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Abstract
This paper proposes a new method for the K-
armed dueling bandit problem, a variation on the
regular K-armed bandit problem that offers only
relative feedback about pairs of arms. Our ap-
proach extends the Upper Confidence Bound al-
gorithm to the relative setting by using estimates
of the pairwise probabilities to select a promising
arm and applying Upper Confidence Bound with
the winner as a benchmark. We prove a sharp
finite-time regret bound of order O(K log T ) on
a very general class of dueling bandit problems
that matches a lower bound proven in (Yue et al.,
2012). In addition, our empirical results using
real data from an information retrieval applica-
tion show that it greatly outperforms the state of
the art.

1. Introduction

In this paper, we propose and analyze a new algorithm,
called Relative Upper Confidence Bound (RUCB), for the
K-armed dueling bandit problem(Yue et al., 2012), a vari-
ation on the K-armed bandit problem in which the feed-
back comes in the form of pairwise preferences. We assess
the performance of this algorithm using one of the main
current applications of the K-armed dueling bandit prob-
lem, ranker evaluation(Joachims, 2002; Yue & Joachims,
2011; Hofmann et al., 2013a), which is used in information
retrieval, ad placement and recommender systems, among
others.

The K-armed dueling bandit problem is part of the
general framework of preference learning(Fürnkranz &
Hüllermeier, 2010), where the goal is to learn, not from
real-valued feedback, but from relative feedback, which
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specifies only which of two alternatives is preferred. Devel-
oping effective preference learning methods is important
for dealing with domains in which feedback is much more
reliable if given in the form of a comparison (e.g., when
provided by a human) and specifying real-valued feedback
instead would be arbitrary or inefficient.

Other algorithms proposed for this problem are Interleaved
Filter (IF) (Yue et al., 2012), Beat the Mean (BTM) (Yue
& Joachims, 2011), and SAVAGE (Urvoy et al., 2013). All
of these methods were designed for the Þnite-horizonset-
ting, in which the algorithm requires as input the explo-
ration horizon, T , the time by which the algorithm needs
to produce the best arm. The algorithm is then judged based
upon either the accuracyof the returned best arm or the re-
gret accumulated in the exploration phase.1 All three of
these algorithms use the exploration horizon to set their
internal parameters so that, for each T , there is a sepa-
rate algorithm IFT , BTMT and SAVAGET . By contrast,
RUCB does not require this input, making it more useful
in practice, since a good exploration horizon is often diffi-
cult to guess. Nonetheless, RUCB outperforms these algo-
rithms in terms of the accuracy and regret metrics used in
the finite-horizon setting.

The main idea of RUCB is to maintain optimistic estimates
of the probabilities of all possible pairwise outcomes, and
(1) use these estimates to select a potential champion,
which is an arm that has a chance of being the best arm,
and (2) select an arm to compare to this potential champion
by performing regular Upper Confidence Bound (Agrawal,
1995) relative to it.

We prove a finite-time high-probability bound of
O(K log T ) on the cumulative regret of RUCB, from
which we deduce a bound on the expectation and all higher
moments of cumulative regret. These bounds rely on
substantially less restrictive assumptions on the K-armed
dueling bandit problem than IF and BTM and have better
multiplicative constants than those of SAVAGE. Further-

1These terms are formalized in Section 2.
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more, our bounds are the first explicitly non-asymptotic
results for the K-armed dueling bandit problem.

More importantly, the main distinction of our result is that it
holds for all time-steps. By contrast, given an exploration
horizon T , the results for IF, BTM and SAVAGE bound
only the regret accumulated by IFT , BTMT and SAVAGET

in the first T time-steps.

Finally, we evaluate our method empirically using real data
from an information retrieval application. The results show
that RUCB can learn quickly and effectively and greatly
outperforms BTM and SAVAGE.

The main contributions of this paper are as follows:

• A novel algorithm for the K-armed dueling bandit prob-
lem that is more broadly applicable than existing algo-
rithms,

• Regret bounds that make significantly less restrictive as-
sumptions than IF and BTM, have better multiplicative
constants than the results of SAVAGE, apply to all time-
steps, and match an existing asymptotic lower bound,

• A novel proof technique that allows us to obtain the first
logarithmic high probability regret bound for a UCB-
type algorithm that does not require the probability of
failure to be passed to the algorithm as a parameter: as
a corollary, we also get the first logarithmic bounds on
all higher moments of the cumulative regret for all times,
and

• Experimental results, based on a real-world application,
demonstrating the superior performance of our algorithm
compared to existing methods.

