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Abstract

We give theorem statements and proofs for some of the claims in the paper. See also Carreira-Perpiñán
and Wang (2012).

1 Definitions

Consider a regression problem of mapping inputs x to outputs y (both high-dimensional) with a deep net
f(x) given a dataset of N pairs (xn,yn). We define the nested objective function to learn a deep net with K
hidden layers, like that in fig. 1 of the paper, as (to simplify notation, we ignore bias parameters and assume
each hidden layer has H units):

E1(W) =
1

2

N
∑

n=1

‖yn − f(xn;W)‖2 f(x;W) = fK+1(. . . f2(f1(x;W1);W2) . . . ;WK+1) (1)

where each layer function has the form fk(x;Wk) = σ(Wkx), i.e., a linear mapping followed by a squashing
nonlinearity (σ(t) applies a scalar function, such as the sigmoid 1/(1+e−t), elementwise to a vector argument,
with output in [0, 1]).

In the method of auxiliary coordinates (MAC), we introduce one auxiliary variable per data point and per
hidden unit (so Z = (Z1, . . . ,ZN ), with zn = (z1,n, . . . , zK,n)) and define the following equality-constrained
optimization problem:

E(W,Z) =
1

2

N
∑

n=1

‖yn − fK+1(zK,n;WK+1)‖
2
s.t.

{

zK,n = fK(zK−1,n;WK)
. . .
z1,n = f1(xn;W1)

}

n = 1, . . . , N. (2)

Sometimes, for notational convenience (in particular in theorem 3.3), we will write the constraints for the
nth point as a single vector constraint zn − F(zn,W;xn) = 0 (with an obvious definition for F). We will
also call Ω the feasible set of the MAC-constrained problem, i.e.,

Ω = {(W,Z): zn = F(zn,W;xn), n = 1, . . . , N}. (3)

To solve the constrained problem (2) using the quadratic-penalty (QP) method (Nocedal and Wright,
2006), we optimize the following function over (W,Z) for fixed µ > 0 and drive µ → ∞:

EQ(W,Z;µ) =
1

2

N
∑

n=1

‖yn − fK+1(zK,n;WK+1)‖
2
+

µ

2

N
∑

n=1

K
∑

k=1

‖zk,n − fk(zk−1,n;Wk)‖
2
. (4)

2 Equivalence of the MAC and nested formulations

First, we give a theorem that holds under very general assumptions. In particular, it does not require the
functions to be smooth, it holds for any loss function beyond the least-squares one, and it holds if the nested
problem is itself subject to constraints.
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Theorem 2.1. The nested problem (1) and the MAC-constrained problem (2) are equivalent in the sense
that their minimizers are in a one-to-one correspondence.

Proof. Let us prove that any minimizer of the nested problem is associated with a unique minimizer of the
MAC-constrained problem (⇒), and vice versa (⇐). Recall the following definitions (Nocedal and Wright,
2006): (i) For an unconstrained minimization problem minx∈Rn F (x), x∗ ∈ R

n is a local minimizer if there
exists a nonempty neighborhood N ⊂ R

n of x∗ such that F (x∗) ≤ F (x) ∀x ∈ N . (ii) For a constrained
minimization problem minF (x) s.t. x ∈ Ω ⊂ R

n, x∗ ∈ R
n is a local minimizer if x∗ ∈ Ω and there exists a

nonempty neighborhood N ⊂ R
n of x∗ such that F (x∗) ≤ F (x) ∀x ∈ N ∩ Ω.

Define the “forward-propagation” function g(W) as the result of mapping z1,n = f1(xn;W1), . . . , zK,n =
fK(zK−1,n;WK) for n = 1, . . . , N . This maps each W to a unique Z, and satisfies fK+1(zK,n;WK+1) =
fK+1(. . . f2(f1(xn;W1);W2) . . . ;WK+1) = f(xn;W) for n = 1, . . . , N , and therefore that E1(W) = E(W,g(W))
for any W.

