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8. Appendix

Here we provide some details that were alluded to in the
main body of the paper.

8.1. The Condorcet Assumption

In the K-armed dueling bandit problem, regret is measured
with respect to the Condorcet winner. The Condorcet win-
ner differs in a subtle but important way from the Borda

winner (Urvoy et al., 2013), which is an arm a
b

that sat-
isfies

P

j

p
bj

� P

j

p
ij

, for all i = 1, . . . , K. In other
words, when averaged across all other arms, the Borda win-
ner is the arm with the highest probability of winning a
given comparison.

In the K-armed dueling bandit problem, the Condorcet
winner is sought rather than the Borda winner, for two rea-
sons. First, in many applications, including the ranker eval-
uation problem addressed in our experiments, the eventual
goal is to adapt to the preferences of the users of the system.
Given a choice between the Borda and Condorcet winners,
those users prefer the latter in a direct comparison, so it is
immaterial how these two arms fare against the others. Sec-
ond, in settings where the Borda winner is more appropri-
ate, no special methods are required: one can simply solve
the K-armed bandit algorithm with arms {a

1

, . . . , a
K

},
where pulling a

i

means choosing an index j 2 {1, . . . , K}
randomly and comparing a

i

against a
j

. Thus, research on
the K-armed dueling bandit problem focuses on finding the
Condorcet winner, for which special methods are required
to avoid mistakenly choosing the Borda winner.

As mentioned in Section 3, IF and BTM assume more than
the existence of a Condorcet winner. They also require
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Figure 3. The probability that the Condorcet and the total ordering
assumptions hold for subsets of the feature rankers. The probabil-
ity is shown as a function of the size of the subset.

the comparison probabilities p
ij

to satisfy certain restric-
tive and difficult to verify conditions. Specifically, IF and
BTM require a total ordering {a

1

, . . . , a
K

} of the arms to
exist such that p

ij

> 1

2

for all i < j. Here we provide evi-
dence that this assumption is often violated in practice. By
contrast, the algorithm we propose in Section 4 makes only
the Condorcet assumption, which is implied by the total
ordering assumption of IF and BTM.

In order to test how stringent an assumption the existence
of a Condorcet winner is compared to the total ordering
assumption, we estimated the probability of each assump-
tion holding in our ranker evaluation application. Using
the same preference matrix as in our experiments in Sec-
tion 6, we computed for each K = 1, . . . , 64 the probabil-
ity P

K

that a given K-armed dueling bandit problem ob-
tained from considering K of our 64 feature rankers would
have a Condorcet winner as follows: first, we calculated
the number of K-armed dueling bandit problems that have
a Condorcet winner by calculating for each feature ranker
r how many K-armed dueling bandit problems it can be
the Condorcet winner of: for each r, this is equal to

�

Nr

K

�

,
where N

r

is the number rankers that r beats; next, we di-
vided this total number of K-armed dueling bandit prob-
lems with a Condorcet winner by

�

64

K

�

, which is the num-
ber of all K-armed dueling bandit problems that one could
construct from these 64 rankers.

The probabilities P
K

, plotted as a function of K in Figure
3 (the red curve), were all larger than 0.97. The same plot
also shows an estimate of the probability that the total or-
dering assumption holds for a given K (the blue curve),
which was obtained by randomly selecting 100, 000 K-
armed dueling bandit problems and searching for ones that
satisfy the total ordering assumption. As can be seen from
Figure 3, as K grows the probability that the total ordering
assumption holds decreases rapidly. This is because there
exist cyclical relationships between these feature rankers
and as soon as the chosen subset of feature rankers con-
tains one of these cycles, it fails to satisfy the total ordering
condition. By contrast, the Condorcet assumption will still
be satisfied as long as the cycle does not include the Con-
dorcet winner. Moreover, because of the presence of these
cycles, the probability that the Condorcet assumption holds
decreases initially as K increases, but then increases again
because the number of all possible K-armed dueling bandit
decreases as K approaches 64.

