
Supplementary Material

We first list two of our key assumptions

Assumption 1. (Separable condition) A topic matrix
β ∈ RW×K is separable if for each topic k, there is
some word i such that βi,k > 0 and βi,l = 0, ∀ l 6= k.

Assumption 2. (Simplicial condition) Let a and R
denote the expectation and correlation matrix of the
priors on columns of θ. Define the normalized second
order moments as R′ , diag−1(a)R diag−1(a). R′

is γ-simplicial if every row vector of R′ is at an
Euclidean distance of at least γ > 0 distant from the
convex hull of the remaining rows of R′.

We also denote β′ = diag−1(βa)β diag(a). Denote
E = β′R′β′⊤ and Ei as i-th row of it. For convenient,
for a novel word i ∈ Ck, define N̄ (i)∗ = Ckc. Simi-
larly for a non-novel word i ∈ C0, define N̄ (i)∗ = C0c.
H,L, P denote the number of document in each node
(computing unit/server), number of nodes, and num-
ber of projections respectively.

The following lemma depict the key topic geometry. It
is Lemma 1 in Sec. 2 of the main paper.

Lemma 1. Suppose that R′ is γ-simplicial and β is
separable, then word i is a novel word if and only if
β′
iR

′β′⊤ = Ei, i.e., the i-th row of E, is an extreme
point of the convex hull spanned by the rows of E.

Proof. By the following Prop. 1, Y = R′β′⊤ is γ-
simplicial. Therefore by definition, no row of Y is
in the convex hull of the remaining rows.

For a novel word i ∈ Ck,β′
i,k = 1 and β′

i,l = 0, l 6= k,
therefore, Ei = Yk. For an non-novel word j ∈ C0,
the row vector β′

j has at least two non-zero compo-

nents and Ei =
K∑

k=1

β′
i,kYk. Therefore, it is a convex

combination at least two rows of Y, i.e., the rows Ei

that correspond to novel words i ∈ Ck.

Proposition 1. Let R′ be γ-simplicial and β be sep-
arable. Then matrix R′β′⊤ is at least γ-simplicial.

Proof. Since R′ is γ-simplicial, ∀cj ≥ 0,
∑

j 6=i cj = 1,
‖R′

i −
∑

j 6=i cjR
′
j‖ ≥ γ. Note that β is separable, by

reordering the words, β⊤ =
[
IK×K , JK×(W−K)

]
and

we obtain R′β′⊤ = [R′, R′J]. Now we can check the
simplicity of R′β by definition. ∀cj ≥ 0,

∑
j 6=i cj = 1,

we can write ‖(R′β′⊤)i −
∑

j 6=i cj(R
′β′⊤)j‖ = ‖R′

i −∑
j 6=i cjR

′
j‖+ ‖(R′J)i −

∑
j 6=i cj(R

′J)j‖ ≥ γ. So it is
at least γ simplicial.

A Computational Complexity of the

Index Passing scheme Alg.-Index

Proposition 1 in Sec. 3 of the main paper
(Time complexity of the Alg.-Index) The run-
ning time of Alg.-Index is O(HN +W ) for each node
and O(WL+K2) for the fusion center. Meanwhile, the
total communication cost of Alg.-Index is O(log(W ))
per node with an additional cost of O(LK2) if no doc-
ument is archived on the fusion center.

The steps to analysis is very similar to the next section
and are omitted.

Remark: We use the total number of floats to
be transmitted to measure the communication cost
throughout the paper and the supplementary. This
would ignore the network structure of how the nodes
are connected and implicitly assumes all the message
can be transmitted between each node and the fusion
center within constant hoops. In fact, we can assume
that each node is connected to the fusion center within
O(log(L)) hoops which most network structure satis-
fies. And such log factor can be viewed as a constant
in the Big O notation, compared to other terms.

B Computational Complexity of

Projection value Passing scheme

Alg.-Value

Proposition 2 in Sec. 3 of the main paper (Time
complexity of the Alg.-Value) The running time of
Alg.-Value is O(NHP ) for each distributed node and
O(WP +WL+K2) for the fusion center. Meanwhile,
the total communication cost per node is O(WP ).

We decompose this algorithm into steps for analysis.
We assume N < W and W ≫ K in most cases. The
number of novel words is at mostO(K), i.e., each topic
has constant number of novel words. When one make
use of sparsity in matrix computation via say Hashing
tricks, there is an additional log(W ) factor in compu-
tation complexity, which we would take as constant
compared to the other polynomial factors in the com-
plexity analysis.

