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Abstract

Piecewise linear models (PLMs) have been
widely used in many enterprise machine
learning problems, which assign linear ex-
perts to individual partitions on feature
spaces and express whole models as patches
of local experts. This paper addresses si-
multaneous model selection issues of PLMs;
partition structure determination and feature
selection of individual experts. Our contri-
butions are mainly three-fold. First, we ex-
tend factorized asymptotic Bayesian (FAB)
inference for hierarchical mixtures of experts
(probabilistic PLMs). FAB inference offers
penalty terms w.r.t. partition and expert
complexities, and enable us to resolve the
model selection issue. Second, we propose
posterior optimization which significantly im-
proves predictive accuracy. Roughly speak-
ing, our new posterior optimization miti-
gates accuracy degradation due to a gap be-
tween marginal log-likelihood maximization
and predictive accuracy. Third, we present
an application of energy demand forecasting
as well as benchmark comparisons. The ex-
periments show our capability of acquiring
compact and highly-accurate models.

1 Introduction

Piecewise linear models (PLMs) have been widely used
in many enterprise machine learning problems [13, 14,
15] which assign linear experts to individual partitions
on feature spaces and express whole models as patches
of local experts. Depending on how they character-
ize partitions and their local linear experts, various
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PLMs have been studied such as decision/regression
trees [1], hierarchical mixtures of experts (HMEs) [2],
Bayesian treed linear models (BTLMs) [3], and more
advanced region-specific linear models [9, 10]. For ex-
ample, regression trees employ partitions specified by
rule chains and constant-valued regressors while the
model proposed by [9] employs linear partition speci-
fiers and linear classifiers.

A practical requirement to PLMs is compact and inter-
pretable representation in terms of both partitions and
experts as well as high predictive performance. If the
partition structure is too complex (e.g., decision tree
with deep rule chains), it’s very difficult to understand
the meaning of the model, and it eventually loses im-
portant advantage (interpretability) over highly non-
linear models like kernel machines [18, 19]. Further-
more, it is significant to make individual linear experts
sufficiently sparse since locally-significant features may
be different among local regions and capturing such
a local feature structure gives us better understand-
ing about data generation processes. We refer to such
PLMs with sparse linear experts as piecewise sparse
linear models (PSLMs). For learning PSLMs, a chal-
lenging model selection problem must be addressed; si-
multaneous partition-structure determination and fea-
ture selection for individual experts. To the best of our
knowledge, this simultaneous optimization has not yet
been well studied and remained to be accomplished.

This paper addresses the above described model selec-
tion issue of PSLMs, and our contributions are mainly
three-fold as summarized below.

FAB Inference for HMEs This paper employs
HMEs, which is one of the most well-studied prob-
abilistic piecewise models [16, 17], with probabilistic
rule-based partitions. We extend factorized asymp-
totic Bayesian (FAB) inference for HMEs, which is a
recently-developed Bayesian approximation inference
for latent variable models such as mixture models [4],
hidden Markov models [5], and latent feature mod-
els [6]. In FAB/HMEs, two L0-regularization effects
are naturally induced: 1) structure-level regularization
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which penalizes the complexity of the partition struc-
ture, and 2) expert-level regularization which enforces
sparseness to individual experts. By the combination
of the shrinkage step in FAB procedure and an ad-
vanced L0 greedy optimization algorithm (the forward-
backward greedy algorithm; FoBa [7]), FAB/HMEs
simultaneously identify the partition structure and
sparseness of individual experts. It is worth noticing
that the optimization of FAB/HMEs starts from the
sufficient number of experts (e.g., O(logN), where N
is the number of samples.) and there is no sensitive
tunable hyper-parameters, and we can obtain PSLMs
in a fully-automatic manner.

Improved Posterior Optimization We develop
an algorithm to mitigate a gap between the FAB ob-
jective function (factorized information criterion; FIC)
and our true objective one (predictive error). Roughly
speaking, the gap arises because the model optimiza-
tion is done on posterior expectation while prediction
is done using prior. We introduce a projection step in
posterior optimization, which minimizes distance be-
tween posterior and prior, by keeping guarantee of FIC
monotonic increase over FAB EM iterations. In addi-
tion, we completely match posterior and prior as post-
processing. We show that these two heuristics signifi-
cantly improve predictive accuracy in comparison with
naive FAB/HMEs.

Application to Energy Demand Forecasting
We demonstrate capability of FAB/HMEs in applica-
tion to a building energy demand forecasting problem.
We show that FAB/HMEs offer a simple but highly-
accurate forecasting model, which captures reasonable
energy usage trend. In addition to energy demand
forecasting, we present experimental results on bench-
mark and simulation datasets which show the superi-
ority of FAB/HMEs over the other PLMs.

