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A Proofs for Section 3

A.1 κ∗ and κ̂ are well-defined
Lemma A.1. The maximum operation in the definition of κ∗ and κ̂ is well-defined, that
is, the outside supremum is attained at at least one point.

We prove the statement for

κ∗ = max
µ

inf
C∈C:Fµ(C)>0

F0(C)
Fµ(C)

.

The argument for κ̂ is similar. Denote G(µ) = κ∗(F0|Fµ) = infC∈C:Fµ(C)>0
F0(C)
Fµ(C)

the maximum proportion of the mixture Fµ in the distribution F0.
We argue that G is an upper semicontinuous function. To see this, define for each

C ∈ C the function gC : SM → [0,∞] as

gC(µ) :=

{
F0(C)
Fµ(C) if Fµ(C) > 0 ;

+∞ if Fµ(C) = 0.

Then fC is an upper semicontinuous function: if µ ∈ SM is such that Fµ(C) > 0,
then fC is continuous at point µ. Otherwise, fC(µ) = ∞ and fC is trivially upper
semicontinuous at point µ. Clearly, one has G(µ) = infC∈C fC(µ) ; as an infimum of
upper semicontinuous functions, it is itself upper semicontinuous, and therefore attains
its maximum on the compact set SM .

A.2 Proof of Proposition 2
Point (a): We apply condition P1 for all k, i with δk,i = cδi/k

2. By the union bound,
with probability at least 1 −

∑M
i=0 δi, it holds simultaneously for all k ≥ 1 and i =

0, . . . ,M that

∀k ≥ 1 , ∀i ∈ {0, . . . ,M} : sup
C∈Ck

∣∣∣Fi(C)− F̂i(C)
∣∣∣ ≤ εki (cδik−2) (S.1)
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Recall the notation (from the proof of Lemma A.1) G(µ) = infC∈C:Fµ(C)>0
F0(C)
Fµ(C)

and introduce

Ĝ(µ) := inf
k

inf
C∈Ck

F̂0(C) + εk0(cδ0k−2)(
F̂µ(C)−

∑
i νiε

k
i (cδik−2)

)
+

.

Observe that when (S.1) is satisfied, this implies that for all µ ∈ SM , one has G(µ) ≤
Ĝ(µ). Taking the maximum over µ yields the first point.

Point (b): let ε > 0 be an arbitrary positive constant. For any µ ∈ SM , let Cµ ∈ C
with Fµ(Cµ) > 0 be such that F0(Cµ)

Fµ(Cµ) ≤ κ
∗ + ε/4.

By continuity of the function µ 7→ Fµ(C) for any fixed C, there exists for each
µ ∈ SM an open neighborhood Nµ of µ for which both of the following conditions
are realized for all µ′ ∈ Nµ:

F0(Cµ)
Fµ′(Cµ)

≤ κ∗ +
ε

2
, (S.2)

and Fµ′(Cµ) ≥ 1
2
Fµ(Cµ). (S.3)

(For the second condition, we have used the fact that Fµ(Cµ) > 0). By compactness
of SM , there exists a finite subset SεM of SM such that (Nµ)µ∈SεM covers SM .

Denote F εmin := 1
2 minµ∈SεM Fµ(Cµ) ; it is a positive quantity since Fµ(Cµ) > 0

for any µ, and SεM is finite. For each µ ∈ SM , denote ζ(µ) an arbitrary element of the
finite net SεM such that µ ∈ Nζ(µ). By property (S.2), we have

sup
µ∈SM

F0(Cζ(µ))
Fµ(Cζ(µ))

≤ max
µ∈SεM

sup
µ′∈Nµ

F0(Cµ)
Fµ′(Cµ)

≤ κ∗ +
ε

2
, (S.4)

and by property (S.3):

inf
µ∈SM

Fµ(Cζ(µ)) ≥ min
µ∈SεM

inf
µ′∈Nµ

Fµ′(Cµ) ≥ F εmin. (S.5)

Denote Cε := {Cµ , µ ∈ SεM}. Let η ∈ (0, F εmin/2) be another arbitrary positive
constant. Consider the distribution Q = 1

M+1

∑M
i=0 Fi, to which we apply condition

P2. This entails that for each individual C ∈ C there exists a kC and C̃ ∈ CkC with

