Supplemental Material for the AISTATS 2014 paper "Decontamination of Mutually Contaminated Models"

Gilles Blanchard and Clayton Scott

A Proofs for Section 3

A.1 κ^* and $\hat{\kappa}$ are well-defined

Lemma A.1. The maximum operation in the definition of κ^* and $\hat{\kappa}$ is well-defined, that *is, the outside supremum is attained at at least one point.*

We prove the statement for

$$\kappa^* = \max_{\mu} \inf_{C \in \mathcal{C}: F_{\mu}(C) > 0} \frac{F_0(C)}{F_{\mu}(C)}$$

The argument for $\hat{\kappa}$ is similar. Denote $G(\mu) = \kappa^*(F_0|F_\mu) = \inf_{C \in \mathcal{C}: F_\mu(C) > 0} \frac{F_0(C)}{F_\mu(C)}$ the maximum proportion of the mixture F_μ in the distribution F_0 .

We argue that G is an upper semicontinuous function. To see this, define for each $C \in C$ the function $g_C : S_M \to [0, \infty]$ as

$$g_C(\boldsymbol{\mu}) := \begin{cases} \frac{F_0(C)}{F_{\boldsymbol{\mu}}(C)} & \text{if } F_{\boldsymbol{\mu}}(C) > 0; \\ +\infty & \text{if } F_{\boldsymbol{\mu}}(C) = 0. \end{cases}$$

Then f_C is an upper semicontinuous function: if $\mu \in S_M$ is such that $F_{\mu}(C) > 0$, then f_C is continuous at point μ . Otherwise, $f_C(\mu) = \infty$ and f_C is trivially upper semicontinuous at point μ . Clearly, one has $G(\mu) = \inf_{C \in C} f_C(\mu)$; as an infimum of upper semicontinuous functions, it is itself upper semicontinuous, and therefore attains its maximum on the compact set S_M .

A.2 **Proof of Proposition 2**

Point (a): We apply condition **P1** for all k, i with $\delta_{k,i} = c\delta_i/k^2$. By the union bound, with probability at least $1 - \sum_{i=0}^{M} \delta_i$, it holds simultaneously for all $k \ge 1$ and $i = 0, \ldots, M$ that

$$\forall k \ge 1, \qquad \forall i \in \{0, \dots, M\} : \qquad \sup_{C \in \mathcal{C}_k} \left| F_i(C) - \widehat{F}_i(C) \right| \le \epsilon_i^k(c\delta_i k^{-2}) \quad (\mathbf{S}.1)$$

Recall the notation (from the proof of Lemma A.1) $G(\mu) = \inf_{C \in \mathcal{C}: F_{\mu}(C) > 0} \frac{F_0(C)}{F_{\mu}(C)}$ and introduce

$$\widehat{G}(\boldsymbol{\mu}) := \inf_{k} \inf_{C \in \mathcal{C}_{k}} \frac{\widehat{F}_{0}(C) + \epsilon_{0}^{k}(c\delta_{0}k^{-2})}{\left(\widehat{F}_{\boldsymbol{\mu}}(C) - \sum_{i}\nu_{i}\epsilon_{i}^{k}(c\delta_{i}k^{-2})\right)_{+}}.$$

Observe that when (S.1) is satisfied, this implies that for all $\mu \in S_M$, one has $G(\mu) \leq$ $\widehat{G}(\mu)$. Taking the maximum over μ yields the first point.

Point (b): let $\epsilon > 0$ be an arbitrary positive constant. For any $\mu \in S_M$, let $C_{\mu} \in C$

with $F_{\mu}(C_{\mu}) > 0$ be such that $\frac{F_0(C_{\mu})}{F_{\mu}(C_{\mu})} \leq \kappa^* + \epsilon/4$. By continuity of the function $\mu \mapsto F_{\mu}(C)$ for any fixed C, there exists for each $\mu \in S_M$ an open neighborhood N_{μ} of μ for which both of the following conditions are realized for all $\mu' \in N_{\mu}$:

$$\frac{F_0(C_{\boldsymbol{\mu}})}{F_{\boldsymbol{\mu}'}(C_{\boldsymbol{\mu}})} \le \kappa^* + \frac{\epsilon}{2},\tag{S.2}$$

and
$$F_{\mu'}(C_{\mu}) \ge \frac{1}{2} F_{\mu}(C_{\mu}).$$
 (S.3)

(For the second condition, we have used the fact that $F_{\mu}(C_{\mu}) > 0$). By compactness of S_M , there exists a finite subset S_M^{ϵ} of S_M such that $(N_{\mu})_{\mu \in S_M^{\epsilon}}$ covers S_M .