The matrix C here represents Ê in the main text,
i.e., the estimated normalized second order word co-
occurrence matrix.

Step 1: Normalization. We need to normal-
ized the word-by-document matrices as X̃w,d =

Xw,d∑
d Xw,d

, X̃′
w,d =

X
′

w,d∑
d Xw,d

. It can be decomposed since

Nw :=
∑

d Xw,d =
∑L

l=1

∑
d∈bin l

Xw,d =
∑L

l=1 Nw,l

and so is for X̃′.



• Center Action : For w = 1, . . . ,W , aggregateNw,l

from each node. Calculate Nw. Broadcast the
total words counts Nw’s to each node.

• Node Action : For w = 1, . . . ,W , aggregate par-
tial total words countNw,l . Then getNw from the
Fusion Center, normalize rows of X(l) and X′

(l).

• Comm. Cost per node : O(W ).

• Comp. Cost, Fusion Center : O(WL) as required
to calculate the summations.

• Comp. Cost, Single Node : O(HN). This is
achievable since only there are at most N ≪ W
non-zero element in each column of X. We can
calculate the sum by exploiting such sparsity. So
in sum, only HN non-zero elements are stored in
each node hence to get the summation which is a
W × 1 vector, at most HN summation is needed.

Step 2: Random Projections. We compute projec-
tion values vr = X̃′X̃⊤dr for projections r = 1, . . . , P .
It can be decomposed as vr =

∑L
l=1 X̃

′
(l)X̃

⊤
(l)dr =∑

l
vr ,l .

• Center Action: Aggregate partial projection val-
ues vr ,l from each node for every projections. Ob-
tain vr , and then find the maximums and mini-
mums for each projection.

• Node Action: Calculate X̃′
(l)X̃

⊤
(l)dr for each pro-

jections r = 1, . . . , P , and then transmit the in-
formation to the center node.

• Comm. Cost per node : O(WP ).

• Comp. Cost, Fusion Center : O(WPL) adding,
O(WP ) finding max/min.

• Comp. Cost, Single Node : O(HNP ). This com-
putational complexity can be achieved by exploit-
ing the sparsity, i.e., there are at most N ≪ W
non-zero elements in each column of X(l). Con-

sider calculating X⊤
(l)y where y is any W × 1 vec-

tor. For each of H rows of X⊤
(l), at most N com-

ponents are non-zero. So the inner product can be
calculated within O(HN) time complexity. It is
similar to calculate X′z where z is a H × 1 vector
in the same amount of time. Therefore, the key
component, i.e., the projection values X̃′

(l)X̃
⊤
(l)dr

can be calculated efficiently in O(HN) for one
random projection, hence O(HNP ) for P num-
ber of projections.

Step 3: Find the nearest neighbors of the se-
lected max/min We need to find all the d neigh-
bors of max/min selected in step 2. Say they are word
(1), . . . , (P̂ ) and should be to the order of O(K). Then
C(i),w, i = 1, . . . , P̂ , w = 1, . . . ,W has to be com-

puted. Note that C(i),w = X̃′
(i)X̃

⊤
w hence the inner

product can be decomposed as summation of partial
inner product from each node.

• Center Action: Aggregate C
(l)
(i),w from each

• Node Action: CalculateC
(l)
(i),w = X̃′

(l),(i)X̃
⊤
(l),w for

i = 1, . . . , P̂ and w = 1, . . . ,W .

• Comm. Cost per node : O(WK).

• Comp. Cost, Fusion Center : O(WKL) adding,
O(WK) finding neighbors.

• Comp. Cost, Single Node : O(HNK). To achieve
this complexity, the same trick as in Step. 2 can
be used to exploit the sparsity.

Step 4: Clustering. This requires work from only
the Fusion Center, following the steps in Alg.-Index.
All the statistics required in this step, namely, Ci,j

where i, j are for the top O(K) words with high q̂i.
These has been calculated and transmitted to the fu-
sion center at the previous step.

• Center Action: Perform clustering as in Alg. Alg.-
Value .

• Node Action: No.

• Comm. Cost per node : 0.

• Comp. Cost, Fusion Center : O(K2).

• Comp. Cost, Single Node : 0

Step 5: Estimation. Estimate topics using L2 re-
gression as in Section B.1. Note that the inner prod-
ucts has all been calculated and aggregated in Step 4
hence no further communications and additional cal-
culation are required.

• Center Action: Solving W number of constraint
regressions.

• Node Action: No.

• Comm. Cost per node : 0

• Comp. Cost, Fusion Center : O(WK3).

• Comp. Cost, Single Node : 0.

