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Abstract

Machine learning practitioners are often
faced with a choice between a discrimina-
tive and a generative approach to modelling.
Here, we present a model based on a hy-
brid approach that breaks down some of the
barriers between the discriminative and gen-
erative points of view, allowing continuous
dimensionality reduction of hybrid discrete-
continuous data, discriminative classification
with missing inputs and manifold learning in-
formed by class labels.

1 Introduction

We consider a framework for modelling with Gaus-
sian processes (GP) which allows us to combine their
strengths as both discriminative and generative mod-
els. In particular, we extend Gaussian process clas-
sification to allow propagation of a generative model
through the conditional distribution. This is achieved
through a marriage of expectation propagation (EP)
[Opper and Winther, 2000, Minka, 2001] with the vari-
ational approximations of Titsias and Lawrence [2010].
The resulting framework allows us to deal with mixed
discrete-continuous data. We apply it to classification
with missing and uncertain inputs, visualization of hy-
brid binary and continuous data and joint manifold
modelling of labelled data.
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2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

2 Discriminative Models

2.1 Overview

From a probabilistic perspective, a discriminative
model (or regression model) represents a conditional
density estimate p(y|X), where some target variables
y ∈ Rn×1 are predicted1 given some known input vari-
ables X ∈ Rn×q. Hereafter, n represents the number
of observations and q the dimensionality of each in-
put. Gaussian process models introduce an additional
latent variable f , whose covariance matrix Kff is com-
puted as a function of the input values. The target
points are then related to this latent function through
a likelihood function p(y|f) =

∏n
i=1 p(yi|fi).

Within the GP framework, predictions at a new input
position x∗ ∈ R1×q are computed consistently with
the training data {X,y}, through the predictive den-
sity p(y∗|x∗,y,X). GP models provide an inference
engine for non-linear functions, where the marginal-
ization of the prior distribution is tractable. The sim-
plicity of doing inference with them has made GP one
of the dominant methods for regression in machine
learning. They have also been extended to allow non-
linear latent variable models for unsupervised learn-
ing [Lawrence, 2005]. However, their tractability is
only assured when the likelhood function is Gaussian,
i.e., p(yi|fi) = N (yi|fi, σ2

i ). Often, it is assumed that
σ2
i = σ2 ∀ i, and σ2 is regarded as the variance of the

Gaussian distributed corrupting noise.

2.2 Regression for Non-Gaussian Data

In binary classification, where we take yi ∈ {0, 1},
the realizations of a Gaussian process are normally

1For simplicity, we are assuming the target variables to
be one-dimensional, although it can be otherwise.
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mapped through a squashing function φ : R 7→ (0, 1)
to provide a set of probabilities {πi = φ(fi)}ni=1,
which can then be used as parameters of a Bernoulli
likelihood p(yi|fi) = πyi

i (1 − πi)
1−yi . Such a non-

linear transformation over fi renders exact inference
in the resulting model intractable. This led Barber
and Williams [1997] to consider the Laplace approxi-
mation and Gibbs and MacKay [2000] to adopt a vari-
ational lower bound from Jaakkola and Jordan [1996]2

to make progress. The more standard variational ap-
proach (often known as variational inference), based on
minimizing the Kullback-Leibler divergence between
an approximation and the true posterior density, has
also been proposed for non-Gaussian data. Seeger
[2004] considered this approximation for classification
and Tipping and Lawrence [2003] extended the rele-
vance vector machine3 to heavy tailed data. However,
as shown empirically by Kuss and Rasmussen [2005],
for the case of classification, standard application of
variational inference to sub-Gaussian likelihoods can
lead to very poor approximations of the marginal likeli-
hood. Instead, the expectation propagation algorithm
[Opper and Winther, 2000, Minka, 2001] is generally
preferred. Both EP and its variants have been ap-
plied to likelihoods that allow semi-supervised learning
[Lawrence and Jordan, 2005], ordinal regression [Chu
and Ghahramani, 2005] and binary classification [Kuss
and Rasmussen, 2005]. However, its application in the
context of heavy tailed likelihoods is generally more
involved [Jylänki et al., 2011].