Denote $F_{\min}^{\epsilon} := \frac{1}{2} \min_{\mu \in S_M^{\epsilon}} F_{\mu}(C_{\mu})$; it is a positive quantity since $F_{\mu}(C_{\mu}) > 0$ for any μ , and S_M^{ϵ} is finite. For each $\mu \in S_M$, denote $\zeta(\mu)$ an arbitrary element of the finite net S_M^{ϵ} such that $\mu \in N_{\zeta(\mu)}$. By property (S.2), we have

$$\sup_{\boldsymbol{\mu}\in S_M} \frac{F_0(C_{\zeta(\boldsymbol{\mu})})}{F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})})} \le \max_{\boldsymbol{\mu}\in S_M^{\epsilon}} \sup_{\boldsymbol{\mu}'\in N_{\boldsymbol{\mu}}} \frac{F_0(C_{\boldsymbol{\mu}})}{F_{\boldsymbol{\mu}'}(C_{\boldsymbol{\mu}})} \le \kappa^* + \frac{\epsilon}{2},$$
(S.4)

and by property (S.3):

$$\inf_{\boldsymbol{\mu}\in S_M} F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})}) \ge \min_{\boldsymbol{\mu}\in S_M^{\epsilon}} \inf_{\boldsymbol{\mu'}\in N_{\boldsymbol{\mu}}} F_{\boldsymbol{\mu'}}(C_{\boldsymbol{\mu}}) \ge F_{\min}^{\epsilon}.$$
(S.5)

Denote $C_{\epsilon} := \{C_{\mu}, \mu \in S_{M}^{\epsilon}\}$. Let $\eta \in (0, F_{\min}^{\epsilon}/2)$ be another arbitrary positive constant. Consider the distribution $Q = \frac{1}{M+1} \sum_{i=0}^{M} F_{i}$, to which we apply condition **P2**. This entails that for each individual $C \in C$ there exists a k_C and $\widetilde{C} \in C_{k_C}$ with

$$Q(C\Delta \widetilde{C}) \le \frac{\eta}{M+1},$$

implying for all $i \in \{0, \dots, M\}$:

$$\left|F_i(C) - F_i(\widetilde{C})\right| \le F_i(C\Delta\widetilde{C}) \le (M+1)Q(C\Delta\widetilde{C}) \le \eta,$$

and then also for all $\mu \in S_M$:

$$\left|F_{\boldsymbol{\mu}}(\widetilde{C}) - F_{\boldsymbol{\mu}}(C)\right| \leq \sum_{i=1}^{M} \mu_i \left|F_i(C) - F_i(\widehat{C})\right| \leq \eta.$$

In what follows we use the shortened notation $\varepsilon_i^k \equiv \epsilon_i^k (c\delta_i k^{-2})$, and further define $\underline{\varepsilon}(\epsilon, \eta) := \max_i \max_{C \in \mathcal{C}_{\epsilon}} \varepsilon_i^{k_C}$. For fixed (ϵ, η) , the quantity $\underline{\varepsilon}(\epsilon, \eta)$ is defined as a maximum of a finite number of functions decreasing to 0 as $n \to \infty$, and therefore $\underline{\varepsilon}$ also decreases to zero. Below, we assume that all components of n are chosen big enough so that $F_{\min}^{\epsilon} - \eta - 2\underline{\varepsilon}(\epsilon, \eta) > 0$. It holds with probability $1 - \sum_{i=0}^{M} \delta_i$ that

