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Abstract

We consider the problem of finding lower di-
mensional subspaces in the presence of out-
liers and noise in the online setting. In par-
ticular, we extend previous batch formula-
tions of robust PCA to the stochastic setting
with minimal storage requirements and run-
time complexity. We introduce three novel
stochastic approximation algorithms for ro-
bust PCA that are extensions of standard
algorithms for PCA — the stochastic power
method, incremental PCA and online PCA
using matrix-exponentiated-gradient (MEG)
updates. For robust online PCA we also give
a sub-linear convergence guarantee. Our nu-
merical results demonstrate the superiority of
the the robust online method over the other
robust stochastic methods and the advan-
tage of robust methods over their non-robust
counterparts in the presence of outliers in ar-
tificial and real scenarios.

1 Introduction

A classic problem in data analysis is the modeling
of high-dimensional data by a lower dimensional sub-
space. The classic method here is Principal Compo-
nent Analysis (PCA), which seeks the d-dimensional
subspace maximizing the projected empirical variance
based on i.i.d. draws from an unknown source distri-
bution D [24].

The solution may be obtained directly by computing
the sample covariance matrix of our batch and com-
puting the top d singular vectors; we refer to it as the
“batch” approach. If the number of draws is N, and
the ambient dimension is D, merely computing the
sample covariance matrix will require O(ND? + D?3)
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flops to run, and O(D?) units of memory.

However, in practice these runtime and storage re-
quirements may be unacceptable. Additionally, there
are settings in which data is received sequentially and
may even change over time, while one has no ac-
cess to the source distribution. It is essential there-
fore to develop algorithms that are able to perform
in a “streaming setting” as well as on data sets
which are too large for batch methods. Furthermore,
stochastic approximation algorithms have been shown,
both theoretically and empirically, to be computa-
tionally preferable on various machine learning prob-
lems [4, 10, 34, 36, 37, 38].

Following the success of stochastic approximation al-
gorithms in the “big data” setting, Arora et al. [1, 2]
studied PCA in a stochastic optimization framework
and reviewed and extended common approaches for
stochastic PCA. They formulated the PCA objective
as a stochastic optimization problem of seeking the
d—dimensional subspace (parametrized by U € RP*4)
that maximizes the variance over the distribution D.
Formally, they seek to solve the problem:

E,[tr(UT 22U 1
ax L[tr(U” 22" U)] (1)

subject to UTU < 1,

where E, denotes the expectation w.r.t. x ~ D and
the constraint inequality is introduced to convexify
the problem. The optimum will occur with UTU =
1. Various stochastic approximation algorithms were
studied in [1] for solving (1) where they were cate-
gorized into three different types: stochastic gradi-
ent descent (SGD), incremental and online algorithms.
These algorithms are computationally efficient and
have good empirical performance.

However, despite its ubiquitous nature, PCA (and in
particular, stochastic PCA) has a major weakness —
it is extremely sensitive to outliers. Corrupted data
points, which we refer to as outliers, can completely
throw off the estimate of the principal subspace even
with a single outlier [22]. In practice, we may en-
counter a high percentage of corruption (see e.g., the
discussion at the end of Section 3.1 of [44]) and in
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theory (under some assumptions) the percentage of
outliers tolerated by robust PCA algorithms can be
significantly higher than the common 50% breakdown
point of point estimators [44, 27, 20]. In such cases,
the inliers may still be viewed as arising from D, but
the outliers are likely to be generated by a different
distribution or may be even hard to model. The pres-
ence of these outliers, whose proportion may be sig-
nificant, can completely distort the estimate of the
expected variance and therefore the PCA subspace.
There have been several attempts to endow PCA with
resilience against outliers or other forms of gross cor-
ruptions (see e.g., [12, 17, 18, 19, 22, 23, 25, 32, 35, 41]).
Following [9], Candes et al. [7] established a con-
vex de-convolution method for extracting low dimen-
sional subspace structure in the presence of gross
but sparse uniformly distributed element-wise corrup-
tions. This inspired the development of many other
convex methods for robust PCA, but in the pres-
ence of outliers (instead of element-wise corruptions)
[42, 33, 44, 27, 14, 15].

However, all of these methods work in the batch set-
ting and therefore do not scale to big data. Some
researchers have considered online algorithms for ro-
bust PCA [43, 31, 21, 45], which often fall within the
first two stochastic approximation categories discussed
in [1]. Indeed, [43], [21] and [45] all apply stochastic
gradient descent (SGD) approaches. However, [21] ap-
plies to gross elementwise matrix corruption, instead
of the setting of outliers considered here (they mod-
ify a Grassmannian SGD algorithm by incorporating
the augmented Lagrangian of ¢; norm which allevi-
ates sparse corruption). Li [31] builds on the incre-
mental PCA approach [5] where each new sample is
re-weighted by a fixed influence function. Unfortu-
nately, no performance guarantees are given for any
of these methods, which is not surprising as there is
little known for stochastic approximation algorithms
for the original PCA formulation [1]. Furthermore, we
are unaware of any robust version that belongs to the
third category of online algorithms.