2. Problem Setting

The K-armed dueling banditproblem (Yue et al., 2012) is
a modification of the K-armed banditproblem (Thomp-
son, 1933): the latter considers K arms {a

1

, . . . , aK } and
at each time-step, an arm ai can be pulled, generating a re-
ward drawn from an unknown stationary distribution with
expected value µi . The K-armed duelingbandit problem
is a variation in which, instead of pulling a single arm, we
choose a pair (ai , aj ) and receive one of them as the better
choice, with the probability of ai being picked equal to an
unknown constant pij and that of aj equal to pji = 1�pij .
We define the preference matrixP = [pij ], whose ij entry
is equal to pij .

In this paper, we assume that there exists a Condorcet win-
ner (Urvoy et al., 2013): an arm, which without loss of gen-
erality we label a

1

, such that p
1i > 1

2

for all i > 1. Given
a Condorcet winner, we define regret for each time-step as
follows (Yue et al., 2012): if arms ai and aj were chosen
for comparison at time t, then regret at that time is rt :=

�i+�j

2

, with �k := p
1k � 1

2

for all k 2 {1, . . . , K}. Thus,
regret measures the average advantage that the Condorcet
winner has over the two arms being compared against each
other. Given our assumption on the probabilities p

1k , this
implies that r = 0 if and only if the best arm is compared
against itself. We define cumulative regret up to timeT to
be RT :=

PT
t=1

rt .

The goal of a bandit algorithm can be formalized in several
ways. We consider two standard settings:
1. The Þnite-horizon setting, in which the algorithm is told

in advance the exploration horizon, T , i.e., the num-
ber of time-steps that the evaluation process is given
to explore before it has to produce a single arm as the
best, which will be exploited thenceforth. In this set-
ting, the algorithm can be assessed on its accuracy, the
probability that a given run of the algorithm reports the
Condorcet winner as the best arm (Urvoy et al., 2013),
which is related to expected simple regret: the regret as-
sociated with the algorithm’s choice of the best arm, i.e.,
rT +1

(Bubeck et al., 2009). Another measure of success
in this setting is the amount of regret accumulated dur-
ing the exploration phase, as used in the explore-then-
exploitproblem formulation (Yue et al., 2012).

2. The horizonless setting, in which no horizon is spec-
ified and the evaluation process continues indefinitely.
Thus, it is no longer sufficient for the algorithm to max-
imize accuracy or minimize regret after a single horizon
is reached. Instead, it must minimize regret across all
horizons by rapidly decreasing the frequency of com-
parisons involving suboptimal arms, particularly those
that fare worse in comparison to the best arm. This goal
can be formulated as minimizing the cumulative regret
over time, rather than with respect to a fixed horizon
(Lai & Robbins, 1985).

All existing K-armed dueling bandit methods target the
finite-horizon setting. However, we argue that the horizon-
less setting is more relevant in practice for the following
reason: finite-horizon methods require a horizon as input
and often behave differently for different horizons. This
poses a practical problem because it is typically difficult
to know in advance how many comparisons are required
to determine the best arm with confidence and thus how
to set the horizon. If the horizon is set too long, the al-
gorithm is too exploratory, increasing the number of eval-
uations needed to find the best arm. If it is set too short,
the best arm remains unknown when the horizon is reached
and the algorithm must be restarted with a longer horizon.

Moreover, any algorithm that can deal with the horizonless
setting can easily be modified to address the finite-horizon
setting by simply stopping the algorithm when it reaches
the horizon and returning the best arm. By contrast, for
the reverse direction, one would have to resort to the “dou-
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bling trick” (Cesa-Bianchi & Lugosi, 2006, Section 2.3),
which leads to substantially worse regret results: this is
because all of the upper bounds proven for methods ad-
dressing the finite-horizon setting so far are in O(log T )

and applying the doubling trick to such results would lead
to regret bounds of order (log T )

2, with the extra log factor
coming from the number of partitions.

To the best of our knowledge, RUCB is the first K-armed
dueling bandit algorithm that can function in the horizon-
less setting without resorting to the doubling trick. We
show in Section 4 how it can be adapted to the finite-
horizon setting.

3. Related Work

The first two methods proposed for the K-armed dueling
bandit problem are Interleaved Filter (IF) (Yue et al., 2012)
and Beat the Mean (BTM) (Yue & Joachims, 2011), both
of which were designed for a finite-horizon scenario. These
methods work under the following restrictions: a total or-
dering of the arms, Stochastic Triangle Inequality (STI) and
either Strong Stochastic Transitivity (SST) in the case of
IF or Relaxed Stochastic Transitivity (RST) with parame-
ter � (for BTM); �, which measures the degree to which
SST fails to hold, needs to be passed to the algorithm: the
higher � is, the more challenging the problem becomes,
with SST holding when � = 1 (cf. §8.1 of the supplemen-
tary material for formal definitions and evidence that these
assumptions are often violated in practice).