3 Generative Models

3.1 Overview

Generative models (or joint models) consist of mod-
elling the joint distribution between predictors and re-
sponse. Gaussian processes have been reformulated as
a generative model known as the Gaussian process la-
tent variable model (GP-LVM) [Lawrence, 2005]. In
this model, a GP provides a probabilistic mapping be-
tween a set of latent variables X ∈ Rn×q and a set of
observed data variables Y ∈ Rn×p, where q < p. In the
original paper, these latent variables were optimized
by maximum likelihood, but Titsias and Lawrence
[2010] showed recently that they can be approximately
marginalized through a collapsed variational [Hens-
man et al., 2012] approach. This allows the uncer-
tainty in the latent space to be incorporated in the
model and the underlying dimensionality to be de-

2This variational lower bound exploited the log-
convexity of a sigmoidal squashing function, but does not
follow the standard approach to variational inference.

3A sparse Bayesian regression model that can also be
expressed as a GP with a degenerate covariance.

termined. Damianou et al. [2012] exploited the abil-
ity to determine the latent dimensionality in the con-
text of multi-view learning. Their approach, known
as manifold relevance determination (MRD), incorpo-
rates multiple views of objects in a model where latent
variables are automatically allocated to the relevant
views, such that some latent dimensions are shared
across the views, whilst other are private to a partic-
ular view. So far, however, this model has only been
applicable to Gaussian data. Here, we extend their
approach to non-Gaussian data. The resulting frame-
work allows a range of model extensions including:

1. Classification with uncertain inputs.

2. Dimensionality reduction of non-Gaussian data.

3. Joint modelling of binary labels alongside a data
set to form a discriminative latent variable model.

3.2 Joint Models for Non-Gaussian Data

Non-Gaussian data has already been considered in the
context of continuous latent variables. The bound of
Jaakkola and Jordan [1996] was applied to unsuper-
vised learning of binary data by Tipping [1999] for the
principal component analysis (PCA) of binary data
(see also Lee and Sompolinsky [1999], Schein et al.
[2003]). These models are related to GP models due
to the shared challenge of combining a Gaussian prior
with a non-Gaussian likelihood. This arises due to the
duality between the latent variables (equivalent to our
inputs X) and desired principal subspace generated by
the mapping W ∈ Rp×q in PCA. By associating the
j-th column of the mapping matrix wj with the j-th
output dimension of the data yj , we can write the asso-
ciated mapping from the latent variables as yj = Xwj .
We induce wj to be jointly Gaussian distributed, as in
a GP, by defining the usual spherical Gaussian prior
independently over the latent variables xij ∼ N (0, 1).
Indeed, marginalizing wj with a Gaussian prior leads
directly to a GP with a linear covariance function.
This was the relation exploited by Lawrence [2005] to
generalize PCA in the GP-LVM.

4 GP Variational Inference

4.1 Regression Case

To make GP models feasible for large data sets, the
burden of inverting the covariance matrix (computa-
tional complexity of O(n3) and storage of O(n2)) must
be reduced. Low rank approximations [Quiñonero
Candela and Rasmussen, 2005, Snelson and Ghahra-
mani, 2006, Lawrence, 2007, Seeger et al., 2003], in
regression problems, make use of variables associated

48



Andrade-Pacheco, Hensman, Zwießele, Lawrence

with a set of inducing inputs Z ∈ Rm×q, where the el-
ements of Z and X belong to the same domain. They
result in computational complexity4 of O(m2n) and
storage demands of O(mn).