2 Related Work

Piecewise Linear Models The most well-studied
precursors of PLMs are regression tree mod-
els (RegTrees) [1], in which partitions are specified by
chains of rules and local experts are constant-valued.
Although the representation of RegTree is highly inter-
pretable, predictive abilities of individual experts are
not high and the tree depth tends to be large in or-
der to achieve good prediction performance. HMEs [2]
adopt a divide-and-conquer strategy for constructing
piecewise models. Their treed-partition structure is
determined by “gating” functions, which are proba-
bilistic soft-partitioning functions. Although HMEs
can express any partition structures by designing the
(probabilistic) gating functions, this paper employs

a rule-chained (treed) partition structure so that the
learned partition structure is practically understand-
able. BTLMs [3] are also one of the divide-and-
conquer models and have hard-partition structures like
RegTree, but local experts represent generalized lin-
ear models. The partition structures of BTLMs are
explored by the Markov chain Monte Carlo search.

Recently, the algorithms named local supervised learn-
ing through space partitioning (LSL-SP) [9] and cost-
sensitive tree of classifiers (CSTC) [10] are developed.
LSL-SP is only available for classification. The target
of CSTC is test-time speed up rather than our target
(PSLMs as interpretable and accurate models.)

FAB for Mixture Models Suppose we have ob-
servation data xN = x(1), · · · , x(N) where x(n) ∈ RD.
Let us denote latent variable corresponding to xN as
zN = z(1), · · · , z(N) where z(n) ∈ {1, 0}C is an indi-
cator vector which means that a mixture component
generates x(n). FIC is derived as an asymptotic ap-
proximation of marginal log-likelihood as follows:

FICmm :=max
q

{
Eq

[
log p(xN , zN |θ̄)− DZ

2
logN

−
∑
k

Dk

2
log

∑
n

z
(n)
k

]
+H(q)

}
, (1)

where q(zN ) is a variational distribution on zN ; and
θ is a model parameter; θ̄ is the maximum likelihood
estimator (MLE) of p(xN , zN |θ)1; DZ and Dk are the
parameter dimensionalities of p(zN ) and pk(x

N |zNk );
H(q) is the entropy of q(zN ). The most important

term in FICmm (1) is log(
∑

n z
(n)
k ), which offers such

theoretically desirable properties for FAB inference as
automatic shrinkage of irrelevant latent variables and
parameter identifiability [4].

Direct optimization of FICmm is difficult because: (i)

evaluation of Eq[log
∑

n z
(n)
k ] is computationally infea-

sible, and (ii) the MLE is not available in practice.
Instead, FAB optimizes a tractable lower bound of

an FIC [4]. For (i), since − log
∑

n z
(n)
k is a con-

vex function, its linear approximation at Nrk > 0

yields the lower bound − log
∑

n z
(n)
k ≥ −{ logNrk +

(
∑

n z
(n)
k /N − rk)/rk}, where 0 < rk ≤ 1 is a lin-

earization parameter. For (ii), since, from the defi-
nition of the MLE, the inequality log p(xN , zN |θ̄) ≥
log p(xN , zN |θ) holds for any θ, we optimize θ along
with q. Alternating maximization of the lower bound
with respect to q, θ, and rk guarantees a monotonic
increase in the FIC lower bound [4].

1While p(xN |θ) is a non-regular model, p(xN , zN |θ) is
a regular model[22].
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Figure 1: An example of HMEs model.

Figure 2: An example of Bernoulli Gating Node.

3 Piecewise Sparse Linear Regressors
with FAB/HMEs

3.1 Hierarchical Mixtures of Experts

HMEs models are extensions of mixture of experts
models [20] and are represented in tree structures, in
which experts are mixed according to gating func-
tions. Fig. 1 shows a rough sketch of a HMEs
model. Inputting x to the top gating node, the gat-
ing nodes (squared nodes) select an appropriate expert
node (a circled node) for prediction, in a soft decision
tree manner.

The i-th gating node has an associated binary variable
zi ∈ {0, 1} of x and y, where zi = 1 means the data is
generated from one of experts in the left-side branches,
and zi = 0 vice versa. As far as we know, most studies
using HMEs have employed the sigmoid gating func-
tion. However, for learning HMEs, we typically need
EM-like iterative optimization, and therefore the sig-
moid function is relatively computationally-expensive
to optimize in each single iteration. Alternatively, this
paper employs the following Bernoulli gating function:

g(x, αi) := giU(ti − x[γi]) + (1− gi)U(x[γi]− ti),
(2)

where gi ∈ R satisfy [0, 1], U is the step function, γi
is the index w.r.t. the elements of x, ti ∈ R is an
arbitrary value and βi = {gi, ti}. For example, when
x[γi] < ti, g(x, αi) = gi and otherwise g(x, αi) = 1−gi
as shown in Fig. 2. The probability of zi is given by:

pg(zi|x, βi; γi) = g(x, αi)
zi [1− g(x, αi)]

1−zi , (3)

where the function g(x, αi) is referred to as the gating
function parameterized by αi = (βi, γi). Starting at
the top of the tree, we thereby stochastically choose a

path down to the j-th expert node, and then generate a
target value by the probabilistic model explained next.

The conditional distribution of the j-th expert (lin-
ear regression regressors, i.e., y = wT

j x + ε with i.i.d.

