
Information-Theoretic Characterization of Sparse Recovery

Supplementary Notes

We use lower-case p(Y |XS) notation for the conditional outcome distribution given the true subset of
variables averaged over the latent variable βS . In some cases when we would like to distinguish between the
outcome distribution conditioned on different sets of variables we use pω( · | · ) notation, to emphasize that
the conditional distribution is conditioned on the given variables, assuming the true set S is Sω. W.l.o.g. we
assume the true set is S1 for below proofs. Define I = {1, . . . ,

(
D
K

)
} as the collection of sets ω of size K.

1 Proof of Theorem 2.1

First, note that P (E) ≤
∑K
i=1 P (Ei), for E and Ei as defined. If we show separately for each i and any

0 ≤ δ ≤ 1 that the following bound holds, then the theorem follows:

P (Ei) ≤ 2
−N

(
Eo(δ)−δ

log (D−Ki )(Ki )
N

)
. (1)

Instead of the above bound, we prove a slightly weaker bound for expositional clarity, which is

P (Ei) ≤ 2
−N

(
Eo(δ)−

log (D−Ki )(Ki )
N

)
. (2)

Note that the main difference between the above equation and the previous bound is the missing δ term
multiplying the binomial expression. The main result follows along the same lines and we refer the reader
to [1] for further details.

To prove this result we denote by Ai the set of indices corresponding to sets of K variables that differ
from the true set S1 in exactly i variables, i.e.,

Ai = {ω ∈ I : |S1c,ω| = i, |Sω| = K} (3)

We can establish that,

Pr[Ei|ω0 = 1, XN
S1
, Y N , θ] ≤

∑
ω∈Ai

∑
XNS1c,ω

P (XN
S1c,ω
|θ)
pω(Y N |XN

S1,ω
, XN

S1c,ω
)s

p1(Y N |XN
S1,ω

, XN
S1,ωc

)s
(4)

=
∑
S1,ω

∑
S1c,ω

∑
XNS1c,ω

P (XN
S1c,ω
|θ)
pω(Y N |XN

S1,ω
, XN

S1c,ω
)s

p1(Y N |XN
S1,ω

, XN
S1,ωc

)s
.

1



Inequality (4) is established separately in the following section. It follows that,

Pr[Ei|ω0 = 1, XN
S1
, Y N , θ] ≤

∑
S1,ω

∑
S1c,ω

∑
XNS1c,ω

P (XN
S1c,ω
|θ)
pω(Y N |XN

S1,ω
, XN

S1c,ω
)s

p1(Y N |XN
S1,ω

, XN
S1,ωc

)s


δ

(5)

≤

∑
S1,ω

(
D −K

i

) ∑
XNS1c,ω

P (XN
S1c,ω
|θ)
pω(Y N |XN

S1,ω
, XN

S1c,ω
)s

p1(Y N |XN
S1,ω

, XN
S1,ωc

)s


δ

(6)

≤
(
D −K

i

)∑
S1,ω

 ∑
XNS1c,ω

P (XN
S1c,ω
|θ)
pω(Y N |XN

S1,ω
, XN

S1c,ω
)s

p1(Y N |XN
S1,ω

, XN
S1,ωc

)s


δ

, ∀s > 0, 0 ≤ δ ≤ 1.

(7)

Inequality (5) follows from the fact that Pr[Ei|ω0 = 1, XN
S1
, Y N , θ] ≤ 1. Consequently, if U is an upper bound

of this probability then it follows that, Pr[Ei|ω0 = 1, XN
S1
, Y N , θ] ≤ Uδ for δ ∈ [0, 1]. Inequality (6) follows

from symmetry, namely, the inner summation is only dependent on the values of XN
S1c,ω

and not on the items

in the set S1c,ω. There are exactly
(
D−K
i

)
possible sets S1c,ω hence the binomial expression. Note that the

sum over S1,ω cannot be further simplified. This is due to the fact that XN
S1,ω

is already specified since we

have conditioned on XN
S1

. Since XN
S1

is fixed, the inner sum need not be equal for all sets S1,ω, ω ∈ Ai.
Finally, (7) follows from standard observation that sum of positive numbers raised to δ-th power for δ < 1
is smaller than the sum of the δ-th power of each number.

We now substitute for the conditional error probability derived above and follow the steps below:

P (Ei) =

∫ ∑
XNS1

∑
Y N

P (θ)P (XN
S1
|θ)p1(Y N |XN

S1
) Pr[Ei|ω0 = 1, XN

S1
, Y N , θ] dθ

≤
(
D −K

i

)∫ ∑
S1,ω

∑
Y N

∑
XNS1

P (θ)P (XN
S1
|θ)p1(Y N |XN

S1
)

 ∑
XNS1c,ω

P (XN
S1c,ω
|θ)
pω(Y N |XN

S1,ω
, XN

S1c,ω
)s

p1(Y N |XN
S1,ω

, XN
S1,ωc

)s


δ

dθ

Due to symmetry the summation over sets S1,ω does not depend on ω. Since there are
(
K
K−i

)
sets S1,ω we

get,

P (Ei) ≤
(
D −K

i

)(
K

i

)∫ ∑
Y N

∑
XNS1

P (θ)P (XN
S1
|θ)p1(Y N |XN

S1
)

 ∑
XNS1c,ω

P (XN
S1c,ω
|θ)
pω(Y N |XN

S1,ω
, XN

S1c,ω
)s

p1(Y N |XN
S1,ω

, XN
S1,ωc

)s


δ

dθ

≤
(
D −K

i

)(
K

i

)∫ ∑
Y N

∑
XNS1,ωc

∑
XNS1,ω

P (θ)P (XN
S1
|θ)p1−sδ1 (Y N |XN

S1,ω
, XN

S1,ωc
)

 ∑
XNS1c,ω

P (XN
S1c,ω
|θ)pω(Y N |XN

S1,ω
, XN

S1c,ω
)s


δ

dθ

=

(
D −K

i

)(
K

i

)∫ ∑
Y N

∑
XNS1,ω

P (θ)P (XN
S1,ω
|θ)

 ∑
XNS1,ωc

P (XN
S1,ωc
|θ)p1/(1+δ)1 (Y N |XN

S1,ω
, XN

S1,ωc
)


1+δ

dθ
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where the last step follows by letting s = 1
1+δ and noting that from symmetry XN

S1c,ω
is just a dummy

variable and can be replaced by XN
S1,ωc

. This establishes the weaker bound in (2), by letting S1 = S1,ωc and

S2 = S1,ω.