Given these assumptions, the following regret bounds have
been proven for IF and BTM. For large T we have

E
⇥

RIFT
T

⇤  C
K log T

�

min

, and

RBTMT
T  C

0 �7K log T

�

min

with high probability,

where IFT means that IF is run with the exploration horizon
set to T and similarly for BTMT ; �

min

is the smallest gap
�j := p

1j � 1

2

, assuming that a
1

is the best arm; and C

and C
0

are universal constants that do not depend on the
specific dueling bandit problem.

The first bound holds only when � = 1 but matches the
lower bound in (Yue et al., 2012, Theorem 2). The second
bound holds for � � 1 and is sharp when � = 1. Note that
this lower bound was proven for certain K-armed dueling
bandit problems that satisfy �i = �j for all i, j 6= 1. In
this case, our asymptotic regret bound matches this lower
bound as well, without any dependence on � (cf. Theorem
4).

Sensitivity Analysis of VAriables for Generic Exploration
(SAVAGE) (Urvoy et al., 2013) is a recently proposed al-
gorithm that outperforms both IF and BTM by a wide mar-

gin when the number of arms is of moderate size. More-
over, one version of SAVAGE, called Condorcet SAVAGE,
makes the Condorcet assumption and has the best theo-
retical results among the algorithms studied in that pa-
per (Urvoy et al., 2013, Theorem 3). However, the regret
bounds provided for Condorcet SAVAGE are of the form
O(K2

log T ), and so are not as tight as those of IF, BTM
or our algorithm.

Finally, note that all of the above results bound only RT ,
where T is the predetermined horizon, since IF, BTM and
SAVAGE were designed for the finite-horizon setting. By
contrast, in Section 5, we bound the cumulative regret of
RUCB for all time-steps.

4. Method

Algorithm 1 Relative Upper Confidence Bound
Input: ↵ > 1

2

, T 2 {1, 2, . . .} [ {1}
1: W = [wij ]  0K ⇥K // 2D array of wins: wij is the

number of times ai beat aj

2: B = ?
3: for t = 1, . . . , T do

4: U := [uij ] =
W

W+WT +

q

! ln t
W+WT // All opera-

tions are element-wise; x
0

:= 1 for any x.
5: uii  1

2

for each i = 1, . . . , K.
6: C  �

ac | 8 j : ucj � 1

2

 

.
7: If C = ?, then pick c randomly from {1, . . . , K}.
8: B  B \ C.
9: If |C| = 1, then B  C and ac to be the unique

element in C.
10: if |C| > 1 then
11: Sample ac from C using the distribution:

p(ac) =

(

0.5 if ac 2 B,
1

2

|B| |C\B|
otherwise.

12: end if
13: d  argmaxj ujc , with ties broken randomly.

Moreover, if there is a tie, d is not allowed to be
equal to c.

14: Compare arms ac and ad and increment wcd or wdc

depending on which arm wins.
15: end for
Return: An arm ac that beats the most arms, i.e., c with

the largest count #
n

j| wcj

wcj+wjc
> 1

2

o

.

We now introduce Relative Upper Confidence Bound
(RUCB), which is applicable to any K-armed dueling ban-
dit problem with a Condorcet winner. In each time-step,
RUCB, shown in Algorithm 1, goes through the following
three stages:

(1) RUCB puts all arms in a pool of potential champions.
Then, it compares each arm ai against all other arms op-
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timistically: for all i 6= j, it computes the upper bound
uij (t) = µij (t)+ cij (t), where µij (t) is the frequentist es-
timate of pij at time t and cij (t) is an optimism bonus that
increases with t and decreases with the number of compar-
isons between i and j (Line 4). If uij < 1

2

for any j, then
ai is removed from the pool: the set of remaining arms is
called C. If we are left with a single potential champion
at the end of this process, we let ac be that arm and put it
in the set B of the hypothesized best arm (Line 9). Note
that B is always either empty or contains one arm; more-
over, an arm is demoted from its status as the hypothesized
best arm as soon as it optimistically loses to another arm
(Line 8). Next, from the remaining potential champions,
a champion arm ac is chosen in one of two ways: if B is
empty, we sample an arm from C uniformly randomly; if B
is non-empty, the probability of picking the arm in B is set
to 1

2

and the remaining arms are given equal probability of
being chosen (Line 11).