Gaussian noise ε ∼ N (ε|0, σ2
j )) is given by p(y|x, φj),

that is,

p(y|x, φj) = N (y|wT
j x, σ

2
j ), (4)

where φj = (wj , σ
2
j ). We here omit the bias term for

notational simplicity. Let us denote regression target
as yN = y(1), · · · , y(N) where y(n) corresponds to x(n).

Let us here define a few notations. Let us first intro-
duce the i-th gating index set, Gi (i = 1, . . . , G), and
the j-th expert index set, Ej (j = 1, . . . , E). Gi con-
tains all indices of the expert nodes on the sub-tree
of the i-th gating node. Ej contains all indices of the
gating nodes on the unique path from the root node
to the j-th expert node, which is called the j-th path.
For example, in Fig. 1, G2 = {2, 3} and E3 = {1, 2}.
Also, let us define a function ψ as follows:

ψ(a, i, j) :=

{
a if the j is in the left sub-tree of i

1− a otherwise
,

ψg(x, i, j) := ψ(g(x, αi), i, j).

Then, HMEs models are defined as follows:

p(y|x, θ; γ) =
E∑

j=1

∏
i∈Ej

ψg(x, i, j)p(y|x, φj), (5)

where θ = (β1, . . . , βG, φ1, . . . , φE) and γ =
(γ1, . . . , γG) represents models of gating nodes. We
define the latent variable related to the j-th path as:

ζj :=
∏
i∈Ej

ψz(i, j) ∈ {0, 1}, (6)

where ψz(i, j) := ψ(zi, i, j). We get conditional distri-
butions as follows:

p(yN |ζN , xN , φ) =
E∏

j=1

p(yN |xN , φj)ζ
N
j , (7)

p(ζN |xN , β; γ) =
N∏

n=1

E∏
j=1

∏
i∈Ej

ψg(x
(n), i, j)ζ

(n)
j , (8)

where φ = (φ1, . . . , φE), β = (β1, . . . , βG). Prediction
is done through the gating functions as follows:

ŷ = wT
j∗x where j∗ = arg max

j

∏
i∈Ej

ψg(x, i, j). (9)

240



Fully-Automatic Bayesian Piecewise Sparse Linear Models

3.2 FIC and FAB for HMEs

By following a standard derivation procedure of FIC,
we obtain FIChme as follows:

FIChme(θ, q) = max
q

{
Eq

[
log p(yN , ζN |xN , θ̄)−

G∑
i=1

(
Dβi

2
log

N∑
n=1

∑
j∈Gi

ζ
(n)
j

)
−

E∑
j=1

Dφj

2
log

N∑
n=1

ζ
(n)
j

]
+H(q)

}
.

(10)

As with the case of mixture models (1), FIChme is not
available in practice, and we employ the lower bound-
ing techniques (i) and (ii). FAB E-step and M-step
are derived as follow by maximizing the lower bound
of FIChme. Hereinafter, we refer to the lower bound
as FIChme

LB or merely FICLB and let the superscrip-
tion (t) represents the t-th iteration.

Note that the following FAB EM iteration mono-
tonically increases FICLB , and therefore we employ

FIC
(t)
LB − FIC

(t−1)
LB < δ as the condition of algorithm

termination.

FAB E-step The E-step optimizes the variational
distribution q as follows:

q(t)(ζ
(n)
j ) ∝

∏
i∈Ej

ψ(t−1)
g (x(n), i, j)p(y(n)|x(n), φ(t−1)

j )

exp
{ ∑

i∈Ej

−Dβi

2N
(t−1)
βi

+
−Dφj

2N
(t−1)
φj

}
, (11)

where ψ
(t)
g (x(n), i, j) = ψ(g(x(n), α

(t)
i ), i, j), N

(t)
βi

=∑N
n=1

∑
j∈Gi

q(t)(ζ
(n)
j ) and N

(t)
φj

=
∑N

n=1 q
(t)(ζ

(n)
j ).

Similar to the other FAB algorithms [4, 5, 6], the
FAB unique regularization effect appears as exponen-

tiated form, i.e., exp
{∑

i∈Ej

−Dβi

2N
(t−1)
βi

+
−Dφj

2N
(t−1)
φj

}
. This

regularization penalizes smaller and more complex ex-
perts, and eventually such experts are likely to be-
come smaller. This makes it possible to prune the
tree-structure naturally.

FAB M-step The M-step optimizes the models of
expert and gating nodes: S, γ and the parameter θ as
follows:

γ
(t)
i , β

(t)
i = arg max

γi,βi

{ N∑
n=1

∑
j∈Gi

q(t)(ζj
(n)) logψg(x

(n), i, j)

− Dβi

2
log(N

(t)
βi

)
}
, (12)

S
(t)
j , φ

(t)
j = arg max

Sj ,φj

{ N∑
n=1

q(t)(ζ
(n)
j ) log p(y(n)|x(n), φj)

−
Dφj

2
log(N

(t)
φj

)
}
. (13)

Algorithm 1 Optimization of Bernoulli Gating function

Input: xN , q(t)(ζ
(n)
j )

Output: γ
(t)
i , β

(t)
i

1: for γi in the dimension of xN do
2: for ti in the domain of xN do
3: Calculate g

(t)
i by (16).