The deterministic training conditional (DTC) approx-
imation assumes a deterministic relation between the
inducing inputs and the latent variables at the ob-
served inputs. In contrast, the fully independent train-
ing conditional (FITC) approximation keeps the exact
variance of each observation, but assumes indepen-
dence between them. Unfortunately, neither of these
approaches form a lower bound on the marginal likeli-
hood of the Gaussian process. This issue was resolved
by Titsias [2009], who introduced a variational approx-
imation that resulted in the lower bound

LT = logN
(
y|0,Qff + σ2I

)
− 1

2σ2
tr (Kff −Qff ) ,

(1)

where Qff = KfuK−1uuKuf , Kuu is the covariance func-
tion computed between the inducing inputs and Kuf

is the covariance function computed across the induc-
ing inputs and the training data. The first term of
this lower bound corresponds to the DTC likelihood
approximation. The second term can be interpreted
as a correction factor that penalizes using Qff instead
of Kff , depending on how much they differ form each
other. A rigorous lower bound on the log-marginal
likelihood allows joint optimization of the inducing in-
puts and hyperparameters without overfitting. This
bound was also exploited by Titsias and Lawrence
[2010] to allow for approximate variational marginal-
ization of the latent variables in the Bayesian GP-
LVM. The success of the EP for approximate infer-
ence in non-Gaussian data motivates us to combine
EP with this variational bound to provide a general
framework for hybrid learning of Gaussian and non-
Gaussian data.

4.2 EP for GP Variational Inference

For Gaussian process models, EP combines a Gaussian
prior p(f |X) with a set of site approximations to the
likelihood5 {ti(fi) ≈ p(yi|fi)}ni=1. This results in an
approximation to the posterior density of f given by

q(f |y,X) =
1

ZEP
p(f |X)

n∏
i=1

ti(fi) ∝ N (f |µ,Σ), (2)

where ZEP is the normalizing constant of q(f |y,X)
(see Williams and Rasmussen [2006] for notation). The

4For efficiency, we need to take m << n. Mathemati-
cally, we find that the original GP is recovered as m→ n.

5EP can be defined in a more general way, but we will
only use this definition for simplicity.

site approximations can be seen as combining to pro-
vide a Gaussian-like approximation to the likelihood

p(y|f) ≈ Z̃×N (f |µ̃, Σ̃), (3)

for some constant Z̃.

To combine the EP approximation with the variational
lower bound in (1), we need to define an EP algorithm
based on the DTC low rank approximation. We refer
to this algorithm as EP-DTC. Let {ν̃i}ni=1 and {τ̃i}ni=1

be the natural parameters associated with µ̃ = (µ̃i)
and Σ̃ = (s̃ij), where s̃ij = 0 ∀ i 6= j. Suppose that
at the i-th iteration6 the natural parameters of the
site approximation change by ∆ν̃i and ∆τ̃i. Then, it
can be shown (see Supplementary material) that the
updates of the posterior moments are given by

Σnew = Kfu(LL> + ki∆τ̃ik
>
i )−1Kuf , (4)

µnew = µ+ (∆ν̃i −∆τ̃iµi) snewi , (5)

where ki is the i-th column of Kuf , snewi is the i-th col-
umn of Σnew and L is the Cholesky decomposition of
(Kuu +Kuf Σ̃

−1Kfu) from the previous iteration. The
derivation follows closely that of Naish-Guzman and
Holden [2008], who combined EP with the FITC ap-
proximation of Snelson and Ghahramani [2006]. How-
ever, for the case when the likelihood is not Gaussian,
EP-DTC allows us to approximate (1) as

LE = logN
(
µ̃|0,Qff + Σ̃

)
− 1

2
tr
(

(Kff −Qff )Σ̃−1
)

+ Z̃.
(6)

LE retains the trace term from the bound of Titsias
[2009], only rather than being weighted by the noise
variance from the process, the elements of the trace
are now weighted by the variances from the site ap-
proximations.