(2) Regular UCB is performed using ac as a bench-
mark (Line 13), i.e., UCB is performed on the set of
arms a

1c . . . aKc . Specifically, we select the arm d =

argmaxj ujc . When c 6= j, ujc is defined as above. When
c = j, since pcc =

1

2

, we set ucc =

1

2

(Line 5).

(3) The pair (ac, ad) is compared and the score sheet is
updated as appropriate (Line 7).

Note that in stage (1) the comparisons are based on ucj ,
i.e., ac is compared optimistically to the other arms, mak-
ing it easier for it to become the champion. By contrast,
in stage (2) the comparisons are based on ujc , i.e., ac is
compared to the other arms pessimistically, making it more
difficult for ac to be compared against itself. This is impor-
tant because comparing an arm against itself yields no in-
formation. Thus, RUCB strives to avoid auto-comparisons
until there is great certainty that ac is indeed the Condorcet
winner.

Eventually, as more comparisons are conducted, the esti-
mates µ

1j tend to concentrate above 1

2

and the optimism
bonuses c

1j (t) become small. Thus, both stages of the al-
gorithm increasingly select a

1

, i.e., ac = ad = a
1

, which
accumulates zero regret.

Note that Algorithm 1 is a finite-horizon algorithm if T <
1 and a horizonless one if T = 1, in which case the for
loop never terminates.

5. Theoretical Results

In this section, we prove finite-time high-probability and
expected regret bounds for RUCB. We first state Lemma 1
and use it to prove a high-probability bound on the number
of comparisons for each suboptimal arm in Proposition 2.
An immediate consequence of this result is a high probabil-

ity regret bound of the form O(K2

log T ), which is similar
to the bound for SAVAGE (Urvoy et al., 2013) but for the
horizonless setting. However, in Theorem 4 we show that
this can be lowered to O(K log T ) and we deduce an ex-
pected regret bound in Theorem 5. This result is proven
under conditions that are much more general than those for
IF (Yue et al., 2012) and without requiring the user to spec-
ify the � parameter as BTM does (Yue & Joachims, 2011).
Moreover, it matches the asymptotic lower bound proven
in (Yue et al., 2012, Theorem 2).

The results in Theorems 4 and 5 are surprising because a
K-armed dueling bandit problem depends on roughly K 2

2

independent parameters, so one would expect a bound of
the form O(K2

log T ) unless strong prior information is
infused into the algorithm, as with IF and BTM. However,
these theorems show that one can get asymptotic behaviour
resembling that of a regular K-armed bandit algorithm on
a very broad class of dueling bandit problems with very
little prior knowledge. This finding is also of great practi-
cal significance because there are many situations in which
one has a choice between applying a K-armed bandit al-
gorithm to an unreliable quantity, such as Click Through
Rate, or using a K-armed dueling bandit algorithm to con-
duct direct comparisons, which are known to be more re-
liable when dealing with humans (Hofmann et al., 2013b,
§2.1). These results show that, given such a dilemma, using
a dueling bandit approach does not come at the expense of
the asymptotic behaviour.

Finally, note that the high probability bound proven in The-
orem 4 does not rely on the probability of failure, �, being
passed to the algorithm. Thus, we can use it to also bound
higher moments (hence also the variance) of the cumulative
regret for RUCB for all times. This is in contrast to high
probability bounds that require � to be specified before the
algorithm starts (Audibert et al., 2009; Srinivas et al., 2010;
Abbasi-yadkori et al., 2011), from which one cannot obtain
expected regret bounds for all times. While, given a time
T , one can set � = 1/T in the algorithm to get a logarith-
mic expected regret bound at time T , getting a logarithmic
expected regret bound at time T 1+" for any ✏ > 0, requires
rerunning the algorithm with � = 1/T 1+" .

As before, we assume without loss of generality that a
1

is
the optimal arm. See Table 1 for definitions of symbols
used throughout.

Lemma 1. Let P := [pij ] be the preference matrix of a
K-armed dueling bandit problem with arms{a

1

, . . . , aK }.
Then, for any dueling bandit algorithm and any↵ > 1

2

and
� > 0, we have

P
⇣

8 t > C(�), i, j, pij 2 [lij (t), uij (t)]
⌘

> 1� �.