(⇒) Let W∗ be a local minimizer of the nested problem (1). Then, there exists a nonempty neighborhood
N of W∗ such that E1(W

∗) ≤ E1(W) ∀W ∈ N . Let Z∗ = g(W∗) and call M = {(W,Z): W ∈ N and Z =
g(W)}, which is a nonempty neighborhood of (W∗,Z∗) in (W,Z)-space. Now, for any (W,Z) ∈ M∩N we
have that E(W,Z) = E(W,g(W)) = E1(W) ≥ E1(W

∗) = E(W∗,g(W∗)) = E(W∗,Z∗). Hence (W∗,Z∗)
is a local minimizer of the MAC-constrained problem.

(⇐) Let (W∗,Z∗) be a local minimizer of the MAC-constrained problem (2). Then, there exists a
nonempty neighborhood M of (W∗,Z∗) such that E(W∗,Z∗) ≤ E(W,Z) ∀(W,Z) ∈ M ∩ Ω. Note that
(W,Z) ∈ M ∩ Ω ⇒ Z = g(W) ⇒ E(W,Z) = E1(W), and this applies in particular to (W∗,Z∗) (which,
being a solution, is feasible and thus belongs to M∩Ω). Calling N = {W: (W,Z) ∈ M∩Ω}, we have that
∀W ∈ N : E1(W) = E(W,g(W)) = E(W,Z) ≥ E(W∗,Z∗) = E(W∗,g(W∗)) = E1(W

∗). Hence W∗ is a
local minimizer of the nested problem.

Finally, one can see that the proof holds if the nested problem uses a loss function that is not the
least-squares one, and if the nested problem is itself subject to constraints.

Obviously, the theorem holds if we exchange ≥ with > everywhere (thus exchanging non-strict with
strict minimizers), and if we exchange “min” with “max” (hence the maximizers of the MAC and nested
formulations are in a one-to-one correspondence as well). Figure 1 illustrates the theorem. Essentially, the
nested objective function E1(W) stretches along the manifold defined by (W,Z = g(W)) preserving the
minimizers and maximizers. The projection on W-space of the part of E(W,Z) that sits on top of that
manifold recovers E1(W).
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Figure 1: Illustration of the equivalence between the nested and MAC-constrained problems (see the proof
of theorem 2.1). The MAC objective function E(W,Z) is shown with contour lines in the (W,Z)-space, and
with the vertical red lines on the feasible set (W,g(W)). The nested objective function E1(W) is shown in
blue. Corresponding minima for both problems, W∗ and (W∗,Z∗), are indicated.
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2.1 KKT conditions

We now show that the first-order necessary (Karush-Kuhn-Tucker, KKT) conditions of both problems (nested
and MAC-constrained) have the same stationary points. For simplicity and clarity of exposition, we give a
proof for the special case of K = 1. The proof for K > 1 layers follows analogously. We assume the functions
f1 and f2 have continuous first derivatives w.r.t. both its input and its weights. Jf2

(·;W2) indicates the
Jacobian of f2 w.r.t. its input. To simplify notation, we sometimes omit the dependence on the weights; for
example, we write f2(f1(x;W1);W2) as f2(f1(x)), and Jf2

(·;W2) as Jf2
(·).

Theorem 2.2. The KKT conditions for the nested problem (1) and the MAC-constrained problem (2) are
equivalent.

Proof. The nested problem for a nested function f2(f1(x)) is:

min
W1,W2

E1(W1,W2) =
1

2

N
∑

n=1

‖yn − f2(f1(xn;W1);W2)‖
2
.