Proof of Equation 4

Let ζω, ω ∈ Ai denote the event where ω is more likely than 1. Then, from the definition of Ai, the 2
encoded messages differ in i variables. Hence

Pr[Ei|ω0 = 1, XN
S1
, Y N , θ] ≤ P (

⋃
ω∈Ai

ζω) ≤
∑
ω∈Ai

P (ζω)

Now note that XN
S1

shares (K − i) variables with XN
Sω

. Following the introduced notation, the common

partition is denoted XN
S1,ω

, which is a N × (K − i) submatrix. The remaining i rows which are in XN
S1

but not in XN
Sω

are XN
S1,ωc

. Similarly, XN
S1c,ω

corresponds to variables in XN
Sω

but not in XN
S1

. In other

words XN
S1

= (XN
S1,ω

, XN
S1,ωc

) and XN
Sω

= (XN
S1,ω

, XN
S1c,ω

), where the notation (FN×n1 ;GN×n2) denotes an

N × (n1 +n2) matrix with a submatrix F in the first n1 columns and G in the remaining n2 columns. Thus,

P (ζω) =
∑

XNSω :p(Y N |XNSω )≥p(Y N |XNS1 )

P (XN
Sω |X

N
S1
, θ)

≤
∑

XNS1c,ω

P (XN
S1c,ω
|θ)
p(Y N |XN

Sω
)s

p(Y N |XN
S1

)s
∀s > 0, ∀ω ∈ Ai (8)

where by exchangeability, we have P (XN
Sω
|XN
S1 , θ) = P (XN

S1c,ω
|XN
S1 , θ) = P (XN

S1c,ω
|θ) and

p(Y N |XNSω )s

p(Y N |XNS1 )
s ≥ 1

for all s > 0, since
p(Y N |XNSω )

p(Y N |XNS1 )
≥ 1.

2 Proof of Theorem 2.2

We first derive the sufficiency bound, using the results of Theorem 2.1. To achieve that, we derive a sufficient
condition for the error exponent of the error probability P (Ei) in (1) to be positive and to drive the error
probability to zero as D →∞. Specifically,

Nf(δ) = NEo(δ)− δ log

(
D −K

i

)(
K

i

)
→∞ (9)

where

f(δ) = Eo(δ)− δ
log
(
D−K
i

)(
K
i

)
N

.

To establish the sufficiency bound we follow the argument in [4]. Note that f(0) = 0. Since the function
f(δ) is differentiable and has a power series expansion, for a sufficiently small δ, we get by Taylor series
expansion in the neighborhood δ = 0 that,

f(δ) = f(0) + δ
df

dδ

∣∣∣
δ=0

+O(δ2)

Note that
∂Eo
∂δ

∣∣∣
δ=0

=
I(XN

S1 ;Y N |XN
S2 , θ)

N
, (10)
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which is shown in the next section.
We can further decompose I(XN

S1 ;Y N |XN
S2 , θ) using the following chain of equalities:

I(XN
S1 ;Y N |XN

S2 , θ) + I(βS ;XN
S1 |XN

S2 , Y N , θ) = I(XN
S1 ;Y N , βS |XN

S2 , θ) = I(XN
S1 ;βS |θ) + I(XN

S1 ;Y N |XN
S2 , βS , θ)

= NI(XS1 ;Y |XS2 , βS , θ),

where the last equality is due to X and βS being independent and (XN , Y N ) pairs being independent over
n given βS . Therefore we have

∂Eo
∂δ

∣∣∣
δ=0

=
I(XN

S1 ;Y N |XN
S2 , θ)

N
= I(XS1 ;Y |XS2 , βS , θ)−

I(βS ;XN
S1 |XN

S2 , Y N , θ)

N
. (11)

Now assume that N satisfies

N > (1 + ε)
log
(
D−K
i

)(
K
i

)
I(XS1 ;Y |XS2 , βS , θ)

. (12)

for any constant ε > 0. We note that from the Lagrange form of the Taylor Series expansion (an application
of the mean value theorem) we can write Eo(δ) in terms of its first derivative evaluated at zero and a
remainder term, i.e.,

Eo(δ) = Eo(0) + δE′o(0) +
δ2

2
E′′o (ψ)

for some ψ ∈ [0, δ]. Hence, for the choice of N in (12) and using (11) we have

Nf(δ) ≥ N
(
δ

ε

1 + ε
I(XS1 ;Y |XS2 , βS , θ)− δ2CI(XS1 ;Y |XS2 , βS , θ)− δ

I(βS ;XN
S1 |XN

S2 , Y N , θ)

N

)
(13)

where C =
|E′′o (ψ)|

2I(XS1 ;Y |XS2 ,βS ,θ)
which might depend on K.

A preliminary analysis of the necessary condition that we establish in the next section reveals that
N = Ω(K logD) is necessary, since log

(
D−K+i

i

)
= Θ(i logD) and I(XS1 ;Y |XS2 , βS , θ) ≤ H(Y ) = O(1).

Also, I(βS ;XN
S1 |XN

S2 , Y N , θ) ≤ H(βS), which is constant with respect to D since the observation model is
only dependent on K variables, due to the sparsity assumption of the observation model P (Y |X). So we see
that

I(βS ;XN
S1 |XN

S2 , Y N , θ)

N
= O

(
1

logD

)
which is always dominated by I(XS1 ;Y |XS2 , βS , θ), which we assumed to be ω(1/ logD). Therefore we can
rewrite (13) as

Nf(δ) ≥ N
(
δ

(
ε

1 + ε
− o(1)

)
I(XS1 ;Y |XS2 , βS , θ)− δ2CI(XS1 ;Y |XS2 , βS , θ)

)
.