Q(C∆C̃) ≤ η

M + 1
,

implying for all i ∈ {0, . . . ,M}:∣∣∣Fi(C)− Fi(C̃)
∣∣∣ ≤ Fi(C∆C̃) ≤ (M + 1)Q(C∆C̃) ≤ η,

and then also for all µ ∈ SM :∣∣∣Fµ(C̃)− Fµ(C)
∣∣∣ ≤ M∑

i=1

µi

∣∣∣Fi(C)− Fi(Ĉ)
∣∣∣ ≤ η.
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In what follows we use the shortened notation εki ≡ εki (cδik−2), and further define
ε(ε, η) := maxi maxC∈Cε ε

kC
i . For fixed (ε, η), the quantity ε(ε, η) is defined as a

maximum of a finite number of functions decreasing to 0 as n → ∞, and therefore
ε also decreases to zero. Below, we assume that all components of n are chosen big
enough so that F εmin − η − 2ε(ε, η) > 0. It holds with probability 1−

∑M
i=0 δi that

κ̂ ≤ sup
µ∈SM

inf
k

inf
C∈Ck

F0(C) + 2εk0(
Fµ(C)− 2

∑
i µiε

k
i

)
+

≤ sup
µ∈SM

inf
C∈C

F0(C̃) + 2εkC0(
Fµ(C̃)− 2

∑
i µiε

kC
i

)
+

≤ sup
µ∈SM

inf
C∈C

F0(C) + η + 2εkC0(
Fµ(C)− η − 2

∑
i µiε

kC
i

)
+

≤ sup
µ∈SM

F0(Cζ(µ)) + η + 2ε
kCζ(µ)
0(

Fµ(Cζ(µ))− η − 2
∑
i µiε

kCζ(µ)
i

)
+

≤ sup
µ∈SM

F0(Cζ(µ)) + η + 2ε(ε, η)(
Fµ(Cζ(µ))− η − 2ε(ε, η)

)
+

≤

(
sup
µ∈SM

Fµ(Cζ(µ))(
Fµ(Cζ(µ))− η − 2ε(ε, η)

)
+

)
sup
µ∈SM

F0(Cζ(µ)) + η + 2ε(ε, η)
Fµ(Cζ(µ))

≤

(
F εmin

(F εmin − η − 2ε(ε, η))+

)(
sup
µ∈SM

F0(Cζ(µ))
Fµ(Cζ(µ))

+ sup
µ∈SM

η + 2ε(ε, η)
Fµ(Cζ(µ))

)

≤

(
F εmin

(F εmin − η − 2ε(ε, η))+

)(
κ∗ +

ε

2

)
+

η + 2ε(ε, η)
(F εmin − η − 2ε(ε, η))+

,

where we have used (S.4) and (S.5) for the last inequality. By choosing first η small
enough, then all components of n0 big enough, the r.h.s. of the above inequality can
be made smaller than κ∗ + ε, for all n � n0 (� indicates the inequality holds for
all components). Since

∑M
i=0 δi → 0 as µ → 0, this implies the second part of the

proposition.
For the last point of the proposition, consider an arbitrary open set Ω containing

the set B∗. Then Ωc := SM \ Ω is a compact set; therefore, the function G(µ) :=
infC∈C,Fµ(C)>0

F0(C)
Fµ(C) , being upper semicontinuous (see proof of Lemma A.1), attains

its supremum κ̃ on Ωc. Observe that κ̃ > κ∗ must hold, otherwise we would have a
contradiction with the definition of B∗. Finally, we have:

P [µ̂ 6∈ Ω] ≤ P
[
µ̂ 6∈ Ω;G(µ̂) ≤ Ĝ(µ̂)

]
+ P

[
G(µ̂) > Ĝ(µ̂)

]
≤ P [κ̂ ≥ κ̃] +

M∑
i=1

δi,
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where we have used that κ̂ = Ĝ(µ̂) by definition, and the argument used in the proof
of point (a). By point (b), the first probability converges to 0 as µ → ∞. Thus, the
probability that µ̂ ∈ Ω must converge to 1 as n→∞. This applies in particular to any
open set of the form Ωε := {µ : d(µ,B∗) < ε}, hence the conclusion.

B Proofs for Section 4

B.1 Proof of Lemma 1
Suppose the first condition does not hold, so that

∑
i∈I

εiPi = α

(∑
i/∈I

εiPi

)
+ (1− α)H.

Then
∑
i γiPi = H , where γi = εi

1−α for i ∈ I , and γi = − αεi
1−α for i /∈ I . Since∑

i/∈I εi = 1, at least one γi < 0, so the second condition is violated.
Now suppose the second condition is violated, say

∑
i γiPi = H . Let I = {i | γi ≥

0}, which has fewer than K elements by assumption. Since
∑
i γi = 1, we also know

1 ≤ |I| and further that Γ :=
∑
i∈I γi > 1. A violation of the first condition is obtained

by εi = γi/Γ for i ∈ I , εi = −γi/(Γ− 1) for i /∈ I (noting that
∑
i/∈I(−γi) = Γ− 1),

and α = (Γ− 1)/Γ.