Then we have the stationary point equation (first-order necessary conditions for a minimizer):

∂E1

∂W1
= −

N
∑

n=1

∂fT1
∂W1

(xn)Jf2
(f1(xn))

T (yn − f2(f1(xn))) = 0 (5)

∂E1

∂W2
= −

N
∑

n=1

∂fT2
∂W2

(f1(xn)) (yn − f2(f1(xn))) = 0 (6)

which is satisfied by all the minima, maxima and saddle points.
The MAC-constrained problem is

min
W1,W2,Z

E(W1,W2,Z) =
1

2

N
∑

n=1

‖yn − f2(zn;W2)‖
2
s.t. zn = f1(xn;W1), n = 1, . . . , N,

with Lagrangian

L(W1,W2,Z,λ) =
1

2

N
∑

n=1

‖yn − f2(zn;W2)‖
2 −

N
∑

n=1

λ
T
n (zn − f1(xn;W1))

and KKT conditions

∂L1

∂W1
=

N
∑

n=1

∂fT1
∂W1

(xn)λn = 0 (7)

∂L1

∂W2
= −

N
∑

n=1

∂fT2
∂W2

(f1(xn)) (yn − f2(zn)) = 0 (8)

∂L1

∂zn
= −Jf2

(zn)
T (yn − f2(zn))− λn = 0, n = 1, . . . , N (9)

zn = f1(xn;W1), n = 1, . . . , N. (10)

Substituting λn from eq. (9) and zn from eq. (10):

λn = −Jf2
(zn)

T (yn − f2(zn)), n = 1, . . . , N (9’)

zn = f1(xn;W1), n = 1, . . . , N (10’)

into eqs. (7)–(8) we recover eqs. (5)–(6), thus a KKT point of the constrained problem is a stationary point
of the nested problem. Conversely, given a stationary point (W1,W2) of the nested problem, and defining
λn and zn as in eqs. (9’)–(10’), then (W1,W2,Z,λ) satisfies eqs. (7)–(10) and so is a KKT point of the
constrained problem. Hence, there is a one-to-one correspondence between the stationary points of the
nested problem and the KKT points of the MAC-constrained problem.
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From theorems 2.1 and 2.2, it follows that the minimizers, maximizers and saddle points of the nested
problem are in one-to-one correspondence with the respective minimizers, maximizers and saddle points of
the MAC-constrained problem.

3 Convergence of the quadratic-penalty method for MAC

Let us first give convergence conditions for the general equality-constrained minimization problem:

min f(x) s.t. ci(x) = 0, i = 1, . . . ,m (11)

and the quadratic-penalty (QP) function

Q(x;µ) = f(x) +
µ

2

m
∑

i=1

c2i (x) (12)

with penalty parameter µ > 0. Given a positive increasing sequence (µk) → ∞, a nonnegative sequence
(τk) → 0, and a starting point x0, the QP method finds an approximate minimizer xk of Q(x;µk) for
k = 1, 2, . . . , so that the iterate xk satisfies ‖∇xQ(xk;µk)‖ ≤ τk. Given this algorithm, we have the
following theorems:

Theorem 3.1 (Nocedal and Wright, 2006, Th. 17.1). Suppose that (µk) → ∞ and (τk) → 0. If each xk is
the exact global minimizer of Q(x;µk), then every limit point x∗ of the sequence (xk) is a global solution of
the problem (11).

Theorem 3.2 (Nocedal and Wright, 2006, Th. 17.2). Suppose that (µk) → ∞ and (τk) → 0, and that x∗

is a limit point of (xk). Then x∗ is a stationary point of the function
∑m

i=1 c
2
i (x). Besides, if the constraint

gradients ∇ci(x
∗), i = 1, . . . ,m are linearly independent, then x∗ is a KKT point for the problem (11).

For such points, we have for any infinite subsequence K such that limk∈K xk = x∗ that limk∈K −µkci(xk) =
λ∗
i , i = 1, . . . ,m, where λ

∗ is the multiplier vector that satisfies the KKT conditions for the problem (11).

If now we particularize these general theorems to our case, we can obtain stronger theorems. Theorem 3.1
is generally not applicable, because optimization problems involving nested functions are typically not convex
and have local minima. Theorem 3.2 is applicable to prove convergence in the nonconvex case. We assume
the functions f1, . . . , fK+1 in eq. (1) have continuous first derivatives w.r.t. both its input and its weights, so
E(W,Z) is differentiable w.r.t. W and Z.

