Supplemental Material for the AISTATS 2014 paper
 "Decontamination of Mutually Contaminated Models"

Gilles Blanchard and Clayton Scott

A Proofs for Section 3

A. $1 \kappa^{*}$ and $\widehat{\kappa}$ are well-defined

Lemma A.1. The maximum operation in the definition of κ^{*} and $\widehat{\kappa}$ is well-defined, that is, the outside supremum is attained at at least one point.

We prove the statement for

$$
\kappa^{*}=\max _{\mu} \inf _{C \in \mathcal{C}: F_{\mu}(C)>0} \frac{F_{0}(C)}{F_{\mu}(C)}
$$

The argument for $\widehat{\kappa}$ is similar. Denote $G(\boldsymbol{\mu})=\kappa^{*}\left(F_{0} \mid F_{\boldsymbol{\mu}}\right)=\inf _{C \in \mathcal{C}: F_{\mu}(C)>0} \frac{F_{0}(C)}{F_{\mu}(C)}$ the maximum proportion of the mixture F_{μ} in the distribution F_{0}.

We argue that G is an upper semicontinuous function. To see this, define for each $C \in \mathcal{C}$ the function $g_{C}: S_{M} \rightarrow[0, \infty]$ as

$$
g_{C}(\boldsymbol{\mu}):= \begin{cases}\frac{F_{0}(C)}{F_{\boldsymbol{\mu}}(C)} & \text { if } F_{\boldsymbol{\mu}}(C)>0 ; \\ +\infty & \text { if } F_{\boldsymbol{\mu}}(C)=0\end{cases}
$$

Then f_{C} is an upper semicontinuous function: if $\boldsymbol{\mu} \in S_{M}$ is such that $F_{\boldsymbol{\mu}}(C)>0$, then f_{C} is continuous at point $\boldsymbol{\mu}$. Otherwise, $f_{C}(\boldsymbol{\mu})=\infty$ and f_{C} is trivially upper semicontinuous at point $\boldsymbol{\mu}$. Clearly, one has $G(\boldsymbol{\mu})=\inf _{C \in \mathcal{C}} f_{C}(\boldsymbol{\mu})$; as an infimum of upper semicontinuous functions, it is itself upper semicontinuous, and therefore attains its maximum on the compact set S_{M}.

A. 2 Proof of Proposition 2

Point (a): We apply condition $\mathbf{P 1}$ for all k, i with $\delta_{k, i}=c \delta_{i} / k^{2}$. By the union bound, with probability at least $1-\sum_{i=0}^{M} \delta_{i}$, it holds simultaneously for all $k \geq 1$ and $i=$ $0, \ldots, M$ that

$$
\begin{equation*}
\forall k \geq 1, \quad \forall i \in\{0, \ldots, M\}: \quad \sup _{C \in \mathcal{C}_{k}}\left|F_{i}(C)-\widehat{F}_{i}(C)\right| \leq \epsilon_{i}^{k}\left(c \delta_{i} k^{-2}\right) \tag{S.1}
\end{equation*}
$$

Recall the notation (from the proof of Lemma A.1) $G(\boldsymbol{\mu})=\inf _{C \in \mathcal{C}: F_{\mu}(C)>0} \frac{F_{0}(C)}{F_{\mu}(C)}$ and introduce

$$
\widehat{G}(\boldsymbol{\mu}):=\inf _{k} \inf _{C \in \mathcal{C}_{k}} \frac{\widehat{F}_{0}(C)+\epsilon_{0}^{k}\left(c \delta_{0} k^{-2}\right)}{\left(\widehat{F}_{\boldsymbol{\mu}}(C)-\sum_{i} \nu_{i} \epsilon_{i}^{k}\left(c \delta_{i} k^{-2}\right)\right)_{+}} .
$$

Observe that when (S.1) is satisfied, this implies that for all $\boldsymbol{\mu} \in S_{M}$, one has $G(\boldsymbol{\mu}) \leq$ $\widehat{G}(\boldsymbol{\mu})$. Taking the maximum over $\boldsymbol{\mu}$ yields the first point.

Point (b): let $\epsilon>0$ be an arbitrary positive constant. For any $\boldsymbol{\mu} \in S_{M}$, let $C_{\boldsymbol{\mu}} \in \mathcal{C}$ with $F_{\boldsymbol{\mu}}\left(C_{\boldsymbol{\mu}}\right)>0$ be such that $\frac{F_{0}\left(C_{\mu}\right)}{F_{\mu}\left(C_{\mu}\right)} \leq \kappa^{*}+\epsilon / 4$.