It is possible to extend the variational bound in (6)
to handle uncertainty on the inputs of the Gaussian
process. Girard et al. [2003] and Girard and Murray-
Smith [2005] are able to work with noisy inputs in the
predictions of a GP regression model, by propagat-
ing the uncertainty through the covariance. We addi-
tionally use variational inference to approximate the
marginal likelihood, which allow us to incorporate un-
certain inputs in the training procedure. This makes
possible, within our framwork, to handle uncertain in-
puts in classification models and to construct hybrid
continuous-discrete dimensionality reduction models.

6EP is an iterative algorithm in which site approxi-
mations are updated one at time, until convergence is
achieved. In this case, the i-th iteration refers to the step
in which the paremeters of ti(fi) are updated.
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Table 1: Sparse Binary Classification Models.

EP-FITC LELELE

data set q m train/test error nlp error nlp

synthetic 2 4 250/1000 0.0910 0.2595 0.0930 0.2618
crabs 5 10 80/120 0.0450 0.2493 0.0458 0.2943
banana 2 20 400/4900 0.1092 0.2535 0.1083 0.2543
breast-cancer 9 2 200/77 0.2610 0.5242 0.2805 0.5363
diabetes 8 2 468/300 0.2273 0.4789 0.2290 0.4922
flare-solar 9 3 666/400 0.3410 0.5932 0.3250 0.5959
german 20 4 700/300 0.2470 0.4985 0.2637 0.5114
heart 13 2 170/100 0.1600 0.4003 0.1610 0.4221
thyroid 5 6 140/75 0.0560 0.2087 0.0560 0.2164
titanic 3 2 150/2051 0.2373 0.5180 0.2368 0.5274
two-norm 20 2 400/7000 0.0239 0.1273 0.0241 0.1682
waveform 21 10 400/4600 0.0966 0.2406 0.0995 0.2682

4.3 Sparse GP Binary Classification

Before we proceed to including uncertain inputs in our
framework, we first compare the quality of the new
bound LE with EP-FITC. We applied both approxi-
mations to a set of classification benchmarks (12 data
sets: two from Ripley’s collection7 and 10 from Gunnar
Rätsch’s benchmarks8). Table 1 shows the error and
negative log-probabilities obtained with each model.
In each case, the number of inducing inputs used was
the same for both models. The covariance functions
were all taken to be an exponentiated quadratic with
white noise. The values in the table correspond to the
average results of 10 folds over the data (except for
the synthetic data set, which is already divided into
test and training sets). In the case of the crabs data
set, we randomly created 10 test/train partitions of
size 80/120 ensuring that each training set had equal
number of observations per class. Rätsch’s benchmark
contains 100 training and test splits per data set. In
these experiments, we worked with 10 splits randomly
chosen. Hyperparameters and inducing inputs were
optimized jointly by scale conjugate gradients. For
each split, we tried three differently initializations and
retained the model with the highest marginal likeli-
hood for testing.

In the tests, the models both exhibited a simi-
lar performance, with (if anything) EP-FITC being
marginally better. These results give us confidence
that our approach is competitive.

7http://www.stats.ox.ac.uk/pub/PRNN/.
8http://theoval.cmp.uea.ac.uk/~gcc/matlab.

5 Discriminative-Generative Model

Lasserre et al. [2006] present a general framework for
discriminative training of generative models, that re-
lies on a model formulation with an additional set of
parameters9. We follow a similar approach, by using
a variational formulation. So far, we have assumed
that we are given a full set of input-output pairs for
each data point {xi, yi}ni=1. The advantage of extend-
ing the variational formulation with EP is that we can
now consider distributions over xi, which allows infer-
ence with uncertain inputs and multi-view learning for
hybrid data sets. We will assume that we have a Gaus-
sian approximation to the posterior density q(X) in
place of X. Given (6), the formulation of a variational
bound in the form of the one presented by Titsias and
Lawrence [2010] is straightforward (see Supplementary
material). Such a bound is formulated as