Finally, if we choose δ ≤ ε′

C , where ε′ = ε
1+ε , then f(δ) = η for some η > 0 which does not depend on D

or N . It follows that Nf(δ)→∞ as D →∞.
We have just shown that for fixed K,

N > (1 + ε) ·
log
(
D−K
i

)(
K
i

)
I(XS1 ;Y |XS2 , βS , θ)

is sufficient to ensure an arbitrarily small P (Ei). Now note that

(1 + ε)

(
D −K + i

i

)
≥
(
D −K

i

)(
K

i

)
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asymptotically as D →∞ and K is fixed, for any constant ε > 0, which can be incorporated into the previous
ε as both are arbitrary. Since the average error probability P (E) ≤

∑K
i=1 P (Ei), it follows that if

N > (1 + ε) max
i=1,...,K

log
(
D−K+i

i

)
I(XS1 ;Y |XS2 , βS , θ)

then for any fixedK, limD→∞ P (E) = 0. Consequently, since this is true for anyK, limK→∞ limD→∞ P (E) =
0.

It is important to highlight the main difference between the analysis of the error probability for the
problem considered herein and the channel coding problem. In contrast to channel coding, the codewords of
a candidate set and the true set are not independent since the two sets could be overlapping. To overcome
this difficulty, we separate the error events Ei, i = 1, . . . ,K, of misclassifying the true set in i items. Then,
for every i we average over realizations of ensemble of codewords for every candidate set while holding fixed
the partition common to these sets and the true set of variables.

Proof of Equation 10

We have

Eo(δ) = − 1

N
log
∑
θ

∑
Y N

∑
XN
S2

P (XN
S2 |θ)P (θ)

∑
XN
S1

P (XN
S1 |θ)p(Y N |XN

S1 , XN
S2)

1
1+δ


1+δ

0 ≤ δ ≤ 1

where its derivative at δ = 0 can be written as

∂Eo
∂δ

∣∣∣
δ=0

= − 1

N

1∑
Y N ,XN

S1
,XN
S2
,θ P (XS1 |θ)P (XS2 |θ)P (θ)p(Y N |XN

S )

∑
Y N ,XN

S2
,θ

P (XN
S2 |θ)P (θ)

∑
XN
S1

P (XN
S1 |θ)p(Y N |XN

S )

log

∑
XN
S1

P (XN
S1 |θ)p(Y N |XN

S )

− log p(Y N |XN
S )


 .

Noting that P (XN
S1 |θ)P (XN

S2 |θ) = P (XN
S1 , XN

S2 |θ) by the representation theorem and p(Y N |XN
S ) =

p(Y N |XN
S , θ) by the independence of Y and θ given XS , above equality simplifies to

∂Eo
∂δ

∣∣∣
δ=0

= − 1

N

1∑
Y N ,XN

S1
,XN
S2
,θ P (Y N , XN

S , θ)

∑
Y N ,XN

S1
,XN
S2
,θ

P (Y N , XN
S , θ)

(
logP (Y N |XN

S2 , θ)− logP (Y N |XN
S , θ)

)
=

1

N

∑
Y N ,XN

S1
,XN
S2
,θ

P (Y N , XN
S , θ) log

P (Y N , XN
S2 |XN

S1 , θ)

P (Y N , XN
S2 |θ)

=
I(XN

S1 ;XN
S2 , Y N |θ)
N

=
I(XN

S1 ;Y N |XN
S2 , θ)

N
,

where the second equality follows by noting the first denominator is equal to 1 and by adding and subtracting
logP (XN

S2 |θ) inside the parenthesis. The third equality follows from the definition of mutual information.
The final equality follows from the independence of XS1 and XS2 given θ.
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2.1 Necessity bound

The vector of outcomes Y N is probabilistically related to the index ω ∈ I = {1, 2, . . . ,
(
D
K

)
}. Suppose K − i

elements of the salient set are revealed to us, denoted by S2. From XN and Y N we estimate the set index
ω. Let the estimate be ω̂ = g(XN , Y N ). Define the probability of error

Pe = P (E) = Pr[ω̂ 6= ω].

E is a binary random variable that takes the value 1 in case of an error i.e., if ω̂ 6= ω, and 0 otherwise,
then using the chain rule of entropies [2] we have

H(E,ω|Y N , XN ,S2) = H(ω|Y N , XN ,S2) +H(E|ω, Y N , XN ,S2)

= H(E|Y N , XN ,S2) +H(ω|E, Y N , XN ,S2). (14)

The random variable E is fully determined given XN , Y N , ω and S2. It follows that H(E|ω, Y N , XN ,S2) =
0. Since E is a binary random variableH(E|Y N , XN ,S2) ≤ 1. Consequently, we can boundH(ω|E, Y N , XN ,S2)
as follows,

H(ω|E, Y N , XN ,S2) = P (E = 0)H(ω|E = 0, Y N , XN ,S2) + P (E = 1)H(ω|E = 1, Y N , XN ,S2)

≤ (1− Pe) 0 + Pe log

((
D −K + i

i

)
− 1

)
≤ Pe log

(
D −K + i

i

)
. (15)

The first inequality follows from the fact that revealing K − i entries, and given that E = 1, the conditional
entropy can be upper bounded by the logarithm of the number of outcomes. From (14), we obtain the genie
aided Fano’s inequality

H(ω|Y N , XN ,S2) ≤ 1 + Pe log

(
D −K + i

i

)
(16)

Note that for the left hand term, we have

H(ω|Y N , XN ,S2) = H(ω|S2)− I(ω;Y N , XN |S2)

= H(ω|S2)− I(ω;XN |S2)− I(ω;Y N |XN ,S2)

(a)
= H(ω|S2)− I(ω;Y N |XN ,S2)

(b)
= H(ω|S2)− (H(Y N |XN ,S2)−H(Y N |XN , ω))

(c)
= H(ω|S2)− (H(Y N |XN ,S2, θ)−H(Y N |XN , ω, θ))

(d)

≥ H(ω|S2)− (H(Y N |XN
S2 , θ)−H(Y N |XN

Sω , θ))

(e)
= H(ω|S2)− I(XN

S1 ;Y N |XN
S2 , θ)

where (a) follows from the fact thatXN is independent of S2 and ω; (b) follows from the fact that conditioning
with respect to ω includes conditioning with respect to S2; (c) follows from the independence of Y and θ
given X; (d) follows from the fact that Y N depends on S2 only through XN

S2 and similarly for the second
term Y N depends on ω only through XN

Sω
; the argument for (e) follows by definition.