By continuity of the function $\boldsymbol{\mu} \mapsto F_{\mu}(C)$ for any fixed C, there exists for each $\boldsymbol{\mu} \in S_{M}$ an open neighborhood N_{μ} of $\boldsymbol{\mu}$ for which both of the following conditions are realized for all $\boldsymbol{\mu}^{\prime} \in N_{\mu}$:

$$
\begin{align*}
\frac{F_{0}\left(C_{\boldsymbol{\mu}}\right)}{F_{\boldsymbol{\mu}^{\prime}}\left(C_{\boldsymbol{\mu}}\right)} & \leq \kappa^{*}+\frac{\epsilon}{2}, \tag{S.2}\\
\text { and } F_{\boldsymbol{\mu}^{\prime}}\left(C_{\boldsymbol{\mu}}\right) & \geq \frac{1}{2} F_{\boldsymbol{\mu}}\left(C_{\boldsymbol{\mu}}\right) . \tag{S.3}
\end{align*}
$$

(For the second condition, we have used the fact that $F_{\boldsymbol{\mu}}\left(C_{\boldsymbol{\mu}}\right)>0$). By compactness of S_{M}, there exists a finite subset S_{M}^{ϵ} of S_{M} such that $\left(N_{\boldsymbol{\mu}}\right)_{\boldsymbol{\mu} \in S_{M}^{\epsilon}}$ covers S_{M}.

Denote $F_{\min }^{\epsilon}:=\frac{1}{2} \min _{\boldsymbol{\mu} \in S_{M}^{\epsilon}} F_{\boldsymbol{\mu}}\left(C_{\boldsymbol{\mu}}\right) ;$ it is a positive quantity since $F_{\boldsymbol{\mu}}\left(C_{\boldsymbol{\mu}}\right)>0$ for any $\boldsymbol{\mu}$, and S_{M}^{ϵ} is finite. For each $\boldsymbol{\mu} \in S_{M}$, denote $\zeta(\boldsymbol{\mu})$ an arbitrary element of the finite net S_{M}^{ϵ} such that $\boldsymbol{\mu} \in N_{\zeta(\mu)}$. By property (S.2), we have

$$
\begin{equation*}
\sup _{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}\left(C_{\zeta(\boldsymbol{\mu})}\right)}{F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)} \leq \max _{\boldsymbol{\mu} \in S_{M}^{\in}} \sup _{\boldsymbol{\mu}^{\prime} \in N_{\mu}} \frac{F_{0}\left(C_{\boldsymbol{\mu}}\right)}{F_{\boldsymbol{\mu}^{\prime}}\left(C_{\boldsymbol{\mu}}\right)} \leq \kappa^{*}+\frac{\epsilon}{2} \tag{S.4}
\end{equation*}
$$

and by property (S.3):

$$
\begin{equation*}
\inf _{\boldsymbol{\mu} \in S_{M}} F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right) \geq \min _{\boldsymbol{\mu} \in S_{M}^{\epsilon}} \inf _{\boldsymbol{\mu}^{\prime} \in N_{\boldsymbol{\mu}}} F_{\boldsymbol{\mu}^{\prime}}\left(C_{\boldsymbol{\mu}}\right) \geq F_{\min }^{\epsilon} \tag{S.5}
\end{equation*}
$$

Denote $\mathcal{C}_{\epsilon}:=\left\{C_{\boldsymbol{\mu}}, \boldsymbol{\mu} \in S_{M}^{\epsilon}\right\}$. Let $\eta \in\left(0, F_{\min }^{\epsilon} / 2\right)$ be another arbitrary positive constant. Consider the distribution $Q=\frac{1}{M+1} \sum_{i=0}^{M} F_{i}$, to which we apply condition P2. This entails that for each individual $C \in \mathcal{C}$ there exists a k_{C} and $\widetilde{C} \in \mathcal{C}_{k_{C}}$ with

$$
Q(C \Delta \widetilde{C}) \leq \frac{\eta}{M+1}
$$

implying for all $i \in\{0, \ldots, M\}$:

$$
\left|F_{i}(C)-F_{i}(\widetilde{C})\right| \leq F_{i}(C \Delta \widetilde{C}) \leq(M+1) Q(C \Delta \widetilde{C}) \leq \eta
$$

and then also for all $\boldsymbol{\mu} \in S_{M}$:

$$
\left|F_{\boldsymbol{\mu}}(\widetilde{C})-F_{\boldsymbol{\mu}}(C)\right| \leq \sum_{i=1}^{M} \mu_{i}\left|F_{i}(C)-F_{i}(\widehat{C})\right| \leq \eta
$$