• Remark: At some additional communication
cost of O(K2 + WK/L), the W regressions can
be taken in a paralleled way. The computational
cost for each single node would be reduced to
O(WL K3). In the largest NYT dataset we consid-
ered in the main paper, by setting L = 300 and us-
ing CVX Matlab implementationGrant and Boyd
[2013], it only takes 9.3s. Note that typically, we
have L > K hence the additional communication
cost is really small.



So in sum, including the topic estimation step
(parallelized), the total communication cost per
node is O(WP + K2 + WK/L). The computation
cost for a single node is O(HNP ). The computation
cost for the fusion center is O(WPL+K2). This con-
clude the computational efficiency properties of our
proposed Alg.-Value .

B.1 Topic Estimation

Algorithm 1 EstimateTopics

Input: I = {i1, . . . , iK}, X, X′, precision ǫ

Output: β̂, which is the estimation of β matrix
Y = (X̃⊤

j1 , . . . , X̃
⊤
jK )⊤,Y′ = (X̃′⊤

j1 , . . . , X̃
′⊤
jK )⊤

for all 1 ≤ i ≤W do
β̂i ← argmin

bj≥0,
∑

K
j=1

bj=1

M(X̃i − bY)(X̃′
i − bY′)⊤

(with stopping precision ǫ)

β̂i ← ( 1
MXi1)β̂i

end for
column normalize β̂

The topic estimation step inherits similar ideas from
the previous work [Ding et al., 2013, Arora et al.,
2013, Kumar et al., 2013]. It is summarized in Alg. 1.

The objective functions bYY⊤b⊤−2X̃iY
⊤b⊤ shares

the same part YY⊤ so it doesn’t have to be recalcu-
lated for all the regressions. Moreover, the Êi,j needed

form YY⊤ and X̃iY have already been computed in
say Alg.-Value, in step 3 and 4. Therefore, these re-
gressions can be computed in parallel on each node,
with an additional O(K2 + WK/L) float number to
be communicated per node.

C Analysis of Alg.-Value

Say C = X̃′X̃⊤. Recall P number of directions dr =
X̃⊤ur , r = 1, . . . , P are generated i.i.d. Two isotropic
distributions are considered: u ∼ Uniform(BW ) or
u ∼ N (0, IW ). The consistency of Algorithm Alg.-
Value depends on the convergences of following quan-
tities :

qi = Pr{∀j ∈ N̄ (i)∗, Eiu ≥ Eju} (1)

pi(E) = Pr
u
{∀j ∈ N̄ (i), Eiu ≥ Eju|C} (2)

pi(C) = Pr
u
{∀j ∈ N̄ (i), Ciu ≥ Cju|C} (3)

p̂i =
1

P

P∑

r=1

I{∀j ∈ N̄ (i), Ciu
r ≥ Cju

r} (4)

The proof consists of showing a sequence of conver-
gence :

• Convergence of p̂i to pi(C) by Hoeffeding lemma
as P increase.

• Convergence of pi(C) to pi(E) since C converges
to E as M increase.

To begin with, p̂i is the winning frequency of word i as
defined in Algorithm Alg.-Value . Based on the topic
geometry Lemma 1, we have the following claim,

Lemma 2. Suppose R′ is γ-simplicial and topic ma-
trix β is separable. Let u ∼ Uniform(BW ) or u ∼
N (0, IW ). Then

1. For all novel words, exist q∧, such that
mini∈Ck

qi := q∧ > 0.

2. For all non-novel words i ∈ C0, qi = 0.

pi(E) and pi(C) are function of C. They has the fol-
lowing properties,

Lemma 3. For N̄ (i) constructed in Algorithm Alg.-
Value ,

1. For a novel word i ∈ Ck, if N̄ (i) ⊆ N̄ (i)∗, then
pi(E) ≥ qi ≥ q∧.

2. For a non-novel word i ∈ C0, if N̄ (i) ⊇ N̄ (i)∗,
then pi(E) ≤ qi = 0

This is a direct result of the definitions of pi(E) and
qi. p̂i is a random variable as function of C and u’s.
Moreover, Eu(p̂i|C) = pi(C). Hence we have the fol-
lowing lemma on convergence of p̂i to pi(C),

Lemma 4. ∀t > 0,

Pr{|p̂i − pi(C)| ≥ t} ≤ 2 exp(−2Pt2) (5)

Proof. Note that p̂
(r)
i are i.i.d 0-1 random variables

conditioned on C. By Heoffding’s lemma, ∀i, ∀ C,
Pru(|p̂i−pi(C)| ≥ t|C) ≤ 2 exp(−2Pt2). By marginal-
izing over C, we conclude the lemma.