Theorem 3.3 (Convergence of MAC/QP for nested problems). Consider the constrained problem (2) and
its quadratic-penalty function EQ(W,Z;µ) of (4). Given a positive increasing sequence (µk) → ∞, a
nonnegative sequence (τk) → 0, and a starting point (W0,Z0), suppose the QP method finds an approximate
minimizer (Wk,Zk) of EQ(W

k,Zk;µk) that satisfies
∥

∥∇W,ZEQ(W
k,Zk;µk)

∥

∥ ≤ τk for k = 1, 2, . . . Then,
limk→∞ (Wk,Zk) = (W∗,Z∗), which is a KKT point for the problem (2), and its Lagrange multiplier vector
has elements λ

∗

n = limk→∞ −µk (Z
k
n − F(Zk

n,W
k;xn)), n = 1, . . . , N .

Proof. It follows by applying theorem 3.2 to the constrained problem (2) and by noting that limk→∞ (Wk,Zk) =
(W∗,Z∗) exists and that the constraint gradients are linearly independent. We prove these two statements
in turn.

The limit of the sequence ((Wk,Zk)) exists because the objective function E(W,Z) of the MAC-
constrained problem (hence the QP function EQ(W,Z;µ)) are lower bounded and have continuous deriva-
tives.

The constraint gradients are l.i. at any point (W,Z) and thus, in particular, at the limit (W∗,Z∗).
To see this, let us first compute the constraint gradients. There is one constraint Cnkh(W,Z) = znkh −
fkh(zn,k−1;Wk) = 0 for each point n = 1, . . . , N , layer k = 1, . . . ,K and unit h ∈ I(k), where we define
I(k) as the set of auxiliary coordinate indices for layer k and zn0 = xn, n = 1, . . . , N . The gradient of this
constraint is:

∂Cnkh

∂Wk′

= −δkk′

∂fkh
∂Wk

, k = 1, . . . ,K

∂Cnkh

∂zn′k′h′

= δnn′

(

δkk′δhh′ − δk−1,k′

∂fkh
∂zn,k−1,h

)

, n = 1, . . . , N, k = 1, . . . ,K, h ∈ I(k).
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Now, we will show that these gradients are l.i. at any point (W,Z). It suffices to look at the gradients w.r.t.
Z. Call αnkh = ∂fkh/∂zn,k−1,h for short. Constructing a linear combination of them and setting it to zero:

N
∑

n=1

K
∑

k=1

∑

h∈I(k)

λnkh

∂Cnkh

∂Z′
= 0.

This implies, for the gradient element corresponding to zn′k′h′ :

N
∑

n=1

K
∑

k=1

∑

h∈I(k)

λnkhδnn′ (δkk′δhh′ − δk−1,k′αnkh) = λn′k′h′ −
∑

h∈I(k′+1)

λn′,k′+1,hαn′,k′+1,h = 0

=⇒ λn′k′h′ =
∑

h∈I(k′+1)

λn′,k′+1,hαn′,k′+1,h.

Applying this for k′ = K, . . . , 1:

• For k′ = K: λn′Kh′ = 0, n′ = 1, . . . , N, h′ ∈ I(K).

• For k′ = K − 1: λn′,K−1,h′ =
∑

h∈I(K) λn′,K,hαn′,K,h = 0, n′ = 1, . . . , N, h′ ∈ I(K − 1).

• . . .

• For k′ = 1: λn′,1,h′ =
∑

h∈I(2) λn′,2,hαn′,2,h = 0, n′ = 1, . . . , N, h′ ∈ I(1).

Hence, all the coefficients λnkh are zero and the gradients are l.i.

In practice, as with any continuous optimization problem, convergence may occur in pathological cases
to a stationary point of the constrained problem rather than a minimizer.

In summary, MAC/QP defines a continuous path (W∗(µ),Z∗(µ)) which, under some mild assumptions
(essentially, that we minimize EQ(W,Z;µ) increasingly accurately as µ → ∞), converges to a stationary
point (typically a minimizer) of the constrained problem (2), and thus to a minimizer of the nested prob-
lem (1).
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