In what follows we use the shortened notation $\varepsilon_{i}^{k} \equiv \epsilon_{i}^{k}\left(c \delta_{i} k^{-2}\right)$, and further define $\underline{\varepsilon}(\epsilon, \eta):=\max _{i} \max _{C \in \mathcal{C}_{\epsilon}} \varepsilon_{i}^{k_{C}}$. For fixed (ϵ, η), the quantity $\underline{\varepsilon}(\epsilon, \eta)$ is defined as a maximum of a finite number of functions decreasing to 0 as $\boldsymbol{n} \rightarrow \infty$, and therefore $\underline{\varepsilon}$ also decreases to zero. Below, we assume that all components of \boldsymbol{n} are chosen big enough so that $F_{\min }^{\epsilon}-\eta-2 \underline{\varepsilon}(\epsilon, \eta)>0$. It holds with probability $1-\sum_{i=0}^{M} \delta_{i}$ that

$$
\begin{aligned}
\widehat{\kappa} & \leq \sup _{\boldsymbol{\mu} \in S_{M}} \inf _{k} \inf _{C \in \mathcal{C}_{k}} \frac{F_{0}(C)+2 \varepsilon_{0}^{k}}{\left(F_{\boldsymbol{\mu}}(C)-2 \sum_{i} \mu_{i} \varepsilon_{i}^{k}\right)_{+}} \\
& \leq \sup _{\boldsymbol{\mu} \in S_{M}} \inf _{C \in \mathcal{C}} \frac{F_{0}(\widetilde{C})+2 \varepsilon_{0}^{k_{C}}}{\left(F_{\boldsymbol{\mu}}(\widetilde{C})-2 \sum_{i} \mu_{i} \varepsilon_{i}^{k_{C}}\right)_{+}} \\
& \leq \sup _{\boldsymbol{\mu} \in S_{M}} \inf _{C \in \mathcal{C}} \frac{F_{0}(C)+\eta+2 \varepsilon_{0}^{k_{C}}}{\left(F_{\boldsymbol{\mu}}(C)-\eta-2 \sum_{i} \mu_{i} \varepsilon_{i}^{k_{C}}\right)_{+}} \\
& \leq \sup _{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}\left(C_{\zeta(\boldsymbol{\mu})}\right)+\eta+2 \varepsilon_{0}^{k_{C}(\boldsymbol{\mu})}}{\left(F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)-\eta-2 \sum_{i} \mu_{i} \varepsilon_{i}^{k_{\left.C_{\zeta(\boldsymbol{\mu}}\right)}}\right)_{+}} \\
& \leq \sup _{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}\left(C_{\zeta(\boldsymbol{\mu})}\right)+\eta+2 \underline{\varepsilon}(\epsilon, \eta)}{\left(F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)-\eta-2 \underline{\varepsilon}(\epsilon, \eta)\right)_{+}} \\
& \leq\left(\sup _{\boldsymbol{\mu} \in S_{M}} \frac{F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)}{\left(F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)-\eta-2 \underline{\varepsilon}(\epsilon, \eta)\right)_{+}}\right) \sup _{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}\left(C_{\zeta(\boldsymbol{\mu})}\right)+\eta+2 \underline{\varepsilon}(\epsilon, \eta)}{F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)} \\
& \leq\left(\frac{F_{\min }^{\epsilon}}{\left(F_{\min }^{\epsilon}-\eta-2 \underline{\varepsilon}(\epsilon, \eta)\right)_{+}}\right)\left(\sup _{\boldsymbol{\mu} \in S_{M}} \frac{F_{0}\left(C_{\zeta(\boldsymbol{\mu})}\right)}{F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)}+\sup _{\boldsymbol{\mu} \in S_{M}} \frac{\eta+2 \underline{\varepsilon}(\epsilon, \eta)}{F_{\boldsymbol{\mu}}\left(C_{\zeta(\boldsymbol{\mu})}\right)}\right) \\
& \leq\left(\frac{F_{\min }^{\epsilon}}{\left(F_{\min }^{\epsilon}-\eta-2 \underline{\varepsilon}(\epsilon, \eta){)_{+}}^{\epsilon}\right.}\right)\left(\kappa^{*}+\frac{\epsilon}{2}\right)+\frac{\eta+2 \underline{\varepsilon}(\epsilon, \eta)}{\left(F_{\min }^{\epsilon}-\eta-2 \underline{\varepsilon}(\epsilon, \eta)\right)_{+}},
\end{aligned}
$$