For convenient, ∀ǫ > 0, we define a good set of C as,

G(ǫ) = { C : ∀i ∈ Ck, 1 ≤ k ≤ K, N̄ (i) ⊆ N̄ (i)∗;

∀i ∈ C0, N̄ (i) ⊇ N̄ (i)∗;

∀1 ≤ i, j ≤W, |Ci,j −Ei,j | ≤ ǫ }.
(6)

This set has asymptotically overwhelming mass as
M,N →∞. To be precise,

Lemma 5. Consider G(ǫ) defined in equation (6)

Pr(G(ǫ)c) ≤c1W 2 exp(−c2MNǫ2φ2η4)

+ c3W
2 exp(−MNc4d

2φ2η4)

where η = min
1≤i≤W

βia , φ = min
i,j

aiaj

Ri,j
and d =

γ2 minj /∈Ck,k≥1(1− β′
j,k)

2. c1 to c4 are constants.



Proof. Following the result in Ding et al. [2013], we
have Pr(|Ci,j − Ei,j | ≥ ǫ) ≤ 10 exp(−MNǫ2φ2η4/32).
Use the short notation ei,j = Ci,i − 2Ci,j + Ci,i and
similarly Pr(|ei,j − (β′

i − β′
j)R

′(β′
i − β′

j)
⊤| ≥ d) ≤

c1 exp(−c2MNd2φ2η4).

Now suppose that i ∈ Ck, j /∈ Ck. By proposition
1, ‖(β′

i − β′
j)R

′‖2 ≥ γ(1 − β′
j,k). Therefore we have

(β′
i−β′

j)R
′(β′

i−β′
j)

⊤ ≥ γ2(1−β′
j,k)

2/λ∨, where λ∨ is
the maximum eigenvalue of the positive semi-definite
matrix R′.

Set d = γ2 minj /∈Ck,k≥1(1 − β′
j,k)

2/λ2
∧. Then by

union bound, we obtain for any novel words i,
Pr(N̄ (i) * N̄ (i)∗) ≤ Wc1 exp(−MNc2d

2φ2η4). Simi-
larly, for any non-novel words i, Pr(N̄ (i) + N̄ (i)∗) <
Wc3 exp(−MNc4d

2φ2η4). Hence we obtain the con-
clusion.

The following lemmas shows the convergence of pi(C)
to pi(E) under the considered distributions. We start
with an useful proposition,

Proposition 2. Let vn,v ∈ Rm be two random vec-
tors, x, ǫ ∈ Rm are two vectors and ǫ > 0 , then

|Pr{vn ≤ x} − Pr{v ≤ x}|
≤Pr(∃i : |vni − vi| ≥ ǫi) + Pr(x− ǫ ≤ v ≤ x+ ǫ)

(7)

The inequalities is element-wise.

Lemma 6. Suppose R′ is γ-simplicial and topic ma-
trix β is separable. Let u ∼ Uniform(BW ). Then,
∀ ǫ0 > 0, ∃ ǫ > 0 such that ∀ C ∈ G(ǫ), |pi(C) −
pi(E)| ≤ ǫ0.

Proof. Recall the definition of pi(C) and pi(E),

pi(E) = Pr
u
{∀j ∈ N̄ (i), Eiu ≥ Eju|C}

pi(C) = Pr
u
{∀j ∈ N̄ (i), Ciu ≥ Cju|C}

Given any C and ∀ǫ > 0, by proposition 2, we have,

|pi(C)− pi(E)| ≤ Pr
u
(∃j ∈ N̄ (i) : |ei,ju| ≥ 2ǫ)

+ Pr
u
(∀j ∈ N̄ (i) : |ziju| ≤ 2ǫ)

(8)

where ei,j = Ei−Ci+Cj−Ej and zij = Ei−Ej. Note
that u ∼ Uniform(BW ) and |ei,ju| ≤ ‖ei,j‖‖u‖. By
Cauchy-Schwartz inequality, the first term in equation
(8) is 0 if C ∈ G(ǫ).
For the second term in equation (8), consider for
any novel words i ∈ Ck, and C ∈ G(ǫ), we have
N̄ (i) ⊆ N̄ (i)∗, so it can be union bounded by∑

j∈N̄ (i)∗ Pru(|ziju| ≤ 2ǫ). For a non-novel word i ∈
C0 and C ∈ G(ǫ), N̄ (i) ⊇ N̄ (i)∗ contains all the novel

words. So for ∀j ∈ C0
⋂ N̄ (i), zij =

∑K
k=1 ekzi,l(k)

where l(k) ∈ Ck is some novel word of k-th topic
and ek are convex combination weights. Therefore,
|zi,l(k)u| ≤ 2ǫ, k = 1, . . . ,K ⇒ |ziju| ≤ 2ǫ. Hence it
can be union bounded by the same term. In sum, we
have, given any C ∈ G(ǫ),

|pi(C)− pi(E)| ≤
∑

j∈N̄ (i)∗

Pru(|ziju| ≤ 2ǫ|C)