$$\begin{aligned} \widehat{\kappa} &\leq \sup_{\boldsymbol{\mu} \in S_{M}} \inf_{k} \inf_{C \in \mathcal{C}_{k}} \frac{F_{0}(C) + 2\varepsilon_{0}^{k}}{\left(F_{\boldsymbol{\mu}}(C) - 2\sum_{i}\mu_{i}\varepsilon_{i}^{k}\right)_{+}} \\ &\leq \sup_{\boldsymbol{\mu} \in S_{M}} \inf_{C \in \mathcal{C}} \frac{F_{0}(\widetilde{C}) + 2\varepsilon_{0}^{k_{C}}}{\left(F_{\boldsymbol{\mu}}(\widetilde{C}) - 2\sum_{i}\mu_{i}\varepsilon_{i}^{k_{C}}\right)_{+}} \\ &\leq \sup_{\boldsymbol{\mu} \in S_{M}} \inf_{C \in \mathcal{C}} \frac{F_{0}(C) + \eta + 2\varepsilon_{0}^{k_{C}}}{\left(F_{\boldsymbol{\mu}}(C) - \eta - 2\sum_{i}\mu_{i}\varepsilon_{i}^{k_{C}}\right)_{+}} \\ &\leq \sup_{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}(C_{\zeta(\boldsymbol{\mu})}) + \eta + 2\varepsilon_{0}^{k_{C}\zeta(\boldsymbol{\mu})}}{\left(F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})}) - \eta - 2\sum_{i}\mu_{i}\varepsilon_{i}^{k_{C}\zeta(\boldsymbol{\mu})}\right)_{+}} \\ &\leq \sup_{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}(C_{\zeta(\boldsymbol{\mu})}) + \eta + 2\varepsilon_{0}(\epsilon, \eta)}{\left(F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})}) - \eta - 2\underline{\varepsilon}(\epsilon, \eta)\right)_{+}} \\ &\leq \left(\sup_{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}(C_{\zeta(\boldsymbol{\mu})}) - \eta - 2\underline{\varepsilon}(\epsilon, \eta)}{\left(F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})}) - \eta - 2\underline{\varepsilon}(\epsilon, \eta)\right)_{+}}\right) \sup_{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}(C_{\zeta(\boldsymbol{\mu})}) + \eta + 2\underline{\varepsilon}(\epsilon, \eta)}{F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})})} \\ &\leq \left(\frac{F_{\min}^{\epsilon}}{(F_{\min}^{\epsilon} - \eta - 2\underline{\varepsilon}(\epsilon, \eta))_{+}}\right) \left(\sup_{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}(C_{\zeta(\boldsymbol{\mu})})}{F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})})} + \sup_{\boldsymbol{\mu} \in S_{M}} \frac{\eta + 2\underline{\varepsilon}(\epsilon, \eta)}{F_{\boldsymbol{\mu}}(C_{\zeta(\boldsymbol{\mu})})}\right) \\ &\leq \left(\frac{F_{\min}^{\epsilon}}{(F_{\min}^{\epsilon} - \eta - 2\underline{\varepsilon}(\epsilon, \eta))_{+}}\right) \left(\kappa^{*} + \frac{\epsilon}{2}\right) + \frac{\eta + 2\underline{\varepsilon}(\epsilon, \eta)}{(F_{\min}^{\epsilon} - \eta - 2\underline{\varepsilon}(\epsilon, \eta))_{+}}, \end{aligned}$$

where we have used (S.4) and (S.5) for the last inequality. By choosing first η small enough, then all components of n_0 big enough, the r.h.s. of the above inequality can be made smaller than $\kappa^* + \epsilon$, for all $n \succ n_0$ (\succ indicates the inequality holds for all components). Since $\sum_{i=0}^{M} \delta_i \to 0$ as $\mu \to 0$, this implies the second part of the proposition.

For the last point of the proposition, consider an arbitrary open set Ω containing the set \mathcal{B}^* . Then $\Omega^c := S_M \setminus \Omega$ is a compact set; therefore, the function $G(\mu) := \inf_{C \in \mathcal{C}, F_{\mu}(C) > 0} \frac{F_0(C)}{F_{\mu}(C)}$, being upper semicontinuous (see proof of Lemma A.1), attains its supremum $\tilde{\kappa}$ on Ω^c . Observe that $\tilde{\kappa} > \kappa^*$ must hold, otherwise we would have a contradiction with the definition of \mathcal{B}^* . Finally, we have:

$$\mathbb{P}\left[\widehat{\boldsymbol{\mu}} \notin \Omega\right] \leq \mathbb{P}\left[\widehat{\boldsymbol{\mu}} \notin \Omega; G(\widehat{\boldsymbol{\mu}}) \leq \widehat{G}(\widehat{\boldsymbol{\mu}})\right] + \mathbb{P}\left[G(\widehat{\boldsymbol{\mu}}) > \widehat{G}(\widehat{\boldsymbol{\mu}})\right]$$
$$\leq \mathbb{P}\left[\widehat{\kappa} \geq \widetilde{\kappa}\right] + \sum_{i=1}^{M} \delta_{i},$$

where we have used that $\hat{\kappa} = \hat{G}(\hat{\mu})$ by definition, and the argument used in the proof of point (a). By point (b), the first probability converges to 0 as $\mu \to \infty$. Thus, the probability that $\hat{\mu} \in \Omega$ must converge to 1 as $n \to \infty$. This applies in particular to any open set of the form $\Omega_{\epsilon} := \{\mu : d(\mu, \mathcal{B}^*) < \epsilon\}$, hence the conclusion.

B Proofs for Section 4

B.1 Proof of Lemma 1

Suppose the first condition does not hold, so that

$$\sum_{i \in I} \epsilon_i P_i = \alpha \left(\sum_{i \notin I} \epsilon_i P_i \right) + (1 - \alpha) H.$$

Then $\sum_{i} \gamma_i P_i = H$, where $\gamma_i = \frac{\epsilon_i}{1-\alpha}$ for $i \in I$, and $\gamma_i = -\frac{\alpha \epsilon_i}{1-\alpha}$ for $i \notin I$. Since $\sum_{i \notin I} \epsilon_i = 1$, at least one $\gamma_i < 0$, so the second condition is violated.

Now suppose the second condition is violated, say $\sum_i \gamma_i P_i = H$. Let $I = \{i \mid \gamma_i \ge 0\}$, which has fewer than K elements by assumption. Since $\sum_i \gamma_i = 1$, we also know $1 \le |I|$ and further that $\Gamma := \sum_{i \in I} \gamma_i > 1$. A violation of the first condition is obtained by $\epsilon_i = \gamma_i / \Gamma$ for $i \in I$, $\epsilon_i = -\gamma_i / (\Gamma - 1)$ for $i \notin I$ (noting that $\sum_{i \notin I} (-\gamma_i) = \Gamma - 1$), and $\alpha = (\Gamma - 1) / \Gamma$.

B.2 Proof of Lemma 2

(a) \Rightarrow (b): Follows immediately from the definition of the residue.

(b) \Rightarrow (c): By assumption, there exists $\kappa > 0$ such that $\pi_1 = \kappa e_1 + (1 - \kappa)\eta_1$, where $\eta_1 = \sum_{i=2}^{L} \mu_i \pi_i$, with $\mu_i \ge 0$, for all $2 \le i \le L$. Thus,

$$\boldsymbol{e}_1 = \kappa^{-1} \boldsymbol{\pi}_1 - \sum_{i=2}^L \frac{(1-\kappa)}{\kappa} \mu_i \boldsymbol{\pi}_i;$$

a similar relation holds for all rows. This implies that Π is invertible and allows to identify (for instance) the first row of Π^{-1} as $(\kappa^{-1}, -\frac{(1-\kappa)}{\kappa}\mu_2, \dots, -\frac{(1-\kappa)}{\kappa}\mu_L)$. This implies (c).

(c) \Rightarrow (a): Without loss of generality, consider $\ell = 1$ and the problem of identifying $\kappa^*(\pi_1|(\pi_i)_{2 \le i \le L})$, and the associated residue (if it exists). According to characterization (9), this corresponds to the optimization problem

$$\max_{\boldsymbol{\nu},\boldsymbol{\gamma}} \sum_{i=2}^{L} \nu_i \quad s.t. \quad \boldsymbol{\pi}_1 = (1 - \sum_{i \ge 2} \nu_i)\boldsymbol{\gamma} + \sum_{i \ge 2} \nu_i \boldsymbol{\pi}_i,$$

over $\boldsymbol{\gamma} \in S_L$ and $\boldsymbol{\nu} = (\nu_2, \dots, \nu_L) \in \Delta_{L-1} = \Big\{ (\nu_2, \dots, \nu_L) | \nu_i \ge 0; \sum_{i=2}^{L} \nu_i \le 1 \Big\}.$

We now reformulate this problem. First, note that the constraint implies that admissible ν are such that $\sum_{i\geq 2} \nu_i < 1$, otherwise we would have a linear relation between the π_i , contradicting invertibility of Π .

