Technical Appendix

Threshold DNFs An exponentially large standard DNF is required to represent a threshold DNF. Consider a threshold DNF with just a single term containing all n of the binary variables x_{1}, \ldots, x_{n}, and let the threshold value be $\frac{n}{2}$, with each variable having equal weight. Consider any standard DNF for this $\frac{n}{2}$ threshold function, and let T be any term in it. If T has fewer than $\frac{n}{2}$ variables appearing unnegated, then T has a satisfying assignment with fewer than $\frac{n}{2}$ bits on, which is a contradiction. Furthermore, if T has any variables appearing negated, then these variables can be removed, and all previously satisfying assignments for T will remain satisfying. Thus, the smallest T will contain only unnegated variables, and at least $\frac{n}{2}$ of them. The DNF formula must contain such a term for every possible subset of $\frac{n}{2}$ bits, of which there are exponentially many.

Section 5 Assumptions In Section 5 we assume that the tree is binary and that the distribution P is given over the leaves only. To remove the first assumption, rather than summing over $\{x, y \mid x+y=i\}$, we use another dynamic program that calculates the probability that exactly i amount of weight is distributed among the children of u. The approach is similar to calculating the probability that exactly k out of n biased coins come up heads. To remove the second assumption, we check at each node u (not just the leaves) whether u corresponds to a literal in T, and if so, we make a case analysis similar to the one currently restricted to our base case.

Lemma 1. The GenAssign subroutine for DNF formulas generates an assignment $v \in V$ with probability $\hat{P}(v) / \hat{P}(T)$.

Proof. Let x_{1}, \ldots, x_{m} denote variables in the order as they appear in the loop from lines 5 to 12 , where $m=n-|T|$. Let v be the assignment generated by $\operatorname{GenAssign}(P, T, \epsilon)$. Let $l_{i}=\left(x_{i}, v_{x_{i}}\right)$. The probability that v was generated is

$$
\frac{\hat{P}\left(T \wedge l_{1}\right)}{\hat{P}(T)} \times \frac{\hat{P}\left(T \wedge l_{1} \wedge l_{2}\right)}{\hat{P}\left(T \wedge l_{1}\right)} \times \ldots \times \frac{\hat{P}(v)}{\hat{P}\left(T \wedge l_{1}, \ldots, l_{m}\right)}
$$

After cancelling terms, we have $\hat{P}(v) / \hat{P}(T)$.

Lemma 2. The GenAssign subroutine for threshold DNFs generates an assignment $v \in V$ with probability $P(v) / P(T)$.

Proof. The probability that an assignment v is gener-
ated is:

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left[Q_{r}^{T}(i)\right]}{\sum_{i=q}^{W(T)} \operatorname{Pr}\left[Q_{r}^{T}(i)\right]} \times \\
& \frac{\operatorname{Pr}\left[r=v_{r}\right] \operatorname{Pr}\left[Q_{r}^{T}(i) \mid r=v_{r}\right]}{\operatorname{Pr}\left[Q_{r}^{T}(i)\right]} \times \\
& \frac{\operatorname{Pr}\left[Q_{r_{L}}^{T}(x) \mid r=v_{r}\right] \operatorname{Pr}\left[Q_{r_{R}}^{T}(y) \mid r=v_{r}\right]}{\operatorname{Pr}\left[Q_{r}^{T}(i) \mid r=v_{r}\right]} \times \\
& \frac{\operatorname{Pr}\left[r_{L}=v_{r_{L}} \mid r=v_{r}\right] \operatorname{Pr}\left[Q_{r_{L}}^{T}(x) \mid r_{L}=v_{r_{L}}\right]}{\operatorname{Pr}\left[Q_{r_{L}}^{T}(x) \mid r=v_{r}\right]} \times \\
& \frac{\operatorname{Pr}\left[r_{R}=v_{r_{R}} \mid r=v_{r}\right] \operatorname{Pr}\left[Q_{r_{R}}^{T}(y) \mid r_{R}=v_{r_{R}}\right]}{\operatorname{Pr}\left[Q_{r_{R}}^{T}(y) \mid r=v_{r}\right]} \times \ldots
\end{aligned}
$$

After cancelling terms, we have

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left[r=v_{r}\right] \operatorname{Pr}\left[r_{L}=v_{r_{L}} \mid r=v_{r}\right] \operatorname{Pr}\left[r_{R}=v_{r_{R}} \mid r=v_{r}\right] \ldots}{\sum_{i=q}^{W(T)} \operatorname{Pr}\left[Q_{r}^{T}(i)\right]} \\
& =\frac{\operatorname{Pr}\left[r=v_{r} \wedge r_{L}=v_{r_{L}} \wedge r_{R}=v_{r_{R}} \ldots\right]}{P(T)} \\
& =\frac{P(v)}{P(T)}
\end{aligned}
$$

Lemma 3. The GenAssign subroutine for threshold DNFs generates an assignment $v \in V$ such that v satisfies T.

Proof. It suffices to prove that the process generates an assignment v in which the weighted sum of satisfied literals is equal to i, where $i \geq q$ is the value we chose in the first step. We will use induction to prove the following more general claim. For any internal node u, if we have chosen the value for the weighted sum of satisfied literals in u 's subtree to be i, then the generated assignment will meet this requirement.
Suppose we are at a leaf node u where $l=(u, 1) \in T$ and we have chosen $u_{P}=b$. We then choose i with probability proportional to $\operatorname{Pr}\left[Q_{u}^{T}(i)\right]$. The only values for i which correspond to a nonzero probability are $w(l)$ and 0 . In order for u 's literal to be satisfied, u 's value must be 1 . So if we have chosen i to be $w(l)$, then we should choose u 's value to be 1 with probability 1 . According to the subroutine, we choose the value for u to be 1 with probability equal to

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left[u=1 \mid u_{P}=b\right] \operatorname{Pr}\left[Q_{u}^{T}(w(l)) \mid u=1\right]}{\operatorname{Pr}\left[Q_{u}^{T}(w(l)) \mid u_{P}=b\right]} \\
& =\frac{\operatorname{Pr}\left[u=1 \mid u_{P}=b\right](1)}{\operatorname{Pr}\left[u=1 \mid u_{P}=b\right]} \\
& =1
\end{aligned}
$$

On the other hand, if we have chosen i to be 0 , then we should choose u 's value to be 0 with probability 1 . According to the process, we choose the value for u to be 0 with probability equal to

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left[u=0 \mid u_{P}=b\right] \operatorname{Pr}\left[Q_{u}^{T}(0) \mid u=0\right]}{\operatorname{Pr}\left[Q_{u}^{T}(0) \mid u_{P}=b\right]} \\
& =\frac{\operatorname{Pr}\left[u=0 \mid u_{P}=b\right](1)}{\operatorname{Pr}\left[u=0 \mid u_{P}=b\right]}=1 .
\end{aligned}
$$

The case where $l=(u, 0) \in T$ follows similarly. For the inductive step, suppose we are at a node u and have chosen the value i. According to the subroutine, we have also chosen values x, y for the subtrees of u_{L} and u_{R}, such that $x+y=i$. By the induction hypothesis, we can assume that the conditions were met for u_{L} and u_{R}. Thus, the weighted sum of satisfied literals in the subtree of u will be equal to $x+y=i$.