≤ 4WG(W )ǫ

minj∈N̄ (i)∗‖zij‖2
Last inequality is true since that a strip of
width |2ǫ|/‖zij‖ in a unit ball has a fraction of

G(W )|2ǫ|/‖zij‖ of the total volume, where G(W ) ,
Γ(W

2
+1)√

πΓ(W+1

2 )
.

So by defining ρ , minj∈N̄ (i)∗‖ (β′
j − β′

i)R
′β′⊤‖, for

i = 1, . . . ,W , ∀ C ∈ G(ρǫ0/(4WG(W ))), |pi(C) −
pi(E)| ≤ ǫ0.

We could further find explicit expression for ρ. Us-
ing the similar argument in Lemma 5 we have ρ =
γminj /∈Ck,k≥1(1 − β′

j,k).

Remark : When W is large, the function G(W ) be-
have like G(W ) = O(

√
W ).

Lemma 7. Suppose R′ is γ-simplicial and topic ma-
trix β is separable. Let u ∼ N (0, IW ). Then, ∀ ǫ0 > 0,
∃ ǫ > 0 such that ∀ C ∈ G(ǫ), |pi(C)− pi(E)| ≤ ǫ0.

Proof. We could follow the same argument and nota-
tion as in the proof of lemma 6 up to equation (8) and
obtain ∀C ∈ G(ǫ), ∀δ > 0,

|pi(C)− pi(E)|
≤Pr

u
(∃j ∈ N̄ (i), |ei,ju| ≥ δ) + Pr

u
(∀j ∈ N̄ (i), |ziju| ≤ δ)

≤
∑

j

Pr
u
(|ei,ju| ≥ δ) +

∑

j∈N̄ (i)∗

Pr
u
(|ziju| ≤ δ)

where the second union bound follow the same argu-
ment as in Lemma 6 for both novel and non-novel
words. Note that ziju ∼ N (0, ‖zij‖22) and aiju ∼
N (0, ‖aij‖22) conditioned on C, we obtain,

Pr
u
(|ziju| ≤ δ|C) =

∫ δ

−δ

1√
2π‖zij‖

e−t2/2‖zij‖2

dt

≤
√
2/π

‖zij‖
δ

Pr
u
(|ai,ju| ≥ δ) = 2Q(δ/‖ai,j‖) ≤ exp(−δ2/8ǫ2)

where the second bound is by the property of the Q
function. In sum we obtain that

|pi(C)− pi(E)| ≤W (

√
2/π

ρ
δ + exp(−δ2/8ǫ2))



for any δ > 0 and ρ as defined in Lemma 6. One
possible choice is to set δ = ǫ0ρ

2W
√

2/π
. Then for ǫ ≤

√
πǫ0ρ

4W
√

log(2W/ǫ0)
, then |pi(C)− pi(E)| ≤ ǫ0.

Now we state and prove the main theorem which sum-
marize the consistency and sample complexity of the
random projection algorithm.

Theorem 1. Suppose R′ is γ-simplicial and topic
matrix β is separable. Let u ∼ Uniform(BW ) or
u ∼ N (0, IW ). Then Algorithm Alg.-Value would out-
put novel words of all distinct topics consistently as
number of document M = H ×L→∞ and number of
projections P →∞. Further more, ∀δ > 0, for

M ≥ max

{
c1

log(3W/δ)

Nd2φ2η4
, c2

W 2G(W )2 log(3W/δ)

Nρ2q2∧φ2η4

}

when u ∼ Uniform(BW ) or

M ≥ max

{
c1
log(3W/δ)

Nd2φ2η4
, c2

W 2 log(2W/q∧) log(3W/δ)

Nρ2q2∧φ2η4

}

when u ∼ N (0, IW ); and

P ≥ c3
log(3W/δ)

q2∧

Algorithm Alg.-Value fails with probability at most δ.