Furthermore, in addition to the total ordering assumption,
IF and BTM each require a form of stochastic transitivity.
In particular, IF requires strong stochastic transitivity; for
any triple (i, j, k), with i < j < k, the following condition
needs to be satisfied:

p
ik

� max{p
ij

, p
jk

}.

BTM requires the less restrictive relaxed stochastic transi-
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tivity, i.e., that there exists a number � � 1 such that for all
pairs (j, k) with 1 < j < k, we have

�p
1k

� max{p
1j

, p
jk

}.

As pointed out in (Yue & Joachims, 2011), strong stochas-
tic transitivity is often violated in practice, a phenomenon
also observed in our experiments: for instance, all of the K-
armed dueling bandit problems on which we experimented
require � > 1.

Even though BTM permits a broader class of K-armed du-
eling bandit problems, it requires � to be explicitly passed
to it as a parameter, which poses substantial difficulties
in practice. If � is underestimated, the algorithm can in
certain circumstances be misled with high probability into
choosing the Borda winner instead of the Condorcet win-
ner. On the other hand, though overestimating � does not
cause the algorithm to choose the wrong arm, it nonethe-
less results in a severe penalty, since it makes the algo-
rithm much more exploratory, yielding the �7 term in the
upper bound on the cumulative regret, as discussed in Sec-
tion 3. For instance, in the three-ranker evaluation experi-
ments discussed in Section 6, the values for � are 4.85, 11.6
and 47.3 for the 16-, 32- and 64-armed examples: even the
smallest of these numbers raised to the power of 7 is on the
order of tens of thousands, making this upper bound very
large.

8.2. Proof of Lemma 1

In this section, we prove Lemma 1, whose statement is re-
peated here for convenience. Recall from Section 5 that
we assume without loss of generality that a

1

is the optimal
arm. Moreover, given any K-armed dueling bandit algo-
rithm, we define w

ij

(t) to be the number of times arm a
i

has beaten a
j

in the first t iterations of the algorithm. We
also define u

ij

(t) := wij(t)

wij(t)+wji(t)
+

q

↵ ln t

wij(t)+wji(t)
, where

↵ is any positive contant, and l
ij

(t) := 1 � u
ji

(t). More-

over, for any � > 0, define C(�) :=
⇣

(4↵�1)K

2

(2↵�1)�

⌘

1
2↵�1

.

Lemma 1. Let P := [p
ij

] be the preference matrix of a

K-armed dueling bandit problem with arms {a
1

, . . . , a
K

}.

Then, for any dueling bandit algorithm and any ↵ > 1

2

and

� > 0, we have

P
⇣

8 t > C(�), i, j, p
ij

2 [l
ij

(t), u
ij

(t)]
⌘

> 1 � �. (9)

Proof. To decompose the lefthand side of (9), we introduce
the notation G

ij

(t) for the “good” event that at time t we
have p

ij

2 [l
ij

(t), u
ij

(t)], which satisfies the following:

(i) G
ij

(t) = G
ji

(t) because of the triple of equalities
⇣

p
ji

, l
ji

(t), u
ji

(t)
⌘

=

⇣

1 � p
ij

, 1 � u
ij

(t), 1 � l
ij

(t)
⌘

.

(ii) G
ii

(t) always holds, since (p
ii

, l
ii

(t), u
ii

(t)) =

�

1

2

, 1

2

, 1

2

�

. Together with (i), this means that we only need
to consider G

ij

(t) for i < j.

(iii) Define ⌧ ij

n

to be the iteration at which arms i and j
were compared against each other for the nth time. If
G

ij

�

⌧ ij

n

+ 1

�

holds, then the events G
ij

(t) hold for all

t 2
⇣

⌧ ij

n

, ⌧ ij

n+1

i

because when t 2
⇣

⌧ ij

n

, ⌧ ij

n+1

i

, w
ij

and
w

ji

remain constant and so in the expressions for u
ij

(t)
and u

ji

(t) only the ln t changes, which is a monotoni-
cally increasing function of t. So, we have

l
ij

(t)  l
ij

(⌧ ij

n

+ 1)  p
ij

 u
ij

(⌧ ij

n

+ 1)  u
ij

(t).