where we have used (S.4) and (S.5) for the last inequality. By choosing first η small enough, then all components of \boldsymbol{n}_{0} big enough, the r.h.s. of the above inequality can be made smaller than $\kappa^{*}+\epsilon$, for all $\boldsymbol{n} \succ \boldsymbol{n}_{0}(\succ$ indicates the inequality holds for all components). Since $\sum_{i=0}^{M} \delta_{i} \rightarrow 0$ as $\boldsymbol{\mu} \rightarrow 0$, this implies the second part of the proposition.

For the last point of the proposition, consider an arbitrary open set Ω containing the set \mathcal{B}^{*}. Then $\Omega^{c}:=S_{M} \backslash \Omega$ is a compact set; therefore, the function $G(\boldsymbol{\mu}):=$ $\inf _{C \in \mathcal{C}, F_{\mu}(C)>0} \frac{F_{0}(C)}{F_{\mu}(C)}$, being upper semicontinuous (see proof of Lemma A.1), attains its supremum $\widetilde{\kappa}$ on Ω^{c}. Observe that $\widetilde{\kappa}>\kappa^{*}$ must hold, otherwise we would have a contradiction with the definition of \mathcal{B}^{*}. Finally, we have:

$$
\begin{aligned}
\mathbb{P}[\widehat{\boldsymbol{\mu}} \notin \Omega] & \leq \mathbb{P}[\widehat{\boldsymbol{\mu}} \notin \Omega ; G(\widehat{\boldsymbol{\mu}}) \leq \widehat{G}(\widehat{\boldsymbol{\mu}})]+\mathbb{P}[G(\widehat{\boldsymbol{\mu}})>\widehat{G}(\widehat{\boldsymbol{\mu}})] \\
& \leq \mathbb{P}[\widehat{\kappa} \geq \widetilde{\kappa}]+\sum_{i=1}^{M} \delta_{i}
\end{aligned}
$$

where we have used that $\widehat{\kappa}=\widehat{G}(\widehat{\boldsymbol{\mu}})$ by definition, and the argument used in the proof of point (a). By point (b), the first probability converges to 0 as $\boldsymbol{\mu} \rightarrow \infty$. Thus, the probability that $\widehat{\boldsymbol{\mu}} \in \Omega$ must converge to 1 as $\boldsymbol{n} \rightarrow \infty$. This applies in particular to any open set of the form $\Omega_{\epsilon}:=\left\{\boldsymbol{\mu}: d\left(\boldsymbol{\mu}, \mathcal{B}^{*}\right)<\epsilon\right\}$, hence the conclusion.

B Proofs for Section 4

B. 1 Proof of Lemma 1

Suppose the first condition does not hold, so that

$$
\sum_{i \in I} \epsilon_{i} P_{i}=\alpha\left(\sum_{i \notin I} \epsilon_{i} P_{i}\right)+(1-\alpha) H .
$$

Then $\sum_{i} \gamma_{i} P_{i}=H$, where $\gamma_{i}=\frac{\epsilon_{i}}{1-\alpha}$ for $i \in I$, and $\gamma_{i}=-\frac{\alpha \epsilon_{i}}{1-\alpha}$ for $i \notin I$. Since $\sum_{i \notin I} \epsilon_{i}=1$, at least one $\gamma_{i}<0$, so the second condition is violated.