From (16), it then follows that

H(ω|S2)− I(XN
S1 ;Y N |XN

S2 , θ) ≤ 1 + Pe log

(
D −K + i

i

)

6



and since the set S2 of K − i variables is revealed, ω is uniformly distributed over the set of indices that
correspond to sets of size K containing S2. It follows that

log

(
D −K + i

i

)
− I(XN

S1 ;Y N |XN
S2 , θ) ≤ 1 + Pe log

(
D −K + i

i

)
.

Rewriting the above inequality, we have

Pe ≥ 1−
I(XN

S1 ;Y N |XN
S2 , θ) + 1

log
(
D−K+i

i

) . (17)

Thus, for the probability of error to be asymptotically bounded away from zero, it is necessary that

log

(
D −K + i

i

)
≤ I(XN

S1 ;Y N |XN
S2 , θ) = NI(XS1 ;Y |XS2 , βS , θ)− I(βS ;XN

S1 |XN
S2 , Y N , θ). (18)

Using (11), we can see that

N ≥ max
i=1,...,K

log
(
D−K+i

i

)
I(XS1 ;Y |XS2 , βS , θ)−

I(βS ;XNS1
|XN
S2
,Y N ,θ)

N

is a necessary condition for the number of samples N . Finally, since I(βS ;XN
S1 |XN

S2 , Y N ) ≥ 0, the following
expression is a lower bound to the expression above, proving that it is a necessary condition for recovery,

N ≥ max
i=1,...,K

log
(
D−K+i

i

)
I(XS1 ;Y |XS2 , βS , θ)

.

3 Continuous Variables

Even though the results and proof ideas that were used in the above sections are fairly general, the proofs
provided for sufficiency bounds were stated for discrete variables and outcomes. In this section we make the
necessary generalizations to extend these proofs to continuous variable and observation models. We follow
the methodology in [4] and [3].

To simplify the exposition, we consider the extension to continuous variables in the special case of fixed
and known βS and i.i.d. variables. Let Q(X) =

∏D
i=1Q(Xi) denote the joint distribution of variables X. The

extensions to random βS and conditionally i.i.d. variables are straightforward. In this case, I(XS1 ;Y |XS2 , βS)
reduces to I(XS1 ;Y |XS2) and Eo(δ) reduces to

Eo(δ) = − log
∑
Y

∑
XS2

∑
XS1

Q(XS1)p(Y,XS2 |XS1)
1

1+δ

1+δ

0 ≤ δ ≤ 1 (19)

with ∂Eo(δ)
∂δ

∣∣∣
δ=0

= I(XS1 ;XS2 , Y ) = I(XS1 ;Y |XS2), since (X(n), Y (n)) pairs are independent across n for

fixed βS .
Assume the continuous joint variable probability density Q(X) with joint cumulative density function F

and the conditional probability density p(Y = y|XS = x) for the observation model, which is assumed to be
a continuous function of both x and y.

Let X ′ ∈ X ′N be the random vector and Y ′ ∈ Y ′ be the random variable generated by the quantization
of X ∈ XN = RN and Y ∈ Y = R respectively, where each variable in X is quantized to L values and Y
quantized to J values. Let F ′ be the joint cumulative density function of X ′. As before, let Ŝ(XN , Y N )
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be the ML decoder with continuous inputs with probability of making i errors in decoding denoted by
P (Ei). Let Ŝ(X ′N , Y ′N ) be the ML decoder that quantizes inputs XN and Y N to X ′N and Y ′N and has a
corresponding probability of error P ′(Ei). Define

Eo(δ,X
′, Y ′) = − log

∑
y′∈Y′

∑
x′
S2
∈X ′K−i

 ∑
x′
S1
∈X ′i

Q(x′S1)p(y′, x′S2 |x′S1)
1

1+δ

1+δ

,

Eo(δ,X, Y ) = − log

∫
Y

∫
XK−i

[∫
X i
Q(xS1)p(y, xS2 |xS1)

1
1+δ dxS1

]1+δ
dxS2 dy,

where the indexing denotes the random variates which the error exponents are computed with respect to.
Utilizing the results in the proof of Theorem 3.1 for the discrete models, we will show the following for

the continuous model

P (Ei) ≤ 2
−N

(
Eo(δ,X,Y )−δ

log (D−Ki )(Ki )
N

)
. (20)

The rest of the proof will then follow as in the discrete case, by noting that ∂Eo(δ,X,Y )
∂δ

∣∣∣
δ=0

= I(XS1 ;XS2 , Y ),

with the mutual information definition for continuous variables [2].
Our strategy will be the following: we will increase the number of quantization levels for Y ′ and X ′

respectively and since discrete result (1) holds for any number of quantization levels, by taking limits we will
be able to show that

P ′(Ei) ≤ 2
−N

(
Eo(δ,X,Y )−δ

log (D−Ki )(Ki )
N

)
. (21)

Since Ŝ(XN , Y N ) is the minimum probability of error decoder, any upper bound for P ′(Ei) will also be
an upper bound for P (Ei), proving (20).

Assume Y is quantized with the quantization boundaries denoted by a1, . . . , aJ−1, with Y ′ = aj if
aj−1 < Y ≤ aj . For convenience denote a0 = −∞ and aJ = ∞. Furthermore assume quantization
boundaries are equally spaced, i.e. aj − aj−1 = ∆J for 2 ≤ j ≤ J − 1. Now we can write the following

Eo(δ,X
′, Y ′) =− log

J∑
j=1

∑
x′
S2

∑
x′
S1

Q(x′S1)

(∫ aj

aj−1

p(y, x′S2 |x′S1) dy

) 1
1+δ

1+δ

=− log

{
J−1∑
j=2

∆J

∑
x′
S2

∑
x′
S1

Q(x′S1)

(∫ aj
aj−1

p(y, x′S2 |x′S1) dy

∆J

) 1
1+δ

1+δ

+
∑
x′
S2

∑
x′
S1

Q(x′S1)

(∫ a1

−∞
p(y, x′S2 |x′S1) dy

) 1
1+δ

1+δ

+
∑
x′
S2

∑
x′
S1

Q(x′S1)

(∫ ∞
aJ−1

p(y, x′S2 |x′S1) dy

) 1
1+δ

1+δ }
.