Proof. For the success of detection and clustering, we
require for all novel word i, p̂i would be ranked top-
most. Therefore the error event we are interested in is
{∃ i ∈ Ck, ∃ j ∈ C0 s.t. p̂i − p̂j < 0}. Consider the set
G(ǫ) defined in (6). Then ∀i ∈ Ck, ∀j ∈ C0, ǫ > 0,

Pr(p̂i − p̂j < 0) ≤ Pr(p̂i − p̂j < 0 | C ∈ G(ǫ)) + Pr(G(ǫ)c)

For the first term, we have following decomposition.

p̂i − p̂j = (p̂i − pi(C)) + (pi(C)− pi(E))

+(pj(E)− pj(C)) + (pj(C)− p̂j)

+(pi(E)− pj(E))

By Lemma 3, ∀ C ∈ G(ǫ) , (pi(E)− pj(E)) ≥ qi − 0 =
qi ≥ q∧ . Therefore

Pr{p̂i − p̂j < 0|C ∈ G(ǫ)}
≤ Pr{(pi(C)− p̂i) + (pi(E)− pi(C))

+ (pj(C)− pj(E)) + (p̂j − pj(C)) > q∧| G(ǫ)}
≤ Pr{pi(C)− p̂i ≥

q∧
4
| G(ǫ)}

+Pr{p̂j − pj(C) ≥ q∧
4
| G(ǫ)}

+Pr{pj(C)− pj(E) ≥ q∧
4
|G(ǫ)}

+Pr{pi(E)− pi(C) ≥ q∧
4
| G(ǫ)}

By lemma 4, the first two term is upper-bounded by
exp(−2P ( q∧4 )2). When u ∼ Uniform(BW ), by lemma
6, if we set ǫ ≤ ρq∧

8WG(W ) , then |pi(E) − pi(C)| ≤ q∧
4 .

Therefore last two terms are exactly zero and in sum

Pr{p̂i − p̂j < 0} ≤ 2 exp(−2P (
q∧
4
)2) + Pr{G( ρq∧

8WG(W )
)c}

By lemma 5 and union bound, we obtain

Pr(∃i ∈ Ck, ∃j ∈ C0, p̂i − p̂j < 0)

≤e1W 4 exp(−e2MNd2φ2η4)

+ e3W
4 exp(−e4

MNρ2q2∧φ
2η4

W 2G(W )2
)

+ e5W
2 exp(−e6P (q∧)

2)

where d = γ2minj /∈Ck
(1−β′

j,k)
2/λ2

∧, ρ = γminj /∈Ck
(1−

β′
j,k). By setting

M ≥ max

{
c1

log(3W/δ)

Nd2φ2η4
, c2

W 2G(W )2 log(3W/δ)

Nρ2q2∧φ2η4

}

and P ≥ c3
log(3W/δ)

q2
∧

, the error probability would be

less than δ. When u ∼ N (0, IW ), by applying lemma
7 instead of 6, we have

Pr(∃i ∈ Ck, ∃j ∈ C0, p̂i − p̂j < 0)

≤e1W 4 exp(−e2MNd2φ2η4)

+ e3W
4 exp(−e4

MNρ2q2∧φ
2η4

W 2 log(2W/q∧)
)

+ e5W
2 exp(−e6P (q∧)

2)

And we obtain the conclusion.

D Analysis of Alg.-Index

The proof for binning algorithm Alg.-Index has sim-
ilar structure. But we have full independence across
bins other than conditional independence across pro-
jections in algorithm Alg.-Value .

Recall that E = β′R′β′⊤. C(l) = X̃(l)X̃(l)⊤. We
denote C and N̄ (i) as the dummy variable but not
to be confused with the one defined in previous proof.
N̄ (i)∗ = Ckc for a novel word i ∈ Ck and N̄ (i)∗ = C0c
for non-novel word i ∈ C0. For each bin l = 1, . . . , L,
one random direction dl = X̃(l)⊤ul is generated. The
consistency of algorithm Alg.-Index depends on the
convergence of following quantities,

p̂i =
1

L

L∑

l=1

I{∀j ∈ N̄ (i)(l),C
(l)
i ul ≥ C

(l)
j ul} (9)

pi = Pr{∀j ∈ N̄ (i),Ciu−Cju ≥ 0} (10)

qi = Pr{∀j ∈ N̄ (i)∗,Eiu−Eju ≥ 0} (11)

We will show in sequence that



• p̂i converges to pi as L increase.

• C and N̄ (i) converges to E and N̄ (i)∗ as H in-
crease hence,

• pi converges to qi.