Now suppose the second condition is violated, say $\sum_{i} \gamma_{i} P_{i}=H$. Let $I=\left\{i \mid \gamma_{i} \geq\right.$ $0\}$, which has fewer than K elements by assumption. Since $\sum_{i} \gamma_{i}=1$, we also know $1 \leq|I|$ and further that $\Gamma:=\sum_{i \in I} \gamma_{i}>1$. A violation of the first condition is obtained by $\epsilon_{i}=\gamma_{i} / \Gamma$ for $i \in I, \epsilon_{i}=-\gamma_{i} /(\Gamma-1)$ for $i \notin I$ (noting that $\left.\sum_{i \notin I}\left(-\gamma_{i}\right)=\Gamma-1\right)$, and $\alpha=(\Gamma-1) / \Gamma$.

B. 2 Proof of Lemma 2

(a) \Rightarrow (b): Follows immediately from the definition of the residue.
(b) \Rightarrow (c): By assumption, there exists $\kappa>0$ such that $\boldsymbol{\pi}_{1}=\kappa \boldsymbol{e}_{1}+(1-\kappa) \boldsymbol{\eta}_{1}$, where $\boldsymbol{\eta}_{1}=\sum_{i=2}^{L} \mu_{i} \boldsymbol{\pi}_{i}$, with $\mu_{i} \geq 0$, for all $2 \leq i \leq L$. Thus,

$$
\boldsymbol{e}_{1}=\kappa^{-1} \boldsymbol{\pi}_{1}-\sum_{i=2}^{L} \frac{(1-\kappa)}{\kappa} \mu_{i} \boldsymbol{\pi}_{i}
$$

a similar relation holds for all rows. This implies that Π is invertible and allows to identify (for instance) the first row of Π^{-1} as $\left(\kappa^{-1},-\frac{(1-\kappa)}{\kappa} \mu_{2}, \ldots,-\frac{(1-\kappa)}{\kappa} \mu_{L}\right)$. This implies (c).
(c) \Rightarrow (a): Without loss of generality, consider $\ell=1$ and the problem of identifying $\kappa^{*}\left(\pi_{1} \mid\left(\pi_{i}\right)_{2 \leq i \leq L}\right)$, and the associated residue (if it exists). According to characterization (9), this corresponds to the optimization problem

$$
\max _{\boldsymbol{\nu}, \gamma} \sum_{i=2}^{L} \nu_{i} \text { s.t. } \boldsymbol{\pi}_{1}=\left(1-\sum_{i \geq 2} \nu_{i}\right) \gamma+\sum_{i \geq 2} \nu_{i} \boldsymbol{\pi}_{i}
$$

over $\gamma \in S_{L}$ and $\boldsymbol{\nu}=\left(\nu_{2}, \ldots, \nu_{L}\right) \in \Delta_{L-1}=\left\{\left(\nu_{2}, \ldots, \nu_{L}\right) \mid \nu_{i} \geq 0 ; \sum_{i=2}^{L} \nu_{i} \leq 1\right\}$.

We now reformulate this problem. First, note that the constraint implies that admissible $\boldsymbol{\nu}$ are such that $\sum_{i \geq 2} \nu_{i}<1$, otherwise we would have a linear relation between the π_{i}, contradicting invertibility of Π.

Then for an admissible $\boldsymbol{\nu}$, denote $\boldsymbol{\eta}(\boldsymbol{\nu}):=\left(1-\sum_{i \geq 2} \nu_{i}\right)^{-1}\left(1,-\nu_{2}, \ldots,-\nu_{L}\right)$. Observe that the constraint of the optimization problem is equivalent to $\Pi^{T} \boldsymbol{\eta}=\gamma$, or $\boldsymbol{\eta}=\left(\Pi^{T}\right)^{-1} \boldsymbol{\gamma}$. The inverse mapping of $\boldsymbol{\eta}$ to $\boldsymbol{\nu}$ is $\boldsymbol{\nu}(\boldsymbol{\eta})=\eta_{1}^{-1}\left(-\eta_{2}, \ldots,-\eta_{L}\right)$, so that the objective of the optimization can be rewritten as

$$
-\frac{\sum_{i=2}^{L} \eta_{i}}{\boldsymbol{e}_{1}^{T} \boldsymbol{\eta}}=-\frac{\mathbf{1}^{T} \boldsymbol{\eta}}{\boldsymbol{e}_{1}^{T} \boldsymbol{\eta}}+1=1-\frac{1}{\boldsymbol{e}_{1}^{T} \boldsymbol{\eta}}=1-\frac{1}{\boldsymbol{e}_{1}^{T}\left(\Pi^{T}\right)^{-1} \boldsymbol{\gamma}},
$$

where 1 denotes a L-dimensional vector with all coordinates equal to 1 . So finding the point of maximum of the above problem is equivalent to the program

$$
\max _{\boldsymbol{\gamma} \in S_{L}} \boldsymbol{e}_{1}^{T}\left(\Pi^{T}\right)^{-1} \gamma \text { s.t. } \boldsymbol{\nu}\left(\left(\Pi^{T}\right)^{-1} \gamma\right) \in \Delta_{L-1}
$$