Proof. See §8.2 in the supplementary material.
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Table 1. List of notation used in this section
Symbol Definition

K Number of arms
↵ The input of Algorithm 1
Nij (t) Number of comparisons between ai and aj until time

t
wij (t) Number of wins of ai over aj until time t

uij (t)
wij (t)

Nij (t)
+

r
↵ ln t

Nij (t)
lij (t) 1� uji (t)
� Probability of failure

C(�)

✓
(4↵� 1)K2

(2↵� 1)�

◆ 1
2↵�1

�j p
1j � 0.5

�ij
�i +�j

2

�

max

maxi �i

Dij
4↵

min{�2

i ,�
2

j }
, or

4↵

�

2

j
if i = 1, or 0 if i = j

D
X

i<j

Dij

bC(�)

✓
4�

max

log

2

�
+ 2�

max

C

✓
�

2

◆
+ 2D ln 2D

◆

bDj
2↵ (�j + 4�

max

)

�

2

j
bT! Definition 3
T! A time between C(�/2) and bT! when a

1

was com-
pared against itself

a _ b max{a, b}

Let us now turn to our first high-probability bound:

Proposition 2. GivenK arms{a
1

, . . . , aK } with prefer-
ence matrixP = [pij ], such thata

1

is the Condorcet win-
ner, and� > 0 and ↵ > 1

2

, then, if we apply Algorithm
1 to thisK-armed dueling bandit problem, given any pair
(i, j) 6= (1, 1), the number of comparisons between arms
ai andaj performed up to timet, denoted byNij (t), satis-
Þes

P
⇣

9 t, (i, j) 6= (1, 1): Nij (t) > C(�)_Dij ln t
⌘

< � (1)

and,N#
ij (t), the number of timesai was compared against

aj between time-stepsC(�) andt, satisÞes

P
⇣

9 t > C(�), (i, j) 6= (1, 1): N#
ij (t) > Dij ln t

⌘

< � (2)

Proof. Given Lemma 1, we know with probability 1 � �
that pij 2 [lij (t), uij (t)] for all t > C(�). Let us first deal
with the easy case when i = j 6= 1: when t > C(�) holds,
ai cannot be played against itself, since if we get c = i in
Algorithm 1, then by Lemma 1 and the fact that a

1

is the
Condorcet winner we have d 6= i since uii (t) =

1

2

< p
1i 

u
1i (t).

Now, let us assume that distinct arms ai and aj have been
compared against each other more than Dij ln t times and
that t > C(�). If s is the last time ai and aj were compared
against each other, we must have

a1

1
2

a1

ai aj

1
2

pi1

ai
�i

1
2

pj1

aj

�j

Figure 1. An illustration of the proof of Proposition 2. The figure
shows an example of the internal state of RUCB at time s. The
height of the dot in the block in row am and column an repre-
sents the comparisons probability pmn , while the interval, where
present, represents the confidence interval [lmn , umn ]: we have
only included them in the (ai , aj ) and the (aj , ai ) blocks of the
figure because those are the ones that are discussed in the proof.
Moreover, in those blocks, we have included the outcomes of two
different runs: one drawn to the left of the dots representing pij

and pji , and the other to the right (the horizontal axis in these plots
has no other significance). These two outcomes are included to
address the dichotomy present in the proof. Note that for a given
run, we must have [lji (s), uji (s)] = [1 � uij (s), 1 � lij (s)] for
any time s, hence the symmetry present in this figure.

uij (s)� lij (s) = 2

s

↵ ln s

Nij (t)
(3)

 2

s

↵ ln t

Nij (t)
< 2

v

u

u

t

↵ ln t
4! ln t

min{�2
i ,�2

j}
= min{�i ,�j }.

On the other hand, for ai to have been compared against
aj at time s, one of the following two scenarios must have
happened:

I. In Algorithm 1, we had c = i and d = j, in which
case both of the following inequalities must hold:
a. uij (s) � 1

2

, since otherwise c could not have been
set to i by Line 5 of Algorithm 1, and

b. lij (s) = 1 � uji (s)  1 � p
1i = pi 1, since we

know that p
1i  u

1i (t), by Lemma 1 and the fact
that t > C(�), and for d = j to be satisfied, we
must have u

1i (t)  uji (t) by Line 6 of Algorithm
1.

From these two inequalities, we can conclude

uij (s)� lij (s) � 1

2

� pi 1 = �i . (4)
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This inequality is illustrated using the lower right
confidence interval in the (ai , aj ) block of Figure 1,
where the interval shows [lij (s), uij (s)] and the dis-
tance between the dotted lines is 1

2

� pi 1.