Moreover, the same statement holds with ⌧ ij

n

replaced by
any T 2

⇣

⌧ ij

n

, ⌧ ij

n+1

i

, i.e., if we know that G
ij

(T ) holds,

then G
ij

(t) also holds for all t 2
⇣

T, ⌧ ij

n+1

i

. This is
illustrated in Figure 4.

Now, given the above three facts, we have for any T

P
⇣

8 t � T, i, j, G
ij

(t)
⌘

(10)

= P
⇣

8 i > j, G
ij

(T ) and 8 n s.t. ⌧ ij

n

> T, G
ij

(⌧ ij

n

)

⌘

.

Let us now flip things around and look at the comple-
ment of these events, i.e. the “bad” event B

ij

(t) that
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� ij
n

T � ij
n+1

time

µij
n

µij
n+1

µij
n+2

pij

· · · · · · · · ·

pij µij(t) Confidence intervals [lij(t), uij(t)]
Chernoff-Hoeffding upper bound
on P

⇣

pij /2 [lij(t), uij(t)]
⌘

Figure 4. An illustrations of the idea behind Lemma 1 using an example of how the confidence intervals of a single pair of arms (a
i

, a
j

),
and their relation to the comparison probability p

ij

, might evolve over time. The time-step ⌧ ij

m

denotes the mth time when the arms a
i

and a
j

were chosen by RUCB to be compared against each other. We also define µij

m

:= µ
ij

(⌧ ij

m

). The time T is when the confidence
intervals [l

ij

(t), u
ij

(t)] begin to include p
ij

. The lemma then states that with probability 1� �, we have T  C(�).

Moreover, for each time-step, the area of the shaded region under the vertical graphs is the bound given by the Chernoff-Hoeffding
(CH) bound on the probability that the confidence interval will not contain p

ij

. Note that the CH bound has the form e�(x�µ

ij
n )

2

and so in order for this number to be the area under a graph (hence making it easier to illustrate in a figure), we have drawn the
derivative of this function, f ij

n

(x) := |x � µij

n

|e�(x�µ

ij
n )

2
, which is why the graphs are equal to 0 in the middle. Note that this

does not mean that µij

n

has very low probability of being close to p
ij

: the graphs drawn here are not the PDFs of the posteriors, but
simply a manifestation of the bound given by the Chernoff-Hoeffding bound. More specifically, the property that they satisfy is that
P
⇣
p
ij

/2 [l
ij

(t), u
ij

(t)]
⌘


R
lij(t)

�1 f ij

Nij(t)
(x)dx+

R1
uij(t)

f ij

Nij(t)
(x)dx.

p
ij

/2 [l
ij

(t), u
ij

(t)] occurs. Subtracting both sides of
Equation (10) from 1 and using the union bound gives

P
⇣

9 t > T, i, j s.t. B
ij

(t)
⌘


X

i<j



P
⇣

B
ij

(T )

⌘

+ P
⇣

9 n : ⌧ ij

n

> T and B
ij

(⌧ ij

n

)

⌘

�

.

Further decomposing the righthand side using union
bounds and making the condition explicit, we get

P
⇣

9 t > T, i, j s.t. B
ij

(t)
⌘


X

i>j

"

P

 

�

�

�

p
ij

� µij

Nij(T )

�

�

�

>

s

↵ lnT

N
ij

(T )

!