The above objective function has the form $\boldsymbol{a}^{T} \gamma$, where \boldsymbol{a} is the first column of Π^{-1} which, by assumption, has its first coordinate positive and the others nonpositive. Therefore, the unconstrainted maximum over $\gamma \in S_{M}$ is attained uniquely for $\gamma=$ e_{1}. We now check that this value also satisfies the required constraint. Observe that $\left(\Pi^{T}\right)^{-1} \boldsymbol{e}_{1}$ is the (transpose of) the first row of Π^{-1}, denote this vector as $\boldsymbol{b}=$ $\left(b_{1}, \ldots, b_{L}\right)$. We want to ensure that $\boldsymbol{\nu}(\boldsymbol{b})=b_{1}^{-1}\left(-b_{2}, \ldots,-b_{L}\right) \in \Delta_{L-1}$. By assumption, b has its first coordinate positive and the others nonpositive, ensuring all components of $\boldsymbol{\nu}(\boldsymbol{b})$ are nonnegative. Furthermore, the sum of the components of $\boldsymbol{\nu}(\boldsymbol{b})$ is

$$
\sum_{i=2}^{L}-\frac{b_{i}}{b_{1}}=1-\frac{\sum_{i=1}^{L} b_{i}}{b_{1}}=1-\frac{1}{b_{1}} \leq 1 ;
$$

the last equality is because the rows of Π^{-1} sum to 1 (since Π is a stochastic matrix, so is its inverse). It follows that $\boldsymbol{\nu}\left(\left(\Pi^{T}\right)^{-1} e_{1}\right) \in \Delta_{L-1}$. Thus, the unique maximum of the optimization problem is attained for $\gamma=e_{1}$, establishing (a).

B. 3 Proof of Proposition 3

We start with the following Lemma:
Lemma B.1. If Π is recoverable, then $\boldsymbol{\pi}_{1}, \ldots, \boldsymbol{\pi}_{L}$ are linearly independent. If P_{1}, \ldots, P_{L} are jointly irreducible, then they are linearly independent. If π_{1}, \ldots, π_{L} are linearly independent and P_{1}, \ldots, P_{L} are linearly independent, then $\tilde{P}_{1}, \ldots, \tilde{P}_{L}$ are linearly independent.

Proof of the lemma: The first statement follows from characterization (c) of Lemma 2: if Π is recoverable, it is invertible and thus has full rank.

For the second statement, suppose $\sum_{i} \beta_{i} P_{i}=0$ is a nontrivial linear relation. Let j be any index such that $\beta_{j} \geq 0$. Then $\sum_{i} \gamma_{i} P_{i}=P_{j}$, where $\gamma_{i}=\beta_{i}$ if $i \neq j$, and $\gamma_{j}=\beta_{j}+1$. Since at least one $\beta_{i}<0, i \neq j$, joint irreducibility is violated.

For the third part, suppose $\sum_{i} \alpha_{i} \tilde{P}_{i}=0$. Since $\tilde{P}_{i}=\boldsymbol{\pi}_{i}^{T} \boldsymbol{P}$, this implies $\sum_{i} \alpha_{i} \boldsymbol{\pi}_{i}^{T} \boldsymbol{P}=$ 0 , which implies $\sum_{i} \alpha_{i} \boldsymbol{\pi}_{i}=\mathbf{0}$, which implies $\alpha_{i}=0$.

Proof of Proposition 3: Consider $\ell=1$, the other cases being similar. Suppose G is such that

$$
\begin{equation*}
\tilde{P}_{1}=\left(1-\sum_{j \geq 2} \nu_{j}\right) G+\sum_{j \geq 2} \nu_{j} \tilde{P}_{j} \tag{S.6}
\end{equation*}
$$

Note that $\tilde{P}_{1}, \ldots, \tilde{P}_{L}$ are linearly independent by Lemma B.1. This implies $\sum_{j \geq 2} \nu_{j}<$ 1, because otherwise $\tilde{P}_{1}=\sum_{j \geq 2} \nu_{j} \tilde{P}_{j}$.