B.2 Proof of Lemma 2
(a)⇒ (b): Follows immediately from the definition of the residue.

(b) ⇒ (c): By assumption, there exists κ > 0 such that π1 = κe1 + (1 − κ)η1,
where η1 =

∑L
i=2 µiπi, with µi ≥ 0, for all 2 ≤ i ≤ L. Thus,

e1 = κ−1π1 −
L∑
i=2

(1− κ)
κ

µiπi ;

a similar relation holds for all rows. This implies that Π is invertible and allows to
identify (for instance) the first row of Π−1 as (κ−1,− (1−κ)

κ µ2, . . . ,− (1−κ)
κ µL). This

implies (c).
(c)⇒ (a): Without loss of generality, consider ` = 1 and the problem of identifying

κ∗(π1|(πi)2≤i≤L), and the associated residue (if it exists). According to characteriza-
tion (9), this corresponds to the optimization problem

max
ν,γ

L∑
i=2

νi s.t. π1 = (1−
∑
i≥2

νi)γ +
∑
i≥2

νiπi,

over γ ∈ SL and ν = (ν2, . . . , νL) ∈ ∆L−1 =
{

(ν2, . . . , νL)|νi ≥ 0;
∑L
i=2 νi ≤ 1

}
.
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We now reformulate this problem. First, note that the constraint implies that admis-
sible ν are such that

∑
i≥2 νi < 1, otherwise we would have a linear relation between

the πi, contradicting invertibility of Π.
Then for an admissible ν, denote η(ν) := (1 −

∑
i≥2 νi)

−1(1,−ν2, . . . ,−νL).
Observe that the constraint of the optimization problem is equivalent to ΠTη = γ, or
η = (ΠT )−1γ. The inverse mapping of η to ν is ν(η) = η−1

1 (−η2, . . . ,−ηL), so that
the objective of the optimization can be rewritten as

−
∑L
i=2 ηi

eT1 η
= −1Tη

eT1 η
+ 1 = 1− 1

eT1 η
= 1− 1

eT1 (ΠT )−1γ
,

where 1 denotes a L-dimensional vector with all coordinates equal to 1. So finding the
point of maximum of the above problem is equivalent to the program

max
γ∈SL

eT1 (ΠT )−1γ s.t. ν((ΠT )−1γ) ∈ ∆L−1

The above objective function has the form aTγ, where a is the first column of Π−1

which, by assumption, has its first coordinate positive and the others nonpositive.
Therefore, the unconstrainted maximum over γ ∈ SM is attained uniquely for γ =
e1. We now check that this value also satisfies the required constraint. Observe
that (ΠT )−1e1 is the (transpose of) the first row of Π−1, denote this vector as b =
(b1, . . . , bL). We want to ensure that ν(b) = b−1

1 (−b2, . . . ,−bL) ∈ ∆L−1. By as-
sumption, b has its first coordinate positive and the others nonpositive, ensuring all
components of ν(b) are nonnegative. Furthermore, the sum of the components of ν(b)
is

L∑
i=2

− bi
b1

= 1−
∑L
i=1 bi
b1

= 1− 1
b1
≤ 1;

the last equality is because the rows of Π−1 sum to 1 (since Π is a stochastic matrix,
so is its inverse). It follows that ν((ΠT )−1e1) ∈ ∆L−1. Thus, the unique maximum
of the optimization problem is attained for γ = e1, establishing (a).

B.3 Proof of Proposition 3
We start with the following Lemma:

Lemma B.1. If Π is recoverable, thenπ1, . . . ,πL are linearly independent. IfP1, . . . , PL
are jointly irreducible, then they are linearly independent. If π1, . . . ,πL are linearly
independent and P1, . . . , PL are linearly independent, then P̃1, . . . , P̃L are linearly
independent.

Proof of the lemma: The first statement follows from characterization (c) of Lemma 2:
if Π is recoverable, it is invertible and thus has full rank.

For the second statement, suppose
∑
i βiPi = 0 is a nontrivial linear relation. Let

j be any index such that βj ≥ 0. Then
∑
i γiPi = Pj , where γi = βi if i 6= j, and

γj = βj + 1. Since at least one βi < 0, i 6= j, joint irreducibility is violated.
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For the third part, suppose
∑
i αiP̃i = 0. Since P̃i = πTi P , this implies

∑
i αiπ

T
i P =

0, which implies
∑
i αiπi = 0, which implies αi = 0.