II. In Algorithm 1, we had c = j and d = i, in which
case swapping i and j in the above argument gives

uji (s)� lji (s) � 1

2

� pj 1 = �j . (5)

Similarly, this is illustrated using the lower left confi-
dence interval in the (aj , ai ) block of Figure 1, where
the interval shows [lji (s), uji (s)] and the distance be-
tween the dotted lines is 1

2

� pj 1.

Putting (4) and (5) together with (3) yields a contradiction,
so with probability 1�� we cannot have Nij be larger than
both C(�) and Dij ln t. This gives us both (1) and (2).

We use the next definition in what follows:

DeÞnition 3. Let bT# be the smallest time satisfying

bT# > C

✓

�

2

◆

+

X

i<j

Dij ln

bT#,

which is guaranteed to exist since the expression on the left
of the inequality grows linearly withbT# and the expression
on the right grows logarithmically. Note thatbT# is speciÞed
by theK-armed dueling bandit problem.

With this in hand, we now state our main result:

Theorem 4. Given the setup of Proposition2, for any� >
0, we have with probability1 � � that for all timesT the
following bound on the cumulative regret holds:

RT  bC(�) +
K
X

j =2

bDj lnT, (6)

where

bC(�) :=

✓

4 ln

2

�
+ 2C

✓

�

2

◆

+ 2D ln 2D

◆

�

max

bDj := D
1j (�1j + 2�

max

) =

2↵ (�j + 4�

max

)

�

2

j
,

with C(·) andD as in Proposition2, and�
max

:=maxi �i

and �ij :=

�i+�j

2

, while RT is the cumulative regret as
deÞned in Section2.

Proof. If we apply Inequality (2) in Proposition 2 with
t =

bT# (as in Definition 3), we know that with prob-
ability 1 � #

2

there is a time T# 2
⇣

C
�

#
2

�

, bT#

i

when
arm a

1

was compared against itself, which means that at
that time we had uj 1(T#) < 1

2

. This in turn implies that
B = {a

1

} from that point on, since by Lemma 1 we have
that 1

2

< p
1j  u

1j (t) for all t > T# > C
�

#
2

�

.

Since we have B = {a
1

}, we know that when choosing
ac in Algorithm 1, the probability of choosing a

1

is equal
to 1

2

. Given this, we can expect that from T# onwards, the
algorithm will spend roughly half of its time comparing a

1

against other arms. In what follows, we show that this is
indeed the case.

Let eNij (T ) denote the number of times arm ai was com-
pared against aj between times T# and T . Proposition 2
shows that, again with probability 1� #

2

, we have eNij (T ) 
Dij lnT for all i < j: note that this 1 � #

2

is the same as
the one used above. In particular, this means that eN

1

(T ),
the number of times between times T# and T when we had
c = 1 6= d, is bounded by

eN
1

(T ) 
K
X

j =2

eN
1j (T ) 

K
X

j =2

D
1j lnT =:

bN
1

(T ). (7)

Let us introduce here two sets of random variables:
• ⌧

0

, ⌧
1

, ⌧
2

, . . ., where ⌧
0

:= T# and ⌧l is the lth time arm
a
1

was compared against another arm after T#.
• n

1

, n
2

, . . ., where nl is the number of times in Algorithm
1 we had c 6= 1 6= d between ⌧l�1

and ⌧l .
Now, note that RUCB chooses c 6= 1 or d 6= 1 in time-step
t if and only if uj 1(t) � 1

2

for some j > 1 and that we can
have uj 1(t+ 1) < uj 1(t) only if at the end of the tth itera-
tion, arm a

1

was compared against arm aj . In other words,
whenever we have uj 1(T ) � 1

2

for some j > 1, the algo-
rithm will continue to set (c, d) 6= (1, 1) until all of the uj 1

with j > 1 get submerged below 1

2

and that the last com-
parison before we get to this state must be between a

1

and
another arm. With this picture in mind, with probability
1� #

2

, we have

RT  T#�max

+

K
X

j =2

D
1j �1j lnT +

bN 1(T )

X

l=1

nl�max

, (8)

where bN
1

(T ) is as in Inequality (7), and so all we need
to do is bound T# and the sum of the intervals nl for l =

1, . . . , bN
1

(T ). Let us deal with the former first: we know
that T#  bT# and that the latter is defined to be the smallest
time-step satisfying the inequality in Definition 3, so all
we need to do is produce one number that, when plugged
in for bT#, satisfies the inequality, and one such number is
2C
�

#
2

�

+ 2D ln 2D. To see this, let us temporarily use
the notation C := C

�

#
2

�

, and use the concavity of the log
function, a first order Taylor expansion, and the fact that we
have lnx < x for any x, to get