4: end for
5: end for
6: Choose γ

(t)
i , β

(t)
i by (15).

About details of these optimization, we describe in the
subsections 3.3 and 3.4.

FAB Shrinkage Step As is shown in FAB E-step,
smaller and more complex paths are likely to become
smaller. FAB removes such “non-effective” experts
from the model as follows:

q(t)(ζ
(n)
j ) =

{
0 if N

(t)
φj

< δ

q(t)(ζ
(n)
j )/Q

(t)
j otherwise

, (14)

where δ and Q
(t)
j are a threshold value and a normal-

ization constant for
∑E

j=1 q
(t)(ζ

(n)
j ) = 1.

This shrinkage step addresses one of our model se-
lection issues, i.e., partition structure determination.
Starting from a symmetric tree with a sufficiently large
number of experts, FAB/HMEs gradually remove ir-
relevant experts in this shrinkage step.

3.3 Gating Function Optimization

Algorithm 1 solves (12) which is rewritten as follows:

γ
(t)
i , β

(t)
i = arg max

γi,βi

[ ∑
n∈Tli

{ ∑
j∈GiL

q(t)(ζ
(n)
j ) log(1− gi)

+
∑

j∈GiR

q(t)(ζ
(n)
j ) log gi

}
+

∑
n∈Tsi

{ ∑
j∈GiL

q(t)(ζ
(n)
j ) log gi

+
∑

j∈GiR

q(t)(ζ
(n)
j ) log(1− gi)

}]
, (15)

where Tli, Tsi are the sets of samples whose the γi-th
dimension is larger or smaller than ti, GiL contains
all indices of the expert nodes on the left sub-tree of
the i-th gating node and GiR is similarly defined for
the right sub-tree of the i-th gating node. At line3,
(15) has the analytic solutions with given γi and ti as
follows:

g
(t)
i =

1

N
(t)
βi

{ ∑
n∈Tsi

∑
j∈GiL

q(t)(ζ
(n)
j ) +

∑
n∈Tli

∑
j∈GiR

q(t)(ζ
(n)
j )

}
.

(16)

In practical implementation, we calculate the
attribute-wise sort before the FAB EM itera-
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tion (O(N logN)). Then, (16) can be solved with
O(N) time complexity.

3.4 Sparse Optimization of Linear Regressors

In (13), Dφj is the dimensionality of φj given Sj and
can be rewrite using the L0-norm of φj as Dφj =
||wj ||0 + 1 (we should add the dimensionality of σ2

j ).
Then, we transform (13) to the following feature selec-
tion problem with the sparse constraint:

w
(t)
j = arg min

wj

Q(wj , (σ
2
j )

(t−1)) s.t. ||wj ||0 ≤ K,

(17)

σ
2(t)
j = arg min

σ2
j

Q(w
(t)
j , σ2

j ), (18)

Q(wj , σ
2
j ) = −

N∑
n=1

q(t)(ζ
(n)
j ) log p(y(n)|x(n), wj , σ

2
j ),

(19)

where K is a constant corresponding to the regular-
ization term Dφj log(N

(t)
φj

)/2.

We solve the L0-regularized feature selection problem
(17) by applying the forward backward greedy (FoBa)
algorithm [7, 8] since it offers the tightest upper
bounds of feature selection error, estimation error, and
objective error. Although the upper bounds for the
original FoBa algorithm have been derived for (non-
weighted) least square regression, we can achieve the
same bounds by slightly modifying the proofs of [8] (we
omit the details because of space limitation).

The FoBa algorithm of (17) is described in Algo-
rithm 2 (for notational simplicity, we omit the index
j in Algorithm 2). In Algorithm 2, the superscription
(k) represents the iteration number of FoBa, F (k) is
the index set of non-zero elements of w(k), ei is the
natural base of the i-th feature, and φ̂(F (k)) is the
minimizer of Q(wj , σ

2
j ) under the constrains that the

elements of wj outside F (k) are zero. ∇wjQ(wj , σ
2
j ) is

gradient of Q(wj , σ
2
j ) w.r.t. wj , i.e.,

∇wj
Q(wj , σ

2
j ) =

N∑
n=1

q(t)(ζ
(n)
j )

1

σ2
j

(wT
j x

(n) − y(n))x(n).

(20)

Note that we do not need to manually set K in (17).
In each M-step (and for each expert), FAB/HMEs
automatically adjust the value of K, equivalently

log(N
(t)
φj

)/2, depending on q(t).