Let J → ∞ and for each J choose the sequence of quantization boundaries such that lim ∆J = 0,
lim aJ−1 = ∞, lim a1 = −∞. Then the last two terms disappear and using the fundamental theorem of
calculus, we obtain

lim
J→∞

Eo(δ,X
′, Y ′) = Eo(δ,X

′, Y ) = − log

∫
Y

∑
x′
S2

∑
x′
S1

Q(x′S1)p(y, x′S2 |x′S1)
1

1+δ

1+δ

dy. (22)

8



Although it is not necessary for our proof, it can also be shown that Eo(δ,X
′, Y ′) increases for finer

quantizations of Y ′, therefore Eo(δ,X
′, Y ) gives the smallest upper bound over P ′(Ei) over the quantizations

of Y .
We repeat the same procedure for X. Assume each variable Xn in X is quantized with the quantization

boundaries denoted by b1, . . . , bL−1, with X ′n = bl if bl−1 < Xn ≤ bl. For convenience denote b0 = −∞
and bL = ∞. Furthermore assume quantization boundaries are equally spaced, i.e. bl − bl−1 = ∆L for
2 ≤ l ≤ L− 1. Then we can write

Eo(δ,X
′, Y ) =− log

∫
Y

L∑
l=1

∑
x′
S1

Q(x′S1)

(∫ bl

bl−1

p(y, xS2 |x′S1) dxS2

) 1
1+δ

1+δ

dy

=− log

∫
Y

L∑
l=1

∫
X i

(∫ bl

bl−1

p(y, xS2 |xS1) dxS2

) 1
1+δ

dF ′(xS1)

1+δ

dy (23)

=− log

∫
Y

{
L−1∑
l=2

∆L

∫
X i

∫ blbl−1
p(y, xS2 |xS1) dxS2

∆L

 1
1+δ

dF ′(xS1)


1+δ

+

∫
X i

(∫ b1

−∞
p(y, xS2 |xS1) dxS2

) 1
1+δ

dF ′(xS1)

+

∫
X i

(∫ ∞
bL−1

p(y, xS2 |xS1) dxS2

) 1
1+δ

dF ′(xS1)

}
dy.

where (23) follows with F ′(xS1) being the step function which represents the cumulative density function of
the quantized variables X ′S1 .

Let L → ∞, for each L choose a set of quantization point such that lim ∆L = 0, lim bL−1 = ∞,
lim b1 = −∞. Again, the second and third terms disappear and the first sum converges to the integral
over XS2 . Note that p(y, xS2 |xS1) is a continuous function of all its variables since it was assumed that
Q(x) and p(y|x) were continuous. Also note that limL→∞ F ′ = F , which implies the weak convergence of
the probability measure of X ′ to the probability measure of X. Given these facts, using the portmanteau
theorem we obtain that EF ′ [p(Y,XS2 |XS1)]→ EF [p(Y,XS2 |XS1)], which leads to

lim
L→∞

Eo(δ,X
′, Y ) = − log

∫
Y

∫
XK−i

[∫
X i
p(y, xS2 |xS1)

1
1+δ dF (xS1)

]1+δ
dxS2 dy = Eo(δ,X, Y ). (24)

This leads to the following result, completing the proof.

P (Ei) ≤ P ′(Ei) ≤ lim
J,L→∞

2
−N

(
Eo(δ,X

′,Y ′)−δ
log (D−Ki )(Ki )

N

)
= 2
−N

(
Eo(δ,X,Y )−δ

log (D−Ki )(Ki )
N

)
. (25)

4 Proof of Theorem 3.1

To derive the upper bound on error probability, we compute Eo(δ) explicitly and replace it in Theorem 2.1.
First we compute for the easier case, with fixed βS = σ. In this case, note that (X,Y ) pairs are independent
across samples and

Eo(δ) = − log

∫
θ

P (θ)

∫
Y

∫
XS2

P (XS2 |θ)

[∫
XS1

P (XS1 |θ)p(Y |XS1 , XS2)
1

1+δ dXS1

]1+δ
dXS2 dY dθ, 0 ≤ δ ≤ 1.

9



For the correlated Gaussian variables, this reduces to

Eo(δ) = − log

∫
µ

N (µ; 0, ρ/N)

∫
Y

∫
XS2

N (x2; (K − i)µ, (K − i)(1− ρ)/N)[∫
XS1

N (x1; iµ, i(1− ρ)/N)N (y − σ(x1 + x2); 0, 1/SNR)
1

1+δ dx1

]1+δ
dx2 dy dµ.

As the first step, we input the Gaussian distributions and take the integral inside the brackets over x1,
which gives us[ ∫

XS1

N (x1; iµ, i(1− ρ)/N)N (y − σ(x1 + x2); 0, 1/SNR)
1

1+δ dx1

]1+δ

=

(√
1

SNRσ2

)δ
σ
√

2π
(√

i(1−ρ)
N(1+δ) + 1

SNRσ2

)1+δ exp

− ( yσ − x2 − iµ)2

2
(
i(1−ρ)
N(1+δ) + 1

SNRσ2

)
 .

By plugging in this expression and integrating over x2, we then have∫
XS2

N (x2; (K − i)µ, (K − i)(1− ρ)/N)
[ ∫

XS1

N (x1; iµ, i(1− ρ)/N)N (y − σ(x1 + x2); 0, 1/SNR)
1

1+δ dx1

]1+δ
dx2

=
1

σ
√

2π

 1√
1 + i(1−ρ)SNRσ2

N(1+δ)

δ

1√
(K−i)(1−ρ)

N + i(1−ρ)
N(1+δ) + 1

SNRσ2

exp

− (y − σKµ)2

2σ2
(

(K−i)(1−ρ)
N + i(1−ρ)

N(1+δ) + 1
SNRσ2

)


Integrating the above expression over y, we are left with 1√
1 + i(1−ρ)SNRσ2

N(1+δ)

δ

,

which no longer depends on µ, therefore the expectation over µ is equal to the above expression and finally
we have

Eo(δ) =
δ

2
log

(
1 + (1− ρ)

iσ2SNR

N(1 + δ)

)
,

for any 0 ≤ δ ≤ 1.
Now we will show a lower bound on the error exponent Eo(δ) for the case where βS is random and IID

N (0, σ2). In this case, Y (n) are not independent across n. In order to lower bound Eo, we first upper bound
the observation probability such that,

p(Y N |XN
S1 , XN

S2)
1

1+δ =

(∫
βS

P (βS)P (Y N |XN
S1 , XN

S2 , βS) dβS

) 1
1+δ

≤
∫
βS

P (βS)
1

1+δP (Y N |XN
S1 , XN

S2 , βS)
1

1+δ dβS

which follows from the subadditivity of exponent 1
1+δ . A lower bound on Eo is then given by

