparison on the RTE data.

different algorithms:

1. θi ∼ Unif[0, 1] : each θi is uniformly distributed on
[0, 1] (see Figure 1(a) to Figure 1(c)).

2. θi = 0.6/0.5 : θi = 0.6 for i = 1, . . . ,K and θi = 0.5
for i = K + 1, . . . , n. We note that such a two point
setting of θi is more challenging for selecting top-K
arms (see Figure 1(d) to Figure 1(f)).

In Figure 1, the x-axis represents the parameter K and the
y-axis represents the regret in (1). It can be seen from
Figure 1 that the uniform sampling performs the worst
and our method outperforms SAR and LUCB in most of
the scenarios. We also observe that when K is large,
the setting of β = 0.8 (red line) outperforms that of
β = 0.9; while for small K, β = 0.9 (blue line) is a
better choice. In the appendix, we also generate θi from
the truncated normal distribution and the Beta distribution
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and have similar observations.

6.2. Real RTE Data

We generate θ from a real recognizing textual entailment
(RTE) dataset (Section 4.3 in (Snow et al., 2008)). There
are 800 binary labeling tasks and 164 different workers.
Since true labels of tasks are available on this data, we set
each θi for the i-th worker to be his/her labeling accuracy.
The histogram of θi is presented in Figure 2(a). We vary the
total budget Q = 10n, 20n, 50n and K from 10 to 100 and
report the comparison of the regret for different approaches
in Figure 2(b) to Figure 2(d). As we can see, our method
with β = 0.8 (red line) outperforms other competitors for
most of K’s and Q’s. SAR performs the best when K =
10, Q = 10n; while our method with β = 0.9 performs the
best when K = 10 and Q = 20n.

In addition, we would like to highlight an interesting
property of our method. As shown in Figure 2(e) and
Figure 2(f) with Q = 10n and K = 20, the empirical
distribution of the number of samples (i.e., tasks) assigned
to a worker using SAR is much more skewed than that
using our method. This property makes our method
particularly suitable for crowdsourcing applications since
it will be extremely time-consuming if a single worker is
assigned with too many tasks. For example, for SAR,
a worker could receive up to 143 tasks (Figure 2(e))
while for our method, a worker receives at most 48 tasks
(Figure 2(f)). In crowdsourcing, a single worker will take
a long time and soon lose patience when performing nearly
150 testing tasks. Such an empirical observation can be
theoretically justified by Theorem 4.3 (see discussions at
the end of the introduction part). We also note that LUCB
has the most even empirical distribution of the number of
tasks assigned to a worker: a workers receives at most 17
tasks and at least 6 tasks.

In Figure 2(g) and Figure 2(h), we compare different
algorithms in terms of the precision, which is defined as
the number of arms in T which belong to the set of the top
K arms over K, i.e., |T∩[K]|

K . As we can see, our method
with β = 0.8 achieves the highest precision followed by
LUCB.
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