C + D ln(2C + 2D ln 2D)

 C + D ln(2D ln 2D) +⇢⇢D �2C
��2D ln 2D

 C + D ln(2D)

2

+ C = 2C + 2D ln 2D,

where we used the fact that D > 2 and so ln 2D > 1.
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Let us now return to the task of bounding the sum of the
intervals nl . To do so, we introduce the random variables
bn
1

, bn
2

, . . ., which are independent samples from the geo-
metric distribution with decay 1

2

. Note that bnl bounds nl

from above since it counts the number of iterations it would
take for Line 11 of Algorithm 1 to produce a

1

and once
we have c = 1, we are guaranteed to have a comparison
between a

1

and another arm, as long as uj 1 � 1

2

for some
j > 1. Furthermore, the sum of independent geometric ran-
dom variables has a negative binomial distribution (Feller,
1968, §VI.8), with the following probability mass function,
cf. (Feller, 1968, Equation VI.8.1):

f(n; r) := P

 

r
X

l=1

bnl = n

!

=

�n+r �1

n

�

2

n+r ,

where in our case p =

1

2

and so it is eliminated from the
notation of the PMF. In order to bound this sum with high
probability, we note that when n � 2r, then we have

f(n; r)

f(n + 1; r)
=

�n+r �1

n

�

2

n+r
�n+r

n+1

�

2

n+r +1

=

(n + r � 1)!

n!(r � 1)!

(n + r)!

(n + 1)!(r � 1)!⇥ 2

=

2(n + 1)

n + r
= 2



1� r � 1

n + r

�

� 2� 2r � 2

3r
>

4

3

.

Thus, we have f(n; r)  f(2r; r)
�

3

4

�n�2r  � 3
4

�n�2r for
all n � 2r, since f(2r; r) is a probability and so at most
equal to 1. From this we can conclude that with probability

1� #
2

, we have n  2r+
ln

#
2

ln

3

4

< 2r�4 ln

#
2

: note that both

the numerator and the denominator of the second summand
are negative and so the fraction is positive. Now, setting
r =

bN
1

(T ) :=

PK
j =2

D
1j lnT and plugging the resulting

upper bound into the regret bound given in (8) give us the
desired result.

Next, we state our expected regret bound, which is a direct
consequence of Theorem 4:

Theorem 5. Given the setup of Proposition2 together with
the notation of Theorem4, we have the following expected
regret bound for RUCB, where the expectations are taken
across different runs of the algorithm: if we have↵ > 1, the
expected regret accumulated by RUCB afterT iterations is
bounded by

E[RT ] 
"

8 +

✓

2(4↵� 1)K2

2↵� 1

◆

1
2↵�1

2↵� 1

↵� 1

#

�

max

+ 2D�

max

ln 2D +

K
X

j =2

2↵ (�j + 4�

max

)

�

2

j
lnT,

Proof. See §8.3 in the supplementary material.

Remark 6. (1) Using a very similar argument as the one
used to prove Theorem 5, we can also bound the mth mo-
ment of RT whenever we have ↵ > m+1

2

, which can be
used to bound its variance for ↵ > 1.5.

(2) In general, our regret bounds are not directly compa-
rable to those of IF and BTM, since those bounds depend
only on �

min

; so, if the majority of the �j are larger than
�

min

, then our upper bound is lower than that of IF and
BTM. On the other hand, if most �j are close to �

min

, but
�

max

is much larger, then the upper bound for IF would be
lower: the same would hold for BTM if � is small.

(3) Note that RUCB uses the upper-confidence bounds
(Line 3 of Algorithm 1) introduced in the original ver-
sion of UCB (Auer et al., 2002) (up to the ↵ factor). Re-
cently refined upper-confidence bounds (such as UCB-V
(Audibert et al., 2009) or KL-UCB (Cappé et al., 2013))
have improved performance for the regular K-armed ban-
dit problem. However, in our setting the arm distributions
are Bernoulli and the comparison value is 1/2. Thus, since
we have 2�

2

i  kl(p
1,i , 1/2)  4�

2

i (where kl(a, b) =

a ln a
b + (1 � a) ln 1�a

1�b is the KL divergence between
Bernoulli distributions with parameters a and b), we de-
duce that using KL-UCB instead of UCB does not improve
the leading constant in the logarithmic term of the regret by
a numerical factor of more than 2.