Therefore, any G satisfying (S.6) has the form $\sum_{i=1}^{L} \gamma_{i} P_{i}$. The weights γ_{i} clearly sum to one, and by joint irreducibility, they are nonnegative. That is, $\gamma:=\left[\gamma_{1}, \ldots, \gamma_{L}\right]^{T}$ is a discrete distribution. Thus, Eqn. (S.6) is equivalent to

$$
\boldsymbol{\pi}_{1}^{T} \boldsymbol{P}=\left(1-\sum_{j \geq 2} \nu_{j}\right) \boldsymbol{\gamma}^{T} \boldsymbol{P}+\sum_{j \geq 2} \nu_{j} \boldsymbol{\pi}_{j}^{T} \boldsymbol{P}
$$

By linear independence of P_{1}, \ldots, P_{L} (see Lemma B.1) and taking the transpose, this gives

$$
\boldsymbol{\pi}_{1}=\left(1-\sum_{j \geq 2} \nu_{j}\right) \gamma+\sum_{j \geq 2} \nu_{j} \boldsymbol{\pi}_{j}
$$

Therefore $\kappa^{*}\left(\tilde{P}_{1} \mid\left\{\tilde{P}_{j}, j \neq 1\right\}\right)=\kappa^{*}\left(\boldsymbol{\pi}_{1} \mid\left\{\boldsymbol{\pi}_{j}, j \neq 1\right\}\right)<1$, and there is a one-toone correspondence between feasible G in the definition of $\kappa^{*}\left(\tilde{P}_{1} \mid\left\{\tilde{P}_{j}, j \neq 1\right\}\right)$ and feasible γ in the definition of $\kappa^{*}\left(\boldsymbol{\pi}_{1} \mid\left\{\boldsymbol{\pi}_{j}, j \neq 1\right\}\right)$. Since Π is recoverable, the residue of $\boldsymbol{\pi}_{1}$ w.r.t. $\left\{\boldsymbol{\pi}_{j}, j \neq 1\right\}$ is $\boldsymbol{\gamma}=\boldsymbol{e}_{1}$, and so the residue of \tilde{P}_{1} w.r.t. $\left\{\tilde{P}_{j}, j \neq 1\right\}$ is $G=\boldsymbol{e}_{1}^{T} \boldsymbol{P}=P_{1}$.

To see uniqueness of the maximizing ν_{j}, suppose

$$
\tilde{P}_{1}=\left(1-\kappa^{*}\right) G+\sum_{j \geq 2} \nu_{j} \tilde{P}_{j}=\left(1-\kappa^{*}\right) G+\sum_{j \geq 2} \nu_{j}^{\prime} \tilde{P}_{j} .
$$

Lemma B. 1 implies $\nu_{j}=\nu_{j}^{\prime}$.

B. 4 Proof of Proposition 4

For brevity we at times omit the dependence of the errors and their estimates on f. For any f,