3.5 Improving Posterior Optimization

Although the inference of the FAB/HME algorithm
works as expected, it might have an issue for predic-
tion. The predictive function (9) is defined to used a

Algorithm 2 FoBa for FAB M-step

Input: yN , xN , q(t)(ζ(n)), σ2

Output: w∗

1: Let F (0) = ∅, w(0) = 0, k = 0
2: while TRUE do
3: %% forward step
4: i(k) = argmaxi/∈F (k) : |∇wQ(w(k), σ2)i|
5: F (k+1) = F (k) ∪ {i(k)}, w(k+1) = φ̂(F (k+1))
6: k = k + 1
7: %% stopping determination

8: if Q(w(k−1), σ2) − Q(w(k), σ2) ≤ log(N
(t)
φj

)/2
then

9: k = k − 1 and break
10: end if
11: %% backward step
12: while TRUE do
13: if miniQ(w(k) − w

(k)
i ei, σ

2) − Q(w(k), σ2) >

log(N
(t)
φj

)/2 then
14: break
15: else
16: i(k) = arg min

i
Q(w(k) − w

(k)
i ei, σ

2)

17: k = k − 1
18: F (k) = F (k+1) − {i(k+1)}, w(k) = φ̂(F (k))
19: end if
20: end while
21: end while
22: w∗ = w(k)

single expert which maximizes the “gating probabil-
ity”. However, in the FAB M-step, each expert is op-
timized using variational posterior (i.e., q(ζN )). This
gap between predictive objective and FIC maximiza-
tion causes predictive performance degradation. This
paper introduces two techniques for filling this gap.
A key idea behind both techniques is to match the
variational posterior q(ζN ) and the gating probability
p(ζN |xN , β; γ).

Projection E-step In stead of maximizing FICLB

like (11), by following the idea of the generalized EM
(GEM) algorithm [21], our new E-step updates the
variational posterior such that FICLB(θ

(t−1), q(t)) >
FICLB(θ

(t−1), q(t−1)) holds. Although the GEM al-
gorithm is motivated to make optimization problems
tractable, our new E-step is motivated to fix the gap
between q(ζN ) and p(ζN |xN , β; γ).

Let us define ρ = (ρ(1), . . . , ρ(n)) and q
(t)
ρ (ζ(n)) =

ρ(n)q(t)(ζ(n)). The following lemma describes
a function which satisfies FICLB(θ

(t−1), q(t)) >
FICLB(θ

(t−1), q(t−1)).

Lemma 1 FICLB(θ
(t−1), q

(t)
ρ + q

(t−1)
1−ρ ) ≥

FICLB(θ
(t−1), q(t−1)) holds with any ρ(n) ∈ [0, 1].
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Algorithm 3 Projection E-step

Input: xN , q(t−1), θ(t−1)

Output: q(t)

1: Calculate q(t)(ζN ) by (11).

2: Calculate q
(t)
gate(ζ

N ) = p(ζN |xN , β(t); γ(t)) by (12).

3: Calculate ρ(n) by (21).
4: if 0 < ρ(n) < 1 then
5: Update q(t)(ζ(n)) by (22).
6: end if

Figure 3: Geometric interpretation of the projection
E-step.

Proof Because of additive form of FICLB in terms of
q, we can decompose FICLB(θ

(t−1), q
(t)
ρ + q

(t−1)
1−ρ ) as:

FICLB(θ
(t−1), q(t)ρ + q

(t−1)
1−ρ )

= FICLB(θ
(t−1), q(t)ρ ) + FICLB(θ

(t−1), q
(t−1)
1−ρ )

≥ FICLB(θ
(t−1), q(t−1)

ρ ) + FICLB(θ
(t−1), q

(t−1)
1−ρ )

= FICLB(θ
(t−1), q(t−1))

Algorithm 3 summarizes our new E-step which we re-
fer to as the projection E-step. We first calculate

q(t)(ζN ) and q
(t)
gate(ζ

N ) (line1 and line2). Then, we cal-

culate ρ by minimizing L2 distance between q(t)(ζN )

and q
(t)
gate(ζ

N ) as follows:

ρ(n) = (21)

(q
(t)
gate(ζ

(n))− q(t−1)(ζ(n)))T (q(t)(ζ(n))− q(t−1)(ζ(n)))

‖q(t)(ζ(n))− q(t−1)(ζ(n))||22
.

On the basis of Lemma 1, for all n satisfying 0 < ρ(n) <
1, we update q(t)(ζ(n)) as follows:

q(t)new(ζ
(n)) = ρ(n)q(t)(ζ(n)) + (1− ρ(n))q(t−1)(ζ(n)).

(22)

As Fig. 3 explains, q
(t)
new(ζ(n)) calculated by (22) is an

orthogonal projection of q
(t)
gate(ζ

(n)) onto the interval

between q(t)(ζ(n)) and q(t−1)(ζ(n)).