LH = logN
(
µ̃|0,Ψ>1 K−1uuΨ1 + Λ + Σ̃

)
− ψ̃0

+ tr
(
K−1uuΨ̃2

)
+ KL (q(X)‖p(X)) + Z̃,

(7)

where ψ̃0 = tr
(
Σ̃−1〈Kff 〉q(X)

)
, Ψ1 = 〈Kuf 〉q(X),

Ψ̃2 = 〈Kuf Σ̃
−1Kfu〉q(X), and Λ is a diagonal matrix

such that Λii = tr
(
Ψ̃2(i)K

−1
uu

)
−Ψ>1(i)K

−1
uuΨ1(i). The

sub-index (i) means that we are only taking the i-th
column of the corresponding matrix.

Notice that the first term in the r.h.s. of (7) has
no longer the form of the DTC approximation. In-
stead, its form is closer to the FITC approximation10,

9Additional to the parameters of the discriminative and
generative models.

10The marginal likelihood in the FITC approximation is
given by N (y|0,Qff + diag (Kff −Qff ) + σ2I).
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as it can be expressed as the sum of a diagonal and
a non-diagonal matrices. An EP algorithm can be
implemented for this new covariance form. Updates
computation in this new algorithm resemble those
of EP-FITC, but the origin of the terms in the co-
variance is conceptually different. We start by re-
expressing the non-diagonal term in the prior covari-
ance as ΨR>RΨ>, where R is the Cholesky decom-
position of K−1uu. Given our Gaussian approximation
to the likelihood, the structure of the prior covariance
will be kept in the posterior covariance. Hence, the
posterior moments can be decomposed as

Σ = Ψ̂R>RΨ̂
>

+ Λ̂, (8)

µ = ω + Ψ̂γ, (9)

where Ψ̂ has the same shape of Ψ, Λ̂ is a diagonal ma-
trix, ω ∈ Rn×1 and γ ∈ Rm×1. Suppose that at the
i-th iteration the natural parameters of the likelihood
approximation are increased by ∆ν̃i and ∆τ̃i. Then,
the new posterior covariance and posterior mean can
be computed by updating each one of their compo-
nents (see Supplementary material) as follows:

Λ̂new = Λ̂− ∆τ̃iλ̂
2
ii

1 + ∆τ̃iλ̂ii
eie
>
i , (10)

Ψ̂
new

= Ψ̂− ∆τ̃iλ̂ii

1 + ∆τ̃iλ̂ii
eiψ̂i, (11)

δi =
∆τ̃i

1 + ∆τ̃isii
, (12)

Rnew = Cholesky
(
R>

(
I−Rψ̂iδiψ̂

>
i R>

)
R
)
, (13)

ωnew = ω +
(∆ν̃i −∆τ̃iωi)λ̂ii

1 + ∆τ̃iλ̂ii
ei, (14)

γnew = Ψ̂
new
γ

+Ψ̂
new

(
(∆ν̃i −∆τ̃iµ̃i)R

new>
Rnewψ̂

new

i

)
,

(15)

where Λ̂ = (λ̂ij), ψ̂i is the i-th column of Ψ̂ and ei is
the i-th canonical basis vector of Rn.

This gives us a general algorithm that can be used
across a range of different applications. We now con-
sider applications of the model in three different do-
mains: classification with uncertain inputs, dimension-
ality reduction of non-Gaussian data and classification
using a hybrid discriminative-generative approach.

6 Experiments

6.1 Classification With Uncertain Inputs

In probabilistic classification, we are not only inter-
ested in the class estimates, but also in a measure of

the uncertainty about our predictions. If we are aware
that there is uncertainty associated to the inputs on
which the classification is based, it makes sense to in-
corporate this uncertainty in our predictions. Even
if the class predictions do not change, the confidence
intervals may. We present a couple of examples to il-
lustrate how our framework handles such uncertainty.