To start with, the topic geometry indicate some min-
imum solid angle for novel words as extreme points.
More precise,

Lemma 8. Suppose R′ is γ-simplicial and topic ma-
trix β is separable. Let u ∼ Uniform(BW ) or u ∼
N (0, IW ). Then

1. For all novel words, ∃ q∧ such that
mini∈Ck,1≤k≤K qi := q∧ > 0.

2. For all non-novel words i ∈ C0, qi = 0.

Lemma 9. ∀t > 0, Pr(|p̂i − pi| ≥ t) ≤ 2 exp(−2Lt2).

Proof. For any word i, p̂
(l)
i = I{∀j ∈ N̄ (i)(l), C

(l)
i ul ≥

C
(l)
j ul} are i.i.d 0-1 random variables whose expecta-

tion is pi. Hence by Heoffding’s lemma, we obtain the
conclusion.

Similarly as G(b) defined in equation (6), for a word i
and ∀b > 0, we define

Gi(b) = { C : N̄ (i) = N̄ (i)∗ if i ∈ Ck;
N̄ (i) ⊇ N̄ (i)∗ if i ∈ C0;
∀j, |Ci,j −Ei,j | ≤ b }.

By Lemma 5 its complement is vanishing as,

Pr(Gi(b)c) ≤c1W exp(−c2HNb2φ2η4)

+ c3W exp(−c4HNd2φ2η4)
(12)

with the same set of parameters d, φ, η.

Lemma 10. Suppose R′ is γ-simplicial and topic ma-
trix β is separable. Let u ∼ N (0, IW ). Then as
H →∞, |pi − qi| → 0.

Proof. We can decompose pi − qi as,

|pi − qi|
≤|Pr{∀j ∈ N̄ (i),Ciu ≥ Cju & C ∈ G(b)} − qi|+ Pr(G(b)c)

(13)

For a novel word i ∈ Ck, C ∈ Gi(b), N̄ (i) = N̄ (i)∗. So
by applying proposition 2, the first term in equation

(13) can be upper bounded by

|Pr{∀j ∈ N̄ (i),Ciu ≥ Cju & C ∈ G(b)} − qi|
≤Pr(∃j ∈ N̄ (i)∗ : |ei,ju| ≥ a & C ∈ G(b))
+ Pr(∀j ∈ N̄ (i)∗ : |ziju| ≤ a)

≤
∑

j∈N̄ (i)∗

Pr(|ei,ju| ≥ a & C ∈ G(b)) + Pr(|ziju| ≤ a)

(i)

≤W
{
exp(− a2

2b2
) +

2a√
2πρ

}

for ∀a > 0, where ei,j = Ei − Ci + Cj − Ej and
zij = Ei −Ej . Inequality (i) is true since conditioned
on C, ei,ju and zi,ju are Gaussian.

For a novel word i ∈ Ck, C ∈ Gi(b), N̄ (i) ⊇ N̄ (i)∗ =
C0. Note that maxj∈N̄ (i)∗ ziju = maxj∈N̄ (i) ziju so
in analog to the above bounding for novel words, we
have,

|Pr{∀j ∈ N̄ (i),Ciu ≥ Cju & C ∈ G(b)} − qi|
≤Pr(∃j ∈ N̄ (i) : |ei,ju| ≥ a & C ∈ G(b))
+ Pr(∀j ∈ N̄ (i) : |ziju| ≤ a)

(i)

≤
∑

j∈N̄ (i)

Pr(|ei,ju| ≥ a & C ∈ G(b)) +
∑

j∈N̄ (i)∗

Pr(|ziju| ≤ a)

≤W
{
exp(− a2

2b2
) +

2a√
2πρ

}

The union bounds for the second tern in (i) is true
since for any j ∈ N̄ (i)

⋂ Cc0, |zi,ku| ≤ a for all novel
words implies |ziju| ≤ a.

In sum, combining equation (13) and (12), we have
∀a > 0, b > 0

|pi − qi| ≤W

{
exp(− a2

2b2
) + c1 exp(−c2HNd2φ2η4)

+ c3 exp(−c4b2HNφ2η4) +
2

ρ
√
2π

a

}

(14)

So for any ǫ0 > 0, we can chose a > 0, b > 0 and find
H0(t, a, b) > 0, such that ∀H > H0, the right hand side
of (14) is less than ǫ0. This conclude the proof.

Lemma 11. Suppose R′ is γ-simplicial and topic ma-
trix β is separable. Let u ∼ Uniform(BW ). Then as
H →∞, |pi − qi| → 0.