Hard-Gate Post-Processing Although the pro-
jection E-step mitigates the gap, it cannot completely
fix the gap. We employ a heuristic post-processing af-
ter the FAB EM iteration converges. The procedure is

summarized as follows. First, we update the branching
probabilities as follow:

ghardi =

{
1 if gi > 0.5

0 otherwise
. (23)

With ghardi , qhard(ζ
(n)
j ) = p(ζ

(n)
j |x(n), βhard;γ) ∈

{1, 0} is satisfied, where βhard = (ghardi , ti). Then,

with qnew(ζ
(n)
j ), we re-optimize the gates and experts

by (12) and (13), and re-update the branching proba-
bilities by (23). After this post-processing, the branch-
ing probabilities which values are 0 or 1 provide hard-
partitioning, and therefore we refer to this procedure
as hard-gate post-processing.

4 Experiments

We employed δ = 10−5 (termination condition) and
ε = N × 10−2 (shrinkage threshold). The number of
initial experts was 32 (5-depth symmetric tree). Ob-
servation and target values were standardized in ad-
vance. We denote FAB/HMEs with the projection E-
step and hard-gate post-processing as FAB/HMEs+.

4.1 Artificial Simulation

We first demonstrate how the model selection of
FAB/HMEs+ works using simple artificial data. The
true tree structure is described in Fig. 4, which has
5 experts and each expert uses 2-4 features. On
the i-th gating node, gi was fixed to 1, γi and ti
were randomly selected from [1, D] and [0, 1], respec-
tively. On the j-th expert, the non-zero elements of
wj were randomly sampled from [0, 1]. xN and yN are
sampled from Uniform[0, 1] and N (y(n)|wT

j x
(n), 0.1),

where N = 3000 and D = 10.

Fig. 4 illustrates FIC
(t)
LB (top) and estimated expert

coefficient matrix (bottom) over the FAB EM itera-
tion. At t = 1, 32 experts were randomly initialized.
Over the EM iteration (t = 5, 11), FAB/HME+ si-
multaneously selected a partition structure and expert
sparseness, and it successfully recovered experts’ sig-
nals and the tree partition structure at the convergence

point (t = 18). FIC
(t)
LB monotonically increases except

two points (dashed circle and square) where the shrink-
age operation and post-processing were conducted.

4.2 Benchmark Evaluation

We compared FAB/HMEs, on 9 regression datasets in
LIACC repository [12] and UCI repository [11], with
EM/HMEs, BTLMs2, RegTree3. Also, support vector

2We used R package (tgp).
3We used Python package (scikit-learn).
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iteration: t

t = 5
t = 11 t = 18

True model
t = 1

gate1

gate2 gate3

gate4

expert1 expert2

expert3 expert4

expert5

Figure 4: Model selection procedure of FAB/HMEs+. Binary maps represent the (intermediate) estimated
coefficients of experts, where the rows and columns mean the number of experts and that of features, respectively.

regression with RBF kernel (RBF-SVR)3 [23] was com-
pared in order to evaluate performance degradation
from highly-non-linear regression model (in general,
non-linear regression is better in performance than
PLMs.) We used 2-loop cross validation with 10-fold
outer loop for evaluating test RMSE and 3-fold inner
loop for parameter selection. Note that FAB/HMEs do
not need 2-loop cross validation and have advantage in
computational efficiency while we did not evaluate it
because of implementation difference.

Table 1 and 2 summarize test RMSEs and complexities
of learned models. We observe:

• For all datasets, FAB/HMEs+ was significantly bet-
ter than FAB/HMEs and we confirmed the effect of
our improved posterior optimization.

• FAB/HMEs+ and BTLMs performed competitively
with each other w.r.t. test RMSE. They performed
better than EM/HMEs and RegTree.

• FAB/HMEs+ obtained the most compact represen-
tations. The number of experts was much smaller
than RegTree and expert cardinality was much
smaller than BTLMs.

• Except kin8nm and pol, FAB/HMEs+ performed
slightly worse than RBF-SVR, but the difference
was not significant. For puma32H, FAB/HME+ per-
formed even better than RBF-SVR.

In summary, the results indicate that FAB/HMEs+

achieved close-to-best performance with the simplest
model representation.

4.3 Energy Demand Forecasting

Motivation One of important and typical indus-
trial applications of FAB/HMEs is demand forecast-
ing. In real world demand forecasting projects, we
are often required to explain how our demand fore-
casters predict target values as well as to achieve high

Table 2: Comparison of model complexities (average
over 9 benchmark datasets).

FAB/HMEs+ BTLMs RegTree

num of experts 9.7 12.7 97.0
cardinality 5.1 33.0 1.0

total 49.5 419.1 97.0

prediction accuracy. For example, in energy demand
forecasting which is demonstrated in this paper, we
can control energy generation on the basis of fore-
casting results (high predictive accuracy). Further,
the forecasting model itself would be useful for en-
ergy generation planning (interpretable model repre-
sentation). FAB/HMEs’ compact representation for
the latter contribution is one of significant features in
this kind of applications.