+

P

0

@9 n  T s.t. ⌧ ij

n

> T and
�

�p
ij

� µij

n

�

� >

s

↵ ln ⌧ ij

n

n

1

A

+ P

0

@9 n > T s.t.
�

�p
ij

� µij

n

�

� >

s

↵ ln ⌧ ij

n

n

1

A

#

,

since T < n < ⌧ ij

n

. Here, µij

n

:=

wij(⌧
ij
n )

wij(⌧
ij
n )+wji(⌧

ij
n )

is
the frequentist estimate of p

ij

after n comparisons between
arms a

i

and a
j

.

Now, in the above sum, we can upper-bound the first term
by looking at the higher probability event that B

ij

(T ) hap-
pens for any possible number of comparisons between a

i

and a
j

, and since we know that N
ij

(T )  T , we can re-
place N

ij

(T ) with a variable n that can take values between
0 and T . For the second term, we know that ⌧ ij

n

> T , so we
can replace ⌧ ij

n

with T and remove the condition ⌧ ij

n

> T
and look at all n  T . For the third term, since we always
have that n < ⌧ ij

n

, we can replace ⌧ ij

n

with n and get a
higher probability event. Putting all of this together, we get
the following looser bound:
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P
⇣

9 t > T, i, j s.t. B
ij

(t)
⌘


X

i<j

"

P

 

9 n 2 {0, . . . , T} :

�

�p
ij

� µij

n

�

� >

r

↵ lnT

n

!

+ P

 

9 n 2 {0, . . . , T} :

�

�p
ij

� µij

n

�

� >

r

↵ lnT

n

!

+ P

 

9 n > T s.t.
�

�p
ij

� µij

n

�

� >

r

↵ lnn

n

!#


X

i<j

"

2

T

X

n=0

P

 

�

�p
ij

� µij

n

�

� >

r

↵ lnT

n

!

+

1
X

n=T+1

P

 

�

�p
ij

� µij

n

�

� >

r

↵ lnn

n

!#

. (11)

To bound the expression on line (11), we apply the
Chernoff-Hoeffding bound, which in its simplest form
states that given i.i.d. random variables X

1

, . . . , X
n

, whose
support is contained in [0, 1] and whose expectation satis-
fies E[X

k

] = p, and defining µ
n

:=

X1+···+Xn
n

, we have
P (|µ

n

� p| > a)  2e�2na

2
. This gives us

P
⇣

9 t > T, i, j s.t. B
ij

(t)
⌘


X

i<j

2

4

2

T

X

n=1

2e
�2�n

↵ lnT

⇢n +

1
X

n=T+1

2e
�2�n

↵ lnn

⇢n

3

5

=

K(K � 1)

2

"

T

X

n=1

4

T 2↵

+

1
X

n=T+1

2

n2↵

#

 2K2

T 2↵�1

+ K2

Z 1

T

dx

x2↵

, since
1

x2↵

is decreasing.

 2K2

T 2↵�1

+ K2

Z 1

T

dx

x2↵

=

2K2

T 2↵�1

+

K2

(1 � 2↵)x2↵�1

�

�

�

�

1

T

=

(4↵ � 1)K2

(2↵ � 1)T 2↵�1

. (12)

Now, since C(�) =
⇣

(4↵�1)K

2

(2↵�1)�

⌘

1
2↵�1

for each � > 0, the
bound in (12) gives us (9).

8.3. Proof of Theorem 5

Here, we provide the proof of the expected regret bound
claimed in Theorem 5, starting by repeating the statement
of the theorem:

Theorem 5. Given the setup of Proposition 2 together with

the notation of Theorem 4, we have the following expected

regret bound for RUCB, where the expectations are taken

across different runs of the algorithm: if we have ↵ > 1, the

expected regret accumulated by RUCB after T iterations is

bounded by

E[R
T

] 
"

8 +

✓

2(4↵ � 1)K2

2↵ � 1

◆

1
2↵�1

2↵ � 1

↵ � 1

#

�

max

+ 2D�

max

ln 2D +

K

X

j=2

2↵ (�

j

+ 4�

max

)

�

2

j

lnT.