6. Experiments

To evaluate RUCB, we apply it to the problem of
ranker evaluationfrom the field of information retrieval
(IR) (Manning et al., 2008). A ranker is a function that
takes as input a user’s search query and ranks the docu-
ments in a collection according to their relevance to that
query. Ranker evaluation aims to determine which among
a set of rankers performs best. One effective way to achieve
this is to use interleaved comparisons(Radlinski et al.,
2008), which interleave the documents proposed by two
different rankers and presents the resulting list to the user,
whose resulting click feedback is used to infer a noisy pref-
erence for one of the rankers. Given a set of K rankers, the
problem of finding the best ranker can then be modeled as
a K-armed dueling bandit problem, with each arm corre-
sponding to a ranker.

We evaluated RUCB, Condorcet SAVAGE and BTM using
randomly chosen subsets from the pool of 64 rankers pro-
vided by LETOR, a standard IR dataset (see §8.4 for more
details of the experimental setup), yielding K-armed du-
eling bandit problems with K 2 {16, 32, 64}. For each
set of rankers, we performed 100 independent runs of each
algorithm for a maximum of 4.5 million iterations. For
RUCB we set ↵ = 0.51, which approaches the limit set
by our high-probability result. Since BTM and SAVAGE
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Figure 2. Average cumulative regret for 100 runs of BTM, Condorcet SAVAGE and RUCB with ↵ = 0.51 applied to three K-armed
dueling bandit problems with K = 16, 32, 64. Note the time axis uses a log scale, so that the curves depict the relation between log T
and RT ; also, the dotted curves signify best and worst regret performances across all runs.

require the exploration horizon as input, we ran BTMT and
CSAVAGET for various horizons T ranging from 1000 to
4.5 million. In the plots in Figure 2, the markers on the
green and the blue curves show the regret accumulated by
BTMT and CSAVAGET in the first T iteration of the algo-
rithm for each of these horizons. Thus, each marker corre-
sponds, not to the continuation of the runs that produced the
previous marker, but to new runs conducted with a larger T .

Since RUCB is horizonless, we ran it for 4.5 million iter-
ations and plotted the cumulative regret, as shown using
the red curves in the plots in Figure 2. For all three algo-
rithms, the middle curve shows average cumulative regret
and the dotted lines show minimum and maximum cumu-
lative regret across runs. Note that these plots are in log-
linear scale, so they depict the relation between RT and
log T , which can be seen to be asymptotically linear. The
regret curves for BTM are cut-off in these plots, since in
all three experiments RBT M T

T grew linearly with T in the
first 4.5 million iterations. As can be seen from the plots in
Figure 2, RUCB accumulates the least regret of the three al-
gorithms: the average regret accumulated by RUCB is less
than half of that Condorcet SAVAGE by the end of each of
the three experiments and even the worst performing run of
RUCB accumulated considerably less regret than the best
performing run of Condorcet SAVAGE.

7. Conclusions

This paper proposed a new method called Relative Up-
per Confidence Bound (RUCB) for the K-armed dueling
bandit problemthat extends the Upper Confidence Bound
(UCB) algorithm to the relative setting by using optimistic
estimates of the pairwise probabilities to choose a potential
champion and conducting regular UCB with the champion
as the benchmark.

We proved finite-time high-probability and expected regret
bounds for RUCB that match an existing lower bound. Un-

like existing results, our regret bounds hold for all time-
steps, rather than just a specific horizon T input to the algo-
rithm. Furthermore, they take the form O(K log T ) while
making much less restrictive assumptions than existing al-
gorithms with similar bounds. Finally, the empirical re-
sults showed that RUCB greatly outperforms state-of-the-
art methods.

In future work, we will consider two extensions to this re-
search. First, building off extensions of UCB to the con-
tinuous bandit setting (Srinivas et al., 2010; Bubeck et al.,
2011; Munos, 2011; de Freitas et al., 2012; Valko et al.,
2013), we aim to extend RUCB to the continuous dueling
bandit setting, without a convexity assumption as in (Yue
& Joachims, 2009; Jamieson et al., 2012). Second, build-
ing off Thompson Sampling (Thompson, 1933; Agrawal &
Goyal, 2012; Kauffmann et al., 2012), an elegant and effec-
tive sampling-based alternative to UCB, we will investigate
whether a sampling-based extension to RUCB would be
amenable to theoretical analysis. Both these extensions in-
volve overcoming not only the technical difficulties present
in the regular bandit setting, but also those that arise from
the two-stage nature of RUCB. Since the submission of this
paper, the latter of these two ideas has been validated ex-
perimentally in (Zoghi et al., 2014), although a theoretical
analysis is still lacking.
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