6.1.1 Toy Example

We show how the decision boundary in a classifica-
tion model is affected by the increase in the input’s
uncertainty. We considered an artificial binary classi-
fication problem. For an asymmetric increase in the
uncertainty (Figure 1a), where only the inputs of one
class become more uncertain, the decision boundary
becomes more tightly wrapped around the inputs with
less uncertainty. In contrast, when uncertainty in-
creases in both sets of input variables (Figure 1b) the
decision boundary becomes much smoother overall.

6.1.2 Olivetti Face Data Set

We consider the case of having a trained classifier, but
with missing components of the test point x∗. A sim-
ple solution would be to replace the missing values
with the corresponding means from the training data.
Our framework allows us to extend this idea by re-
placing the missing data with a Gaussian distribution,
whose mean and variance matches the training data.
We applied this idea using the Olivetti face data set11

to predict whether or not a person is wearing glasses.
We took a random 50/50 split to train two mod-
els: a standard GP-EP and a hybrid discriminative-
generative model.

On the test data, to simulate missing values, we re-
moved a varying portion of pixels from the images
(Figure 2). We then computed the class probability
estimates of both models. Notice that, as the pro-
portion of missing values increases, the hybrid model
becomes less certain and begin to converge towards
the prior probability of an individual wearing glasses
(about 30%). In contrast, the standard model just be-
comes certain that the image is a face with no glasses.
Table 2 shows a comparison of the errors and neg-
ative log-probabilities obtained after introducing un-
certainty.

6.2 Dimensionality Reduction of
Non-Gaussian Data

Manifold learning techniques model a high dimensional
process, by encoding its dominant sources of variation
in a latent process of lower dimensionality. Commonly,

11http://www.cs.nyu.edu/~roweis/data.html.
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(a) Asymmetric uncertainty. The uncertainty increase on the inputs of one class only, from left to right, causes the
decision boundary to shrink around the class with less uncertainty.
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(b) Symmetric uncertainty. The uncertainty increase on the inputs of both classes, from left to right, causes a
smoothing out of the decision surface.

Figure 1: Classificaton with uncertain inputs. Class elements are distinguished by colour and marker shape. The shaded
ellipses represent 95% confidence intervals for each uncertain input. The contour lines represent the probabilities (bold
line 0.5, light lines 0.4 and 0.6) of the points belonging to the orange class.

a Gaussian noise model is assumed, for example, in
the probabilistic PCA and the Bayesian GP-LVM. By
integrating EP to the GP variational framework, we
can apply dimensionality reduction techniques on data
with non-Gaussian noise. We applied our model on the
Zoo data set12, where 101 animals from 7 categories
(mammal, bird, fish, etc.) are described by 15 boolean
attributes and 1 numerical attribute. The hybrid ap-
proach can model each attribute with a different noise
model. We used a Bernoulli and a Gaussian likelihoods
for the boolean and numerical attributes, respectively.
Figure 3 shows the latent representation of the data.

6.3 Discriminative Latent Variable Model

The manifold relevance determination approach of
Damianou et al. [2012] considers multiple views of the
same data set, allowing each view to be associated with

12http://archive.ics.uci.edu/ml/datasets/Zoo.

50
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Figure 3: Three dimensional representation of the Zoo
data set. The actual labels (unseen by the algorithm)
are represented by different colors and bullets: mammals
(blue hexagons), birds (green stars), reptiles (red squares),
fish (cyan circles), amphibians (purple diamonds), insects
(olive-green triangles) and crustaceans (black triangles).

52



Andrade-Pacheco, Hensman, Zwießele, Lawrence

0 20 40 60 80 100
% missing data

0.0

0.5

1.0

p
(g

la
ss

e
s|

im
a
g

e
)

without test uncertainty
with test uncertainty

(a) Without glasses.
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(b) With glasses.

Figure 2: Graceful failure with missing data. Increasing quantities of missing data are shown for two test cases, with the
average (over 100 permutations) classification probability. For the standard GP-EP, missing pixels were replaced with
the mean from the training data, for the hybrid model the independent marginal probability of the pixel is used. In the
uncertain case, as more data are removed, the model predicts that the image contains glasses with p = 0.3, which matches
the prior for the data set. Without consideration of the uncertainty, the model will alway predict that the image contains
glasses with probability 0, such is the appearance of the mean of the pixels.