(13)

Proof. We can obtain the bound in (13) from (6) by inte-
grating with respect to � from 0 to 1. This is because given
any one-dimensional random variable X with CDF F

X

, we
can use the identity E[X] =

R

1

0

F�1

X

(q)dq. In our case,
X = R

T

for a fixed time t and, as illustrated in Figure
5, we can deduce from (6) that F

RT (r) > H�1

T

(r), which
gives the bound

F�1

RT
(q) < H

T

(q) = bC(1 � q) +
K

X

j=2

bD
j

lnT.

Now, assume that ↵ > 1. To derive (13) from the above in-
equality, we need to integrate the righthand side, and since
it is only the first two terms in the definition of bC that de-
pends on �, that is all we need to integrate. Let us deal

0 r0 = Ht(q0) t
r

0
1

q 0
F

R
t(
r 0

)
q

FRt(r)

H�1
t (r), the inverse function of

Ht(q) := C(1 � q)�� +
P

i>j Dij�ij ln t

Figure 5. A schematic graph illustrating the proof of Theorem
5. Note that the expression for H

T

(q) is extracted from (6),
which also implies that H�1

T

is necessarily below F
RT : formu-

lated in terms of CDFs, (6) states that F
RT (H

T

(q
0

)) > q
0

=

H�1

T

(H
T

(q
0

)), where q
0

= 1 � �
0

is a quantile. From this, we
can conclude that F

RT (r) > H�1

T

(r) for all r.
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Figure 6. Average accuracy for 100 runs of BTM, Condorcet SAVAGE and RUCB with ↵ = 0.51 applied to three K-armed dueling
bandit problems with K = 16, 32, 64. Note that the x-axes in these plots use a log scale.

with the first term first, using the substitution 1 � q = �,
dq = �d�:
Z

1

q=0

4�

max

ln

2

1 � q
dq = 4�

max
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To deal with the second term in bC, recall that it is equal to
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C
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⌘
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, so to simplify
notation, we define

L := 2�

max

✓
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◆
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.

Now, we can carry out the integration as follows, again us-
ing the substitution 1 � q = �, dq = �d�:
Z
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C(1 � q)dq =
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8.4. Experimental Details

Our experimental setup is built on real IR data, namely the
LETOR NP2004 dataset (Liu et al., 2007). This dataset is
based on the TREC Web track named-page finding task,
where a query is what the user believes to be a reasonable
estimate of the name of the webpage she is seeking. Us-
ing this data set, we create a set of 64 rankers, each corre-
sponding to a ranking feature provided in the data set, e.g.,
PageRank. The ranker evaluation task in this context corre-
sponds to determining which single feature constitutes the
best ranker (Hofmann et al., 2013a).

To compare a pair of rankers, we use probabilistic inter-

leave (PI) (Hofmann et al., 2011), a recently developed
method for interleaved comparisons. To model the user’s
click behavior on the resulting interleaved lists, we employ
a probabilistic user model (Hofmann et al., 2011; Craswell
et al., 2008) that uses as input the manual labels (classi-
fying documents as relevant or not for given queries) pro-
vided with the LETOR NP2004 dataset. Queries are sam-
pled randomly and clicks are generated probabilistically by
conditioning on these assessments in a way that resembles
the behavior of an actual user (Guo et al., 2009).

Following (Yue & Joachims, 2011), we first used the above
approach to estimate the comparison probabilities p

ij

for
each pair of rankers and then used these probabilities to
simulate comparisons between rankers. More specifically,
we estimated the full preference matrix by performing 4000

interleaved comparisons on each pair of the 64 feature
rankers.

Finally, the plots in Figure 6 show the accuracy of all three
algorithms across 100 runs, computed at the same times
as the exploration horizons used for BTM and SAVAGE in
Figure 2. Note that RUCB reaches the 80% mark almost
twice as fast as Condorcet SAVAGE, all without knowing
the horizon T . The contrast is even more stark when com-
paring to BTM.