$$
\begin{aligned}
& \left|R_{\ell}(f)-\widehat{R}_{\ell}(f)\right|=\left|\frac{\tilde{R}_{\ell \ell}-\sum_{j \neq \ell} \nu_{\ell j} \tilde{R}_{j \ell}}{1-\kappa_{\ell}}-\frac{\widehat{\tilde{R}}_{\ell \ell}-\sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widehat{\widetilde{R}}_{j \ell}}{1-\widehat{\kappa}_{\ell}}\right| \\
& \leq\left|\frac{\tilde{R}_{\ell \ell}-\sum_{j \neq \ell} \nu_{\ell j} \tilde{R}_{j \ell}}{1-\kappa_{\ell}}-\frac{\hat{\tilde{R}}_{\ell \ell}-\sum_{j \neq \ell} \widehat{\widehat{\nu}}_{\ell j} \widehat{\tilde{R}}_{j \ell}}{1-\kappa_{\ell}}\right| \\
& +\left|\frac{\hat{\tilde{R}}_{\ell \ell}-\sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widehat{\tilde{R}}_{j \ell}}{1-\kappa_{\ell}}-\frac{\widehat{\tilde{R}}_{\ell \ell}-\sum_{j \neq \ell} \widehat{\widehat{\nu}}_{\ell j} \widehat{\tilde{R}}_{j \ell}}{1-\widehat{\kappa}_{\ell}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\left|\tilde{R}_{\ell \ell}-\widehat{\tilde{R}}_{\ell \ell}\right|+\sum_{j \neq \ell}\left|\nu_{\ell j} \tilde{R}_{j \ell}-\widehat{\nu}_{\ell j} \widehat{\tilde{R}}_{j \ell}\right|}{1-\kappa_{\ell}}+\left|\frac{1}{1-\kappa_{\ell}}-\frac{1}{1-\widehat{\kappa}_{\ell}}\right| \\
& =\frac{\left|\tilde{R}_{\ell \ell}-\widehat{\tilde{R}}_{\ell \ell}\right|+\sum_{j \neq \ell}\left(\left|\nu_{\ell j} \tilde{R}_{j \ell}-\widehat{\nu}_{\ell j} \tilde{R}_{j \ell}+\widehat{\nu}_{\ell j} \tilde{R}_{j \ell}-\widehat{\nu}_{\ell j} \widehat{\tilde{R}}_{j \ell}\right|\right)}{1-\kappa_{\ell}} \\
& \quad+\left|\frac{1}{1-\kappa_{\ell}}-\frac{1}{1-\widehat{\kappa}_{\ell}}\right| \\
& \leq \frac{\left|\tilde{R}_{\ell \ell}-\widehat{\tilde{R}}_{\ell \ell}\right|+\sum_{j \neq \ell}\left(\left|\nu_{\ell j}-\widehat{\nu}_{\ell j}\right|+\left|\tilde{R}_{j \ell}-\widehat{\tilde{R}}_{j \ell}\right|\right)}{1-\kappa_{\ell}}+\left|\frac{1}{1-\kappa_{\ell}}-\frac{1}{1-\widehat{\kappa}_{\ell}}\right|
\end{aligned}
$$

The VC inequality [1] implies that for any $\epsilon>0, \sup _{f \in \mathcal{F}_{k(n)}}\left|R_{i \ell}(f)-\widehat{R}_{i \ell}(f)\right| \leq \epsilon$ with probability tending to 1 , since (12) holds, and by our convention for multiclass VC dimension. Noting that $\kappa_{\ell}<1$ by Proposition 3, the other terms tend to zero in probability by consistency of $\widehat{\kappa}_{\ell}$ and the $\widehat{\nu}_{\ell j}$. This completes the proof.

B. 5 Proof of Theorem 1

Consider the decomposition into estimation and approximation errors,

$$
R(\widehat{f})-R^{*}=R(\widehat{f})-\inf _{f \in \mathcal{F}_{k(\boldsymbol{n})}} R(f)+\inf _{f \in \mathcal{F}_{k(\boldsymbol{n})}} R(f)-R^{*} .
$$

The approximation error converges to zero by $\mathbf{P 3}$ and since $k(\boldsymbol{n}) \rightarrow \infty$. To analyze the estimation error, let $\epsilon>0$. For each positive integer k, let $f_{k}^{*} \in \mathcal{F}_{k}$ such that $R\left(f_{k}^{*}\right) \leq \inf _{f \in \mathcal{F}_{k}} R(f)+\frac{\epsilon}{4}$. Then

$$
\begin{aligned}
R(\widehat{f})-\inf _{f \in \mathcal{F}_{k(\boldsymbol{n})}} R(f) & =R\left(\widehat{f}_{k(\boldsymbol{n})}\right)-\inf _{f \in \mathcal{F}_{k(\boldsymbol{n})}} R(f) \\
& \leq R\left(\widehat{f}_{k(\boldsymbol{n})}\right)-R\left(f_{k(\boldsymbol{n})}^{*}\right)+\frac{\epsilon}{4} \\
& \leq \widehat{R}\left(\widehat{f}_{k(\boldsymbol{n})}\right)-\widehat{R}\left(f_{k(\boldsymbol{n})}^{*}\right)+\frac{\epsilon}{2}
\end{aligned}
$$

(with probability tending to 0 , by Proposition 4)
$\leq \tau_{k(\boldsymbol{n})}+\frac{\epsilon}{2}$
$\leq \epsilon$
where the last step holds for \boldsymbol{n} sufficiently large. The result now follows.

References

[1] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.