Proof of Proposition 3: Consider ` = 1, the other cases being similar. Suppose G
is such that

P̃1 = (1−
∑
j≥2

νj)G+
∑
j≥2

νjP̃j . (S.6)

Note that P̃1, . . . , P̃L are linearly independent by Lemma B.1. This implies
∑
j≥2 νj <

1, because otherwise P̃1 =
∑
j≥2 νjP̃j .

Therefore, any G satisfying (S.6) has the form
∑L
i=1 γiPi. The weights γi clearly

sum to one, and by joint irreducibility, they are nonnegative. That is, γ := [γ1, . . . , γL]T

is a discrete distribution. Thus, Eqn. (S.6) is equivalent to

πT1 P = (1−
∑
j≥2

νj)γTP +
∑
j≥2

νjπ
T
j P .

By linear independence of P1, . . . , PL (see Lemma B.1) and taking the transpose, this
gives

π1 = (1−
∑
j≥2

νj)γ +
∑
j≥2

νjπj .

Therefore κ∗(P̃1|{P̃j , j 6= 1}) = κ∗(π1|{πj , j 6= 1}) < 1, and there is a one-to-
one correspondence between feasible G in the definition of κ∗(P̃1|{P̃j , j 6= 1}) and
feasible γ in the definition of κ∗(π1|{πj , j 6= 1}). Since Π is recoverable, the residue
of π1 w.r.t. {πj , j 6= 1} is γ = e1, and so the residue of P̃1 w.r.t. {P̃j , j 6= 1} is
G = eT1 P = P1.

To see uniqueness of the maximizing νj , suppose

P̃1 = (1− κ∗)G+
∑
j≥2

νjP̃j = (1− κ∗)G+
∑
j≥2

ν′jP̃j .

Lemma B.1 implies νj = ν′j .

B.4 Proof of Proposition 4
For brevity we at times omit the dependence of the errors and their estimates on f . For
any f ,

|R`(f)− R̂`(f)| =

∣∣∣∣∣∣ R̃`` −
∑
j 6=` ν`jR̃j`

1− κ`
−
̂̃R`` −∑j 6=` ν̂`j

̂̃Rj`
1− κ̂`

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ R̃`` −
∑
j 6=` ν`jR̃j`

1− κ`
−
̂̃R`` −∑j 6=` ν̂`j

̂̃Rj`
1− κ`

∣∣∣∣∣∣
+

∣∣∣∣∣∣
̂̃R`` −∑j 6=` ν̂`j

̂̃Rj`
1− κ`

−
̂̃R`` −∑j 6=` ν̂`j

̂̃Rj`
1− κ̂`

∣∣∣∣∣∣
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≤
|R̃`` − ̂̃R``|+∑j 6=` |ν`jR̃j` − ν̂`j

̂̃Rj`|
1− κ`

+
∣∣∣∣ 1
1− κ`

− 1
1− κ̂`

∣∣∣∣
=
|R̃`` − ̂̃R``|+∑j 6=`

(
|ν`jR̃j` − ν̂`jR̃j` + ν̂`jR̃j` − ν̂`j ̂̃Rj`|)

1− κ`

+
∣∣∣∣ 1
1− κ`

− 1
1− κ̂`

∣∣∣∣
≤
|R̃`` − ̂̃R``|+∑j 6=`

(
|ν`j − ν̂`j |+ |R̃j` − ̂̃Rj`|)

1− κ`
+
∣∣∣∣ 1
1− κ`

− 1
1− κ̂`

∣∣∣∣ .
The VC inequality [1] implies that for any ε > 0, supf∈Fk(n)

|Ri`(f)−R̂i`(f)| ≤ ε
with probability tending to 1, since (12) holds, and by our convention for multiclass
VC dimension. Noting that κ` < 1 by Proposition 3, the other terms tend to zero in
probability by consistency of κ̂` and the ν̂`j . This completes the proof.

B.5 Proof of Theorem 1
Consider the decomposition into estimation and approximation errors,

R(f̂)−R∗ = R(f̂)− inf
f∈Fk(n)

R(f) + inf
f∈Fk(n)

R(f)−R∗.

The approximation error converges to zero by P3 and since k(n) → ∞. To analyze
the estimation error, let ε > 0. For each positive integer k, let f∗k ∈ Fk such that
R(f∗k ) ≤ inff∈Fk R(f) + ε

4 . Then

R(f̂)− inf
f∈Fk(n)

R(f) = R(f̂k(n))− inf
f∈Fk(n)

R(f)

≤ R(f̂k(n))−R(f∗k(n)) +
ε

4
≤ R̂(f̂k(n))− R̂(f∗k(n)) +

ε

2
(with probability tending to 0, by Proposition 4)

≤ τk(n) +
ε

2
≤ ε

where the last step holds for n sufficiently large. The result now follows.
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