Then for an admissible $\boldsymbol{\nu}$, denote $\boldsymbol{\eta}(\boldsymbol{\nu}) := (1 - \sum_{i \geq 2} \nu_i)^{-1}(1, -\nu_2, \dots, -\nu_L)$. Observe that the constraint of the optimization problem is equivalent to $\Pi^T \boldsymbol{\eta} = \boldsymbol{\gamma}$, or $\boldsymbol{\eta} = (\Pi^T)^{-1} \boldsymbol{\gamma}$. The inverse mapping of $\boldsymbol{\eta}$ to $\boldsymbol{\nu}$ is $\boldsymbol{\nu}(\boldsymbol{\eta}) = \eta_1^{-1}(-\eta_2, \dots, -\eta_L)$, so that the objective of the optimization can be rewritten as

$$-rac{\sum_{i=2}^L\eta_i}{m{e}_1^Tm{\eta}}=-rac{m{1}^Tm{\eta}}{m{e}_1^Tm{\eta}}+1=1-rac{1}{m{e}_1^Tm{\eta}}=1-rac{1}{m{e}_1^T(\Pi^T)^{-1}m{\gamma}},$$

where 1 denotes a *L*-dimensional vector with all coordinates equal to 1. So finding the point of maximum of the above problem is equivalent to the program

$$\max_{\boldsymbol{\gamma}\in S_L} \boldsymbol{e}_1^T (\Pi^T)^{-1} \boldsymbol{\gamma} \ s.t. \ \boldsymbol{\nu}((\Pi^T)^{-1} \boldsymbol{\gamma}) \in \Delta_{L-1}$$

The above objective function has the form $a^T \gamma$, where a is the first column of Π^{-1} which, by assumption, has its first coordinate positive and the others nonpositive. Therefore, the unconstrainted maximum over $\gamma \in S_M$ is attained uniquely for $\gamma = e_1$. We now check that this value also satisfies the required constraint. Observe that $(\Pi^T)^{-1}e_1$ is the (transpose of) the first row of Π^{-1} , denote this vector as $b = (b_1, \ldots, b_L)$. We want to ensure that $\nu(b) = b_1^{-1}(-b_2, \ldots, -b_L) \in \Delta_{L-1}$. By assumption, b has its first coordinate positive and the others nonpositive, ensuring all components of $\nu(b)$ are nonnegative. Furthermore, the sum of the components of $\nu(b)$ is

$$\sum_{i=2}^{L} -\frac{b_i}{b_1} = 1 - \frac{\sum_{i=1}^{L} b_i}{b_1} = 1 - \frac{1}{b_1} \le 1;$$

the last equality is because the rows of Π^{-1} sum to 1 (since Π is a stochastic matrix, so is its inverse). It follows that $\nu((\Pi^T)^{-1}e_1) \in \Delta_{L-1}$. Thus, the unique maximum of the optimization problem is attained for $\gamma = e_1$, establishing (a).

B.3 Proof of Proposition 3

We start with the following Lemma:

Lemma B.1. If Π is recoverable, then π_1, \ldots, π_L are linearly independent. If P_1, \ldots, P_L are jointly irreducible, then they are linearly independent. If π_1, \ldots, π_L are linearly independent and P_1, \ldots, P_L are linearly independent, then $\tilde{P}_1, \ldots, \tilde{P}_L$ are linearly independent.

Proof of the lemma: The first statement follows from characterization (c) of Lemma 2: if Π is recoverable, it is invertible and thus has full rank.

For the second statement, suppose $\sum_i \beta_i P_i = 0$ is a nontrivial linear relation. Let j be any index such that $\beta_j \ge 0$. Then $\sum_i \gamma_i P_i = P_j$, where $\gamma_i = \beta_i$ if $i \ne j$, and $\gamma_j = \beta_j + 1$. Since at least one $\beta_i < 0, i \ne j$, joint irreducibility is violated.