Proof. The proof is the same as in Lemma 11. Note
that when u ∼ Uniform(BW )

Pr(|ei,ju| ≥ a) ≤ c3 exp(−c4a2HNφ2η4)



Pr(|zi,ju| ≤ a) ≤ 2G(W )a

ρ
, j ∈ N̄ (i)∗

where G(W ) ,
Γ(W

2
+1)√

πΓ(W+1

2 )
by lemma 6 . In sum, we

have ∀a ≥ 0

|pi − qi| ≤W

{
c1 exp(−c2HNd2φ2η4)

+ c3 exp(−c4a2HNφ2η4) +
2G(W )a

ρ

}

(15)

We could come up with different strategy of setting
free variables a and find the minimum document num-
ber H0 required.

Now we state and prove the main theorem which sum-
marize the consistency and sample complexity of the
binning algorithm.

Theorem 2. Suppose R′ is γ-simplicial and topic
matrix β is separable. Let u ∼ Uniform(BW ) or
u ∼ N (0, IW ). Then Algorithm Alg.-Index would out-
put novel words of all distinct topics consistently as
both H,L → ∞. (Hence total number of document
M = H × L→∞). Furthermore, ∀δ > 0, for

H ≥ max

{
c1
log(8W/q∧)
Nd2φ2η4

, c2
W 2G(W )2 log(4W/q∧)

Nρ2q2∧φ2η4

}

when u ∼ Uniform(BW ) or

H ≥ max

{
c1

log(8W/q∧)
Nd2φ2η4

, c2
W 2 log2(8W/q∧)
Nπρ2q2∧φ2η4

}

when u ∼ N (0, IW ) and for

L ≥ c3
log(4W )/δ

q2∧

Algorithm Alg.-Index fails with probability at most δ.

Proof. Recall that the error event we are interested
in is {∃i ∈ Ck, ∃j ∈ C0, p̂i − p̂j < 0}. We have
decomposition

p̂i − p̂j = (p̂i − qi) + (qj − p̂j) + (qi − qj)

and qi − qj ≥ q∧ for i ∈ Ck, j ∈ C0. Therefore,

Pr{∃i ∈ Ck, ∃j ∈ C0, p̂i − p̂j < 0}
≤

∑

i∈Ck

∑

j∈C0

Pr{p̂i − p̂j < 0}

≤
∑

i∈Ck

∑

j∈C0

Pr{p̂i − qi > q∧/2}+ Pr{p̂j − qj > q∧/2}

For each term, by lemma 9

Pr(|p̂i − qi| ≥ q∧/2)

≤Pr(|p̂i − pi| ≥ q∧/2− |pi − qi|)
≤2 exp(−2L(q∧/2− t)2) if |pi − qi| ≤ t ≤ q∧/2

By lemma 10, when u ∼ N (0, IW ), ∀a > 0, b > 0

|pi − qi| ≤W

{
exp(− a2

2b2
) + e1 exp(−e2HNd2φ2η4)

+ e3 exp(−e4b2HNφ2η4) +
2

ρ
√
2π

a

}

We could set t = q∧/4, a =
√
2πρt
8W , b = ρ

√
πt

8W
√

log(8W/t)

so for

H ≥ max

{
c1

log(8W/q∧)
Nd2φ2η4

, c2
W 2 log2(8W/q∧)
Nπρ2q2∧φ2η4

}

and

L ≥ c3
log(4W )/δ

q2∧

by union bound the error probability Pr{∃i ∈ Ck, ∃j ∈
C0, p̂i − p̂j < 0} ≤ δ. Similarly, by lemma 11 for
u ∼ Uniform(BW ), ∀a > 0

|pi − qi| ≤W

{
c1 exp(−c2HNd2φ2η4)

+ c3 exp(−c4a2HNφ2η4) +
2G(W )a

ρ

}

We could set t = q∧/4 , a = tρ
2WG(W ) , so for

H ≥ max

{
c1
log(8W/q∧)
Nd2φ2η4

, c2
W 2G(W )2 log(4W/q∧)

Nρ2q2∧φ2η4

}

and L ≥ c3
log(4W )/δ

q2
∧

, error probability is less than δ.

Remark: We should point out that in general, L and
H can be some function of M = L×H . On one hand,
H should be large as indicated by the above bounds
for H are much higher. On the other hand, L should
go to infinity as well so H cannot be too large.

For example, by setting L = H =
√
M , the sample

complexity is almost squared compared to the one for
M in random projection Theorem 1. On the other
hand, if we set L = log(M), H = M/ log(M) is almost
the same order as M . But for the success of the algo-
rithm, one has to get at least L = log(M) ≥ K bins,
which implies that M = exp(K) which is impractical.
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