Data Description We collected energy consump-
tion of an office building for which we would like
to make hourly demand forecasting in order to con-
trol/plan energy generation. We have 14 attributes;
day of the week (7 binary attributes), time (1 inte-
ger attribute ranging in [0, 23]), holiday status (1 bi-
nary attribute), and power[i] (5 numeric attributes,
i.e., i = 0,−1, . . . ,−4). The task is to predict power[1]
(energy consumption of 1 hour ahead). We have 3500
samples (roughly 5 months) for training and 1000 sam-
ples (roughly 1.5 months) for testing.

Result and Discussion Table 3 summarizes quan-
titative comparisons of FAB/HMEs+, BTLMs and
RegTree. With respect to test RMSE, FAB/HMEs+ is
slightly better than the others. Further, the number of
experts and total complexity of FAB/HMEs+ is much
smaller than those of BTLMs and RegTree. Fig. 5 and
Table 4 illustrate the learned forecasting model. We
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Table 1: Comparison of test RMSEs. The numbers shown in parentheses are standard deviations. The best and
second best piecewise linear methods are highlighted in bold and bold italic faces, respectively.

data sample dim FAB/HMEs FAB/HMEs+ EM/HMEs BTLMs RegTree RBF-SVR

abalone 4177 8 0.80(0.01) 0.68(0.03) 0.70(0.03) 0.67(0.04) 0.72(0.05) 0.66(0.04)
ailerons 13750 40 0.47(0.03) 0.41(0.02) 0.62(0.02) 0.43(0.01) 0.46(0.00) 0.40(0.01)
bank32nh 8192 32 0.93(0.05) 0.68(0.03) 0.69(0.04) 0.68(0.04) 0.78(0.01) 0.67(0.03)
cal-housing 20460 8 0.66(0.05) 0.56(0.02) 0.61(0.03) 0.53(0.03) 0.64(0.00) 0.48(0.01)
communities 1994 99 0.73(0.06) 0.63(0.04) 0.60(0.00) 0.60(0.03) 0.65(0.00) 0.59(0.04)
comp-active 8192 22 0.18(0.05) 0.14(0.01) 0.54(0.07) 0.17(0.02) 0.19(0.02) 0.17(0.02)
kin8nm 8192 8 0.89(0.07) 0.67(0.03) 0.77(0.06) 0.55(0.04) 0.73(0.03) 0.28(0.01)
pol 15000 48 1.22(0.02) 0.43(0.14) 0.77(0.00) 0.59(0.05) 0.19(0.00) 0.24(0.01)

puma32H 8192 32 0.35(0.03) 0.33(0.03) 0.76(0.03) 0.35(0.17) 0.36(0.01) 0.46(0.03)

Table 3: Comparison of test RMSE and model com-
plexities (energy demand forecasting).

FAB/HMEs+ BTLMs RegTree

RMSE 0.195 0.211 0.197
num of experts 6 11 256
cardinality 4.5 14 1

total 27 154 256

expert1 expert2

Monday

Power[0] > -1.0 Time in [19, 23]

  Saturday Time in [9,18]

expert3 expert4 expert5 expert6

Yes

YesYes

Yes Yes

No

No No

No No

gate1

gate2 gate3

gate4 gate5

Figure 5: Tree structure of learned model.

can give the following interpretation for this model.

• Since the target is an office building, the energy
consumption largely changed between weekday and
weekend. FAB/HMEs+ distinguished Monday and
Saturday with the others by gate1 and gate4, since
they are change points. Expert1, expert2 and ex-
pert3 correspond to Monday and Saturday.

• Expert4 and expert6 correspond to time be-
fore/after working hour. Since very few people work
in this time, the changes of hourly energy consump-
tion are small. Therefore, power[0] is dominant.

• Expert5 is for working hour. Weekend and holi-
days consume less energy, which appear as negative
weight values.

Since there are only 5 gates and experts use roughly
5 features on average, the model interpretation of
FAB/HMEs+ is much easier than the others.

Table 4: Coefficients of learned model.

expert 1 2 3 4 5 6

Time 0.17 0.31 0.29 0 0 0
Holiday -0.16 -0.43 -0.20 0 -0.29 -0.16
Power[0] 1.46 0 0.41 0.83 0.61 0.76
Power[-1] -1.13 0 0 0 0.05 0
Power[-2] 0.65 0.36 0 0.29 0 0
Power[-3] -0.19 0 0 0 0 0
Power[-4] 0.65 0 0 -0.19 0 0

Mon 0 0 0 0 0 0
Tue 0 0 0 0.17 0 0.05
Wed 0 0 0 0.07 0 0
Thu 0 0 0 0.14 0 0
Fri 0 0 0 0 0 0
Sat 0 0 0 0 -0.28 0
Sun 0 0 0 0 -0.21 0

5 Summary and Future Work

This paper addressed the model selection issue of
PSLMs by extending FAB to HMEs. FAB/HMEs en-
able us to simultaneously select of a partition struc-
ture and local experts’ sparsity and offer compact but
highly-accurate PSLMs. Also, our new “projection”
E-step and “hard-gate” post-processing further im-
prove predictive accuracy by fixing the gap between
a predictive objective and FIC maximization. In ad-
dition to simulation and benchmark experiments, we
confirmed the capability of FAB/HMEs in application
to a real-world building energy demand forecasting
problem.