For the third part, suppose $\sum_{i} \alpha_{i} \tilde{P}_{i} = 0$. Since $\tilde{P}_{i} = \boldsymbol{\pi}_{i}^{T} \boldsymbol{P}$, this implies $\sum_{i} \alpha_{i} \boldsymbol{\pi}_{i}^{T} \boldsymbol{P} = 0$, which implies $\sum_{i} \alpha_{i} \boldsymbol{\pi}_{i} = \mathbf{0}$, which implies $\alpha_{i} = 0$.

Proof of Proposition 3: Consider $\ell = 1$, the other cases being similar. Suppose G is such that

$$\tilde{P}_1 = (1 - \sum_{j \ge 2} \nu_j)G + \sum_{j \ge 2} \nu_j \tilde{P}_j.$$
(S.6)

Note that $\tilde{P}_1, \ldots, \tilde{P}_L$ are linearly independent by Lemma B.1. This implies $\sum_{j\geq 2} \nu_j < 1$, because otherwise $\tilde{P}_1 = \sum_{j\geq 2} \nu_j \tilde{P}_j$.

Therefore, any G satisfying (S.6) has the form $\sum_{i=1}^{L} \gamma_i P_i$. The weights γ_i clearly sum to one, and by joint irreducibility, they are nonnegative. That is, $\boldsymbol{\gamma} := [\gamma_1, \ldots, \gamma_L]^T$ is a discrete distribution. Thus, Eqn. (S.6) is equivalent to

$$\boldsymbol{\pi}_1^T \boldsymbol{P} = (1 - \sum_{j \geq 2} \nu_j) \boldsymbol{\gamma}^T \boldsymbol{P} + \sum_{j \geq 2} \nu_j \boldsymbol{\pi}_j^T \boldsymbol{P}.$$

By linear independence of P_1, \ldots, P_L (see Lemma B.1) and taking the transpose, this gives

$$\boldsymbol{\pi}_1 = (1 - \sum_{j \ge 2} \nu_j) \boldsymbol{\gamma} + \sum_{j \ge 2} \nu_j \boldsymbol{\pi}_j.$$

Therefore $\kappa^*(\tilde{P}_1|\{\tilde{P}_j, j \neq 1\}) = \kappa^*(\pi_1|\{\pi_j, j \neq 1\}) < 1$, and there is a one-toone correspondence between feasible *G* in the definition of $\kappa^*(\tilde{P}_1|\{\tilde{P}_j, j \neq 1\})$ and feasible γ in the definition of $\kappa^*(\pi_1|\{\pi_j, j \neq 1\})$. Since Π is recoverable, the residue of π_1 w.r.t. $\{\pi_j, j \neq 1\}$ is $\gamma = e_1$, and so the residue of \tilde{P}_1 w.r.t. $\{\tilde{P}_j, j \neq 1\}$ is $G = e_1^T P = P_1$.

To see uniqueness of the maximizing ν_j , suppose

$$\tilde{P}_1 = (1 - \kappa^*)G + \sum_{j \ge 2} \nu_j \tilde{P}_j = (1 - \kappa^*)G + \sum_{j \ge 2} \nu'_j \tilde{P}_j.$$

Lemma B.1 implies $\nu_j = \nu'_j$.

B.4 Proof of Proposition 4

For brevity we at times omit the dependence of the errors and their estimates on f. For any f,

$$\begin{aligned} |R_{\ell}(f) - \widehat{R}_{\ell}(f)| &= \left| \frac{\widetilde{R}_{\ell\ell} - \sum_{j \neq \ell} \nu_{\ell j} \widetilde{R}_{j\ell}}{1 - \kappa_{\ell}} - \frac{\widetilde{R}_{\ell\ell} - \sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widetilde{R}_{j\ell}}{1 - \widehat{\kappa}_{\ell}} \right| \\ &\leq \left| \frac{\widetilde{R}_{\ell\ell} - \sum_{j \neq \ell} \nu_{\ell j} \widetilde{R}_{j\ell}}{1 - \kappa_{\ell}} - \frac{\widetilde{R}_{\ell\ell} - \sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widetilde{R}_{j\ell}}{1 - \kappa_{\ell}} \right| \\ &+ \left| \frac{\widetilde{R}_{\ell\ell} - \sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widetilde{R}_{j\ell}}{1 - \kappa_{\ell}} - \frac{\widetilde{R}_{\ell\ell} - \sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widetilde{R}_{j\ell}}{1 - \widehat{\kappa}_{\ell}} \right| \end{aligned}$$