Table 2: Olivetti Faces Classification.

Without uncertainty With uncertainty
error nlp error nlp

No missing data 0.0200 21.0248
50% of pixels randomly missing 0.1650 94.8951 0.1650 73.5056
Half of face occluded 0.1650 69.1357 0.1650 67.0423

private and shared portions of the latent space. We
can construct a discriminative latent variable model,
which includes class labels and data points as different
views. We considered the 3s and 5s from the USPS
digits database. In Figure 4, we show an example
where we used 50 observations to train the model and
learn a 2-dimensional latent space. Notice that the
discrimination occurs across the first latent dimension,
whilst the second latent dimension is used to represent
non-discriminative variation in the data. The figure
shows the position of 100 unlabelled test data points
mapped into the latent space alongside the locations
of the training data.

We next followed Urtasun and Darrell [2007] in fitting
a discriminative manifold model to labelled training

sets of varying sizes. The error rates of the result-
ing models on 100 test points are shown in Figure 5a.
Our results are similar to those presented by Urta-
sun and Darrell [2007] (our data set partitions differ
and our error appears to share the same form, but be
worse overall). However, when we compared to stan-
dard EP-GP (Figure 5b), our performance was signifi-
cantly worse. This contrasts to the results in Urtasun
and Darrell [2007], who found standard GP classifica-
tion to underperform on this data set. In our experi-
ence, standard EP-GP classification can perform badly
when the initialization is poor and random restarts are
not tried. This can explain the discrepancy between
our results and theirs. To achieve similar results to EP-
GP classification (and therefore exploit the advantages
of the hybrid discriminative-generative model) we be-
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Figure 4: Lower dimensional representation of the USPS
digits. The blue and red points represent the examples of
3’s and 5’s, respectively, in the training set. The shaded
ellipses represent the uncertainty of the latent variables.
The black and white colors represent the test points (3’s
and 5’s) mapped to the learnt manifold. The contour lines
represent the label probabilities (of being five).
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Figure 5: Left: Classification error rates on the USPS data
for the hybrid model as the data set size increases. Right:
Classification errors rates on the USPS data for standard
EP-GP classification. Results are bar and whisker plots
summarizing 40 different sub sampled training sets.

lieve that our generative model needs to be more rep-
resentative of the underlying data. One possible way
in which this could be achieved would be through use
of the deep GP formalism of Damianou and Lawrence
[2013].

7 Conclusions

Gaussian processes have traditionally been used as ei-
ther discriminitive or generative models. By combin-
ing the EP approximation with a variational bound on
the marginal likelihood, we have developed a frame-
work for building hybrid discriminative-generative
models with GP. This required the development of
two new EP algorithms for sparse GP. The first al-
gorithm was used to define a model which is compara-
ble with the generalized FITC classification, while the
second is able to incorporate estimates of input’s un-
certainty into the routine. These allowed us to incor-
porate discriminitive Gaussian processes into a proba-
bilistic model such as the Bayesian GP-LVM.

We have shown how the addition of input’s uncer-
tainty leads to well behaved algorithms, in particu-
lar, when training on data where such uncertainty is
class-dependent and when predicting using missing in-
puts. We are able to use these techniques to apply the
Bayesian GP-LVM on non-Gaussian data and make
continuous latent representations of mixed data types.

Finally, in a further contribution in this volume [Hens-
man et al., 2014] a novel variational approach, tilted
variational Bayes (TVB), is proposed for dealing with
non-Gaussian likelihoods. This approach appears
competitive with expectation propagation. Our next
goal is to combine TVB with the low rank approxima-
tion of Titsias and Lawrence [2010] to form an efficient
hybrid model that provides a rigorous lower bound on
the marginal likelihood.
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