Eo(δ) ≥ −
1

N
logM1+δ

∫
θN
P (θN )

∫
Y N

∫
XN
S2

P (XN
S2 |θN )

[∫
βS

P (βS)
1

1+δ

M

∫
XN
S1

P (XN
S1 |θN )P (Y N |XN

S1 , XN
S2 , βS)

1
1+δ dXN

S1 dβS

]1+δ
dXN
S2 dY N dθ

10



where M =
∫
P (βS)

1
1+δ dβS and then by Jensen’s inequality, it follows that

Eo(δ) ≥ −
1

N
logM δ

∫
βS

P (βS)
1

1+δ

(∫
θ

P (θ)

∫
Y

∫
XS2

P (XS2 |θ)

[∫
XS1

P (XS1 |θ)P (Y |XS1 , XS2 , βS)
1

1+δ dXS1

]1+δ
dXS2 dY dθ

)N
dβS

(26)

where we also used the independence of (X(n), Y (n)) across n given βS .
We start by taking the integral inside the square brackets. For the linear model set-up we have,∫

XS1

P (XS1 |θ)P (Y |XS1 , XS2 , βS)
1

1+δ dXS1 =

∫
Ri
N
(
x;µ1i,

1− ρ
N

Ii

)
N
(
y − x>β1 − x>2 β2; 0, 1/SNR

) 1
1+δ dx

=

(
1√
2πA

)i(√
SNR√
2π

) 1
1+δ ∫

Ri
exp

(
− (x− µ1i)

>(x− µ1i)

2A

)
exp

(
− (y − x>β1 − x>2 β2)2

2B

)
dx

=

(
1√
2πA

)i(√
SNR√
2π

) 1
1+δ ∫

Ri
exp

(
−x
>x

2A
− (x>β1 + C)2

2B

)
dx

=

(
1√
2πA

)i(√
SNR√
2π

) 1
1+δ ∫

Ri
exp

(
−1

2
(x+ (BD)−1ACβ1)>

D

A
(x+ (BD)−1ACβ1)

)
exp

(
−C

2

2E

)
dx

where A = 1−ρ
N , B = 1+δ

SNR , C = x>2 β2 + µ1>i β1 − y, D = Ii + A
Bβ1β1

> and E = B
1−AB β1

>D−1β1
. Then taking

the integral, some terms on the left cancel and we have

∫
XS1

P (XS1 |θ)P (Y |XS1 , XS2 , βS)
1

1+δ dXS1 =

(√
SNR√
2π

) 1
1+δ

1√
|D|

exp

(
−C

2

2E

)
. (27)

Writing the second integral that is over XS2 = x2, we then have

∫
XS2

P (XS2 |θ)

[∫
XS1

P (XS1 |θ)P (Y |XS1 , XS2 , βS)
1

1+δ dXS1

]1+δ
dXS2

=

√
SNR

2π

1√
|D|

(1+δ)

∫
RK−i

N (x;µ1K−i, AIK−i) exp

(
− (x>β2 + µ1>i β1 − y)2

2E′

)
dx

=

√
SNR

2π

1√
|D|

(1+δ)

(
1√
2πA

)K−i ∫
RK−i

exp

(
−x
>x

2A
− (x>β2 + F )2

2E′

)
dx

=

√
SNR

2π

1√
|D|

(1+δ)

(
1√
2πA

)K−i ∫
RK−i

exp

(
−1

2
(x+ (E′G)−1AFβ2)>

G

A
(x+ (E′G)−1AFβ2)

)
exp

(
− F

2

2H

)
dx

where E′ = E
1+δ , F = µ1>KβS − y, G = 1 + A

E′ β2β2
> and H = E′

1− A
E′ β2

>G−1β2
. Again, evaluating the integral,

we obtain∫
XS2

P (XS2 |θ)

[∫
XS1

P (XS1 |θ)P (Y |XS1 , XS2 , βS)
1

1+δ dXS1

]1+δ
dXS2 =

√
SNR

2π

1√
|D|

(1+δ)

1√
|G|

exp

(
− F

2

2H

)
.
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Integrating the above expression w.r.t. Y = y, we see that the result is independent of θ = µ, and
therefore∫
θ

P (θ)

∫
Y

∫
XS2

P (XS2 |θ)

[∫
XS1

P (XS1 |θ)P (Y |XS1 , XS2 , βS)
1

1+δ dXS1

]1+δ
dXS2 dY dθ =

√
SNR√
|D|

(1+δ)

√
H

|G|
.

By the matrix determinant lemma, we have |D| = 1 + A
Bβ1

>β1 and by the Sherman-Morrison formula,

D−1 = Ii − β1β1
>

B
A+β1

>β1
. Similarly, |G| = 1 + A

E′ β2
>β2 and G−1 = Ii − β2β2

>

E′
A +β2

>β2
. By plugging in these

expressions, we can then see that E′ = B|D|
1+δ and H = E′|G|. We simplify the above expression to obtain

√
SNR√
|D|

(1+δ)

√
H

|G|
=

√
SNR√
|D|

(1+δ)

√
B|D|
1 + δ

=

(
1√
|D|

)δ
=

(
1 + (1− ρ)

SNRβ1
>β1

N(1 + δ)

)− δ2
. (28)

Note that this expression is analogous to the bound we obtained for the fixed case, since E[β1
>β1] = iσ2.