$$\leq \frac{|\tilde{R}_{\ell\ell} - \hat{\tilde{R}}_{\ell\ell}| + \sum_{j \neq \ell} |\nu_{\ell j} \tilde{R}_{j\ell} - \hat{\nu}_{\ell j} \hat{\tilde{R}}_{j\ell}|}{1 - \kappa_{\ell}} + \left|\frac{1}{1 - \kappa_{\ell}} - \frac{1}{1 - \hat{\kappa}_{\ell}}\right|$$

$$= \frac{|\tilde{R}_{\ell\ell} - \hat{\tilde{R}}_{\ell\ell}| + \sum_{j \neq \ell} \left(|\nu_{\ell j} \tilde{R}_{j\ell} - \hat{\nu}_{\ell j} \tilde{R}_{j\ell} + \hat{\nu}_{\ell j} \tilde{R}_{j\ell} - \hat{\nu}_{\ell j} \hat{\tilde{R}}_{j\ell}|\right)}{1 - \kappa_{\ell}}$$

$$+ \left|\frac{1}{1 - \kappa_{\ell}} - \frac{1}{1 - \hat{\kappa}_{\ell}}\right|$$

$$\leq \frac{|\tilde{R}_{\ell\ell} - \hat{\tilde{R}}_{\ell\ell}| + \sum_{j \neq \ell} \left(|\nu_{\ell j} - \hat{\nu}_{\ell j}| + |\tilde{R}_{j\ell} - \hat{\tilde{R}}_{j\ell}|\right)}{1 - \kappa_{\ell}} + \left|\frac{1}{1 - \kappa_{\ell}} - \frac{1}{1 - \hat{\kappa}_{\ell}}\right|$$

The VC inequality [1] implies that for any $\epsilon > 0$, $\sup_{f \in \mathcal{F}_{k(n)}} |R_{i\ell}(f) - \widehat{R}_{i\ell}(f)| \le \epsilon$ with probability tending to 1, since (12) holds, and by our convention for multiclass VC dimension. Noting that $\kappa_{\ell} < 1$ by Proposition 3, the other terms tend to zero in probability by consistency of $\widehat{\kappa}_{\ell}$ and the $\widehat{\nu}_{\ell j}$. This completes the proof.

B.5 Proof of Theorem 1

Consider the decomposition into estimation and approximation errors,

$$R(\widehat{f}) - R^* = R(\widehat{f}) - \inf_{f \in \mathcal{F}_{k(n)}} R(f) + \inf_{f \in \mathcal{F}_{k(n)}} R(f) - R^*.$$

The approximation error converges to zero by **P3** and since $k(n) \to \infty$. To analyze the estimation error, let $\epsilon > 0$. For each positive integer k, let $f_k^* \in \mathcal{F}_k$ such that $R(f_k^*) \leq \inf_{f \in \mathcal{F}_k} R(f) + \frac{\epsilon}{4}$. Then

$$\begin{split} R(\widehat{f}) &- \inf_{f \in \mathcal{F}_{k(n)}} R(f) = R(\widehat{f}_{k(n)}) - \inf_{f \in \mathcal{F}_{k(n)}} R(f) \\ &\leq R(\widehat{f}_{k(n)}) - R(f_{k(n)}^{*}) + \frac{\epsilon}{4} \\ &\leq \widehat{R}(\widehat{f}_{k(n)}) - \widehat{R}(f_{k(n)}^{*}) + \frac{\epsilon}{2} \\ & \text{(with probability tending to 0, by Proposition 4)} \\ &\leq \tau_{k(n)} + \frac{\epsilon}{2} \\ &\leq \epsilon \end{split}$$

where the last step holds for n sufficiently large. The result now follows.

References

[1] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.