A few important studies remain as our future study.
While this paper focused on piecewise sparse linear re-
gression, FAB/HMEs as piecewise sparse linear clas-
sification are also promising. Technically, the M-
step (L0 regularization for classification) is the most
challenging and a FoBa extension for smooth convex
loss functions [24, 25] may address the issue. An-
other important direction is computational efficiency.
[16, 17] proposed HME learning algorithms using grow-
ing strategies rather than EM-iteration. It is interest-
ing to integrate such ideas into FAB/HMEs learning.

245



Riki Eto, Ryohei Fujimaki, Satoshi Morinaga, Hiroshi Tamano

References

[1] Breiman, Leo, Jerome Friedman, R. Olshen and
C. Stone. Classification and Regression Trees.
Wadsworth, 1984. ISBN 0-534-98053-8.

[2] M. Jordan and R. Jacobs. Hierarchical mixtures of
experts and EM algorithm. Neural Computation,
vol. 6, no. 2, pp. 181-214, 1994.

[3] Chipman, H. A., George, E. I., and Mcculloch, R.
E. Bayesian Treed Generalized Linear Models. In
J. M. Bernardo (Ed.), Proceedings Seventh Valen-
cia International Meeting on Bayesian Statistics.
Oxford University Press, 2003.

[4] R. Fujimaki and S. Morinaga. Factorized Asymp-
totic Bayesian Inference for Mixture Modeling. In
AISTATS, 2012.

[5] R. Fujimaki and K. Hayashi. Factorized Asymp-
totic Bayesian Hidden Markov Models. In ICML,
2012.

[6] K. Hayashi and R. Fujimaki. Factorized Asymp-
totic Bayesian Inference for Latent Feature Mod-
els. In NIPS, 2013.

[7] T. Zhang. Adaptive Forward-Backward Greedy Al-
gorithm for Sparse Learning with Linear Models.
In NIPS, 2008.

[8] T. Zhang. Sparse recovery with orthogonal match-
ing pursuit under RIP. Information Theory, IEEE
Transactions on, 1(1), 17, 2011.

[9] J. Wang and V. Saligrama. Local supervised
learning through space partitioning. In NIPS,
2012.

[10] Z. Xu, M. Kusner, M. Chen and K. Weinberger.
Cost-Sensitive Tree of Classifiers. In ICML, 2013.

[11] A. Frank and A. Asuncin. UCI machine learn-
ing repository. http://archive.ics.uci.edu/ml/,
2010

[12] L. Torgo. LIACC regression data repository.
http://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html

[13] S. E. Ryan and L. S. Porth. A tutorial on the
piecewise regression approach applied to bedload
transportdata. Gen. Tech. Rep. RMRS-GTR-189.
Fort Collins: US Department of Agriculture, For-
est Service, Rocky Mountain Research Station,
2007.

[14] Y. Zhao, R.Schwartz, J. Sroka and J. Makhoul.
Hierarchical Mixtures of Experts Methodology Ap-
plied to Continuous Speech Recognition. In NIPS,
1994.

[15] J. R. New and L. E. Parker. Predicting Future
Hourly Residential Electrical Consumption: A
Machine Learning Case Study Energy and Build-
ings, vol.49, no.0, pp.591-603, 2012.

[16] J. Fritsch, M. Finke and A. Waibel Adaptively
growing hierarchical mixtures of experts. In NIPS,
1997.

[17] S. Waterhouse and A. Robinson. Constructive al-
gorithms for hierarchical mixtures of experts. In
NIPS, 1996.

[18] J. S. Taylor and N. Cristianini. Kernel Meth-
ods for Pattern Analysis. Cambridge University
Press, 2004.

[19] T. Hofmann, B. Schlkopf, A. J. Smola. Kernel
methods in machine learning. Annals of Statistics,
vol.36, no.2008, pp.1171-1220, 2008.

[20] R. A. Jacobs, M. I. Jordan, S. J. Nowlan,G. E.
Hinton. Adaptive mixtures of local experts. Neural
Computation, vol.3, no.1, pp.79-87, 1991

[21] R. Neal and G. E. Hinton. A view of the EM
algorithm that justifies incremental, sparse, and
other variants. In M. I. Jordan (Ed.), Learning
in graphical models. Cambridge, MA: MIT Press,
1999.

[22] S. Watanabe. Algebraic geometry and statistical
learning. Cambridge University Press, 2009.

[23] A. J. Smola and B. Schlkopf. A tutorial on sup-
port vector regression. Statistics and Computing
, vol.14, no.3, pp.199-222, 2004

[24] A. Jalali, C. Johnson and P. Ravikumar. On
Learning Discrete Graphical Models Using Greedy
Methods. In NIPS, 2011.

[25] J. Liu, R. Fujimaki and J. Ye. Forward-Backward
Greedy Algorithms for General Convex Smooth
Functions over A Cardinality Constraint. In
ICML, 2014.

246