With the above bound, we will now show a lower bound on Eo(δ) for δ = 1 and σ2 = 1
8π . We note that

we choose this σ2 without loss of generality, since for any value or scaling of σ can be incorporated into the
SNR of the problem to obtain an equivalent model, such that SNRσ2 is fixed. This result can also be shown
without the assumption on σ2, but the specific bounding methods we use utilize this assumption. To this
effect, we analyze the equivalent problem with parameters SNR′ = SNRσ28π and σ′2 = 1

8π . Note that with

this choice of σ′2 and δ, M =
∫
RK P (βS)

1
2 dβS = 1K = 1. Using (26), we now write,

Eo(1) ≥ − 1

N
logM

∫
RK

P (βS)
1
2

(
1 + (1− ρ)

SNRβ1
>β1

2N

)−N2
dβS

= − 1

N
log

∫
Ri
P (β1)

1
2

(
1 + (1− ρ)

SNR′β1
>β1

2N

)−N2
dβ1

= − 1

N
log(
√

4)
i
2

∫
Ri

exp

[
−β1

>β1
4σ′2

](
1 + (1− ρ)

SNR′β1
>β1

2N

)−N2
dβ1

≥ − 1

N
log(
√

4)
i
2

(√
8πσ′2

) iN
2

∫
Ri

[(
1√

8πσ′2

)i
exp

[
−β1

>β1
8σ′2

](
1 + (1− ρ)

SNR′β1
>β1

2N

)]−N2
dβ1

≥ − 1

N
log 4

i
4

[∫
Ri

(
1√

8πσ′2

)i
exp

[
−β1

>β1
8σ′2

](
1 + (1− ρ)

SNR′β1
>β1

2N

)
dβ1

]−N2
=

1

2
log

(
1 + (1− ρ)

2iSNRσ2

N

)
− i

4N
log 4.

The first equality follows by taking β2 out of the integral and noting that
∫
RK−i P (β2)

1
2 dβ2 = 1K−i = 1.

We obtain the second equality by expanding P (β1)
1
2 . We upper bound exp

[
−β1

>β1

8σ′2

]
by exp

[
−β1

>β1

8σ′2

]−N2
where 0 ≤ exp

[
−β1

>β1

8σ′2

]
≤ 1 to obtain the first inequality and the second one follows by the superadditivity

of exponentiating with −N2 . Finally, we note that the integral is an expectation w.r.t. β1 ∼ N (0, 4σ′2Ii) and
obtain the last equality, where we also replace SNR′ and σ′2.
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5 Proof of Lemma 3.1

Note the following equalities,

I(XS1 ;Y |XS2 , βS , µ) = h(Y |XS2 , βS , µ)− h(Y |XS , βS , µ)

= h
(
X>S1βS1 +W |βS1 , µ

)
− h(W )

= EβS1 ,µ

[
1

2
ln

(
2πe

(
var
(
X>S1βS1 |βS1 , µ

)
β>S1βS1 +

1

SNR

))]
− 1

2
ln

(
2πe

1

SNR

)
= EβS1

[
1

2
ln

(
1 + (1− ρ)

β>S1βS1SNR

N

)]
,

where the second equality follows from the independence of XS1 and XS2 given µ and the last equality
follows from the fact that var(X>S1βS1 |βS1 , µ) = β>S1E[US1U>S1 ]βS1 = β>S1βS1

1−ρ
N .

6 Proof of Theorem 3.2

We first show that SNR = logD is a necessary condition. For any D, K or SNR assume N is much larger
such that

E

[
ln

(
1 + (1− ρ)

β>S1βS1SNR

N

)]
� E

[
(1− ρ)

β>S1βS1SNR

N

]
= (1− ρ)

iσ2SNR

N
.

Then the necessary condition given by Theorem 3.1 is

N > C max
i

log
(
D−K
i

)(
D
i

)
(1− ρ) iσ

2SNR
N

which readily leads to the condition that

SNR > C max
i

log
(
D−K
i

)(
D
i

)
(1− ρ)iσ2

� logD (29)

for σ constant.
From the upper bound given by Theorem 3.1, the sufficiency bound in Theorem 3.2 is obtained in a

straightforward manner, by looking at conditions where Nf(ρ) goes to infinity. So for each i, we have

P (Ei) ≤ 2
−
(
N 1

2 log
(
1+(1−ρ) 2iσ2SNR

N

)
− i

4 log 4−log (D−Ki )(Ki )
)
,

then, as log
(
D−K
i

)(
K
i

)
= Θ(i log(D/i)) dominates i

4 log 4 we can see that the following is a sufficient condition
on N for exact support recovery:

N > (1 + ε) max
i=1,...,K

2 log
(
D−K
i

)(
K
i

)
log
(
1 + (1− ρ) 2iSNRσ2

N

) . (30)

Assume SNR > C logD
(1−ρ)σ2 . Also assume N = Ω

(
K log(D/K)

log(1+(1−ρ)σ2)

)
, as in the theorem statement. Then, the

bound in (30) becomes

max
i=1,...,K

2 log
(
D−K
i

)(
K
i

)
log
(
1 + (1− ρ) 2iSNRσ2

N

) � max
i=1,...,K

i log(D/i)

log
(

1 + 2C i
K log(1 + (1− ρ)σ2) logD

log(D/K)

) ,
where we assume σ2 constant, w.l.o.g., since the scaling of elements of βS can instead be incorporated into
SNR to obtain an equivalent model as we did in the proof of Theorem 3.1.
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First, consider the case K = o(D). Then the sufficient condition reduces to

N > max
i=1,...,K

i logD

log
(
1 + 2C i

K log(1 + (1− ρ)σ2)
) ,

which, for the case i = o(K) is

N >
i logD

C i
K (log(1 + (1− ρ)σ2))

� K log(D/K)

log(1 + (1− ρ)σ2)
,

which is satisfied for chosen N . For i = Θ(K), asymptotically, we have

N >
K logD

log (1 + 2C log(1 + (1− ρ)σ2))
� K log(D/K)

log (1 + log(1 + (1− ρ)σ2))
,

which is also satisfied by N .
Second, consider the case K = Θ(D). We then have the condition

N > max
i=1,...,K

i log(D/i)

log
(
1 + 2C i

K log(1 + (1− ρ)σ2) logD
) ,

which for i = o(K), is asymptotically equivalent to

N >
i logD

2C i
K log(1 + (1− ρ)σ2) logD

=
K

2C log(1 + (1− ρ)σ2)
� K log(D/K)

log(1 + (1− ρ)σ2)

which is satisfied for chosen N . For i = Θ(K), asymptotically we have the condition

N >
K log(D/K)

log (1 + log(1 + (1− ρ)σ2) logD)
,

which is also satisfied for chosen N .
The necessity bound is obtained by using the derived mutual information expression and looking at the

case i = K. From Lemma 3.1, we have

I(XS1 ;Y |XS2 , βS , µ) � EβS1
[
log

(
1 + (1− ρ)

β>S1βS1SNR

N

)]
,

which leads to the following necessary condition, as given by Theorem 2.2:

N ≥ max
i=1,...,K

log
(
D−K+i

i

)
EβS1

[
log

(
1 + (1− ρ)

β>
S1
βS1SNR

N

)] .
Note that EβS1

[
log

(
1 + (1− ρ)

β>S1βS1SNR

N

)]
≤ log

(
EβS1

[
1 + (1− ρ)

β>S1βS1SNR

N

])
= log

(
1 + (1− ρ) iσ

2SNR
N

)
due to Jensen’s inequality, therefore the following is also a necessary condition, where we consider only i = K:

N ≥
log
(
D
K

)
log
(
1 + (1− ρ)Kσ

2SNR
N

) � K log(D/K)

log
(
1 + (1− ρ)Kσ

2SNR
N

) . (31)

Assume SNR = Θ(log(D/K)), which is given by (29) for σ2 = O(1) and i = K. It is then clear that

(31) does not hold for N = o(K log(D/K)), since K log(D/K)
N ≥ log

(
1 + (1− ρ)σ2K log(D/K)

N

)
for σ2 = O(1).

However for N = Ω(K log(D/K)), the condition (31) is

N = Ω

(
K log(D/K)

log (1 + (1− ρ)σ2)

)
,

which proves the lower bound in Theorem 3.2.
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7 Proof of Theorem 3.3

To show the upper bound on error probability given in Theorem 3.3, we will write P (Y |ZS1 , ZS2) and
compute Eo(δ). For clarity, we consider fixed βS = σ as we did initially did in the proof of Theorem 3.1.
Note that we can write

P (Y |ZS1 , ZS2) = P (Y |ZS1 , ZS2 , µ) =

∫
RK

P (Y |XS1 , XS2)P (XS |ZS , µ) dXS .

The first term is given by N (y − x>βS ; 0, 1/SNR) as before, for Y = y and XS = x. Let α = 1
1+ν , then

using the conditional probability of jointly Gaussian random vectors, we have

P (XS = x|ZS = z, µ) = N
(
x; (1− α)µ1K + αz,

1− ρ
N

(1− α)IK

)
,

then, considering only sums of XS and ZS as x and z since βS = σ, as we did in the proof of Theorem 3.1,
the integral is

P

(
Y = y

∣∣∣∑
k∈S

Zk = z, µ

)
=

∫
R
N (y − σx; 0, 1/SNR)N

(
x; (1− α)Kµ+ αz,

1− ρ
N

(1− α)K

)
dx

=
1

2π

√
1

AB

∫
R

exp

(
− (x− C)2

2A

)
exp

(
− (y − σx)2

2B

)
dx

=
1

2π

√
1

AB

∫
R

exp

(
− (x−G)2

2 AB
Aσ2+B

)
exp

(
− (y − σC)2

2(Aσ2 +B)

)
dx

=
1

2π

√
1

AB
exp

(
− (y − σC)2

2(Aσ2 +B)

)√
AB

2π(Aσ2 +B)

=

√
1

2π(Aσ2 +B)
exp

(
− (y − σC)2

2(Aσ2 +B)

)
= N

(
y − ασz − α(1− α)σKµ; 0,

1

SNR
+

(1− ρ)(1− α)Kσ2

N

)
,

where A = 1−ρ
N (1−α)K, B = 1

SNR , C = (1−α)µK+αz and G = Aσy+BC√
Aσ2+B

. The last equation follows through

the steps used to show (27). For the first equality, we compute and replace the probability distributions
w.r.t. sums x and z. We obtain the third equality by rewriting the terms inside the exponentials to obtain
a square term with x. Then, we take the second exponential outside the integral and compute the integral,
which gives us the fourth equality. Note that G does not affect the integration result. Finally in the last
step we note that the resulting expression is a Gaussian distribution with the given form.

Note that the resulting probability distribution is the same as P (Y |XS) we used in the proof of Theorem

3.1 except a few differences: σ is replaced with ασ, 1
SNR is replaced with 1

SNR + (1−ρ)(1−α)Kσ2

N and lastly
there is an extra (1 − α)µK term. This last term does not affect the resulting lower bound on the error
exponent Eo, since it disappears in the integration over Y like the other µ terms. We also note that P (ZS1 |µ)
and P (ZS2 |µ) terms in the integral (26) are different than P (XS1 |µ) and P (XS2 |µ). To account for this

difference, we need to replace the variance 1−ρ
N with (1−ρ)(1+ν)

N in the integrations w.r.t. z1 and z2 that
follow.

Finally, by doing the necessary replacements outlined above and following the proof of Theorem 3.1, we
obtain the following error exponent for fixed βS = σ:

Eo(δ) =
δ

2
log

(
1 +

1− ρ
1 + ν

iσ2SNR

N(1 + δ)ξ

)
,
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where ξ = 1 + (1−ρ)ν
1+ν

KSNRσ2

N . Then the same analysis in the proof of Theorem 3.1 can be employed for
random βS , to obtain the lower bound,

Eo(1) ≥ 1

2
log

(
1 +

1− ρ
1 + ν

2iσ2SNR

Nξ

)
− i

4N
log 4,

which proves the upper bound on error probability given in Theorem 3.3.

8 Proof of Theorem 3.4

We analyze the upper bound given in Theorem 3.3 to obtain the sufficient condition on N . First, note that
(1−ρ)ν
1+ν ≤ 1, therefore ξ ≤ 1 + KSNRσ2

N .
Let SNR = c log(D/K) for now, which is more relaxed than the SNR condition we assume in the theorem

and assume N = Ω

(
K log(D/K)

log(1+ 1−ρ
1+ν σ

2)

)
. Then it is easy to see that ξ = O(1) for σ2 = O(1). As before, we can

assume σ2 = O(1) w.l.o.g. since otherwise we can incorporate its scaling into SNR. Then for some constant
C > 0, we have the lower bound

Eo(1) ≥ 1

2
log

(
1 +

1− ρ
1 + ν

2ciσ2SNR

CN

)
− i

4N
log 4,

and therefore we have

P (Ei) ≤ 2
−
(
N 1

2 log
(
1+c′ 1−ρ1+ν

iσ2SNR
N

)
− i

4 log 4−log (D−Ki )(Ki )
)
,

for a constant c′ > 0.
Following the arguments in the proof of Theorem 3.2, we can see that for N chosen as above, P (E) goes

to zero, proving the theorem.
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