In this paper we study stochastic algorithms for robust
PCA in a principled framework and propose an online
algorithm for robust PCA with good theoretical guar-
antees and excellent empirical performance. We build
on ideas of two recent works on robust PCA [44, 27]
since they both adapt well to the stochastic formula-
tion of (2). We present robust analogues for the three
categories of stochastic approximation algorithms pre-
sented in Arora et al. [1, 2]. However, we emphasize
the robust extension of the robust online approach due
to the novelty of the approach and especially due to its
competitive theoretical guarantees as well as empirical
performance.
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2 Review of Relevant Work

This work is based on two different research directions.
The first one is about robust PCA via convex relax-
ation of absolute subspace deviations; it includes both
the Geometric Median Subspace (GMS) algorithm [44]
and the REAPER algorithm [27]. The second one is
the study by Arora et al. [1, 2] of PCA in a stochastic
optimization framework.

2.1 GMS and REAPER

The GMS [44] and the REAPER [27] paradigms as-
sume a given dataset X' in R” and a target dimension
d e {1,2,...,D — 1} and propose a convex optimiza-
tion problem solving for a matrix @ from which a d-
dimensional subspace is determined; this subspace is a
robust approximation of the data.

In GMS, @ is the solution of

min Z |Qz||2 subject to @ = QT and tr(Q) = 1.

reX
(2)
In this case, @) is interpreted as a robust inverse covari-
ance (initial dimensionality reduction may be needed
to assure that the covariance has full rank). The di-
mension d can be sometimes estimated from the eigen-
values of Q.

In REAPER, @ is the solution of

min Z |Qx||2 subject to @ < I and tr(Q) = D —d.

reX
(3)
In this case, @ is interpreted as a tight approximation
to the orthogonal projector onto the orthogonal com-
plement of the d-dimensional subspace minimizing the
least absolute deviations w.r.t. X.

Both algorithms output a subspace obtained by the
span of the bottom d eigenvectors of (), or equiva-
lently, the top d eigenvectors of I — Q. Both GMS and
REAPER suggest iteratively re-weighted least squares
strategies converging to the solutions of (2) and (3)
respectively.

2.2 Stochastic Approaches for PCA

Arora et al. [1] reviewed and extended common ap-
proaches for stochastic PCA, while categorizing these
approaches into the following three classes.

2.2.1 Stochastic Gradient Descent

Assume that the covariance of D is known to be X.
The gradient with respect to U of the PCA objective
function tr (UTEU) is 22U. The observation that > =
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E,[z2T], leads to the update

U = P, (U(t) + nxtxtTU“)) : (4)
where P,tn is a pseudo-projection with respect to the
spectral norm of UUT onto the set of D x D matrices
with d eigenvalues equal to 1 and the rest zero. This
can be obtained by simply taking the SVD of U, which
is symmetric, and culling the top d eigenvectors.

It is shown that the cost of performing T iterations
costs O(T' Dd) flops with O(Dd) units of memory.

2.2.2 Incremental PCA

The second algorithm considered in Arora et al. [1]
is based on the incremental SVD algorithm [5], which
computes the SVD of the matrix X = [x1,x2,...,27]
iteratively. If storage and runtime were not an issue
we could use this algorithm to incrementally compute
the second-moment matrix directly.

Arora et al. [1] extended this to the online setting
where we would seek the eigendecomposition of the
second moment matrix updated iteratively. This led
them to the update

). (5)

where Prank.q denotes the retaining of just the top d
eigenvectors and eigenvalues. Following Brand [5] this
update can be performed efficiently since it is a rank-
one symmetric update. The run-time for this algo-
rithm is O(Dd?) per iteration, with storage require-
ments of O(Dd).

T

O(t) = Prank—d (C(til) + Tty

2.2.3 Online PCA

The third algorithm considered in Arora et al. [1] is
based on the Randomized Online PCA algorithm of
Warmuth and Kuzmin [40], which can be interpreted
as solving the following minimization for PCA [2]:

minys B, [tr(MaazT)]
subject to M =0, ||M]]2 <

(6)
o, tr(M) = 1.
The algorithm is involved and one should consult War-
muth and Kuzmin [40] for the details. It was shown
to be an instance of the mirror-descent algorithm by
Arora et al. [2] with the distance generating function
being a shifted-and-scaled version of the negative von
Neumann entropy: W(M) 1 (tr(MIn M) +1n D).
The update rule in this case is

M) =11 (exp (ln M® — 77@@?)) , (7)

where II is the projection with respect to the quantum
relative entropy.
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Warmuth and Kuzmin’s algorithm includes a regret
analysis that leads to convergence guarantees. Arora
et al. [1] showed that if we take a constant step size
ne = 1, assume that ||z¢||]2 < 1 uniformly in ¢, and
perform NV iterations such that

) ) ®

o

where M™ is the optimal solution, then the iterates
M® will satisfy

1 T
= ; tr ((D - d)M(t)E)
) 9)

where the iterates and optimal solution are scaled ap-
propriately relative to the objective function.

(D — d)tr(M*S) + ¢

€

dlog D/d

€

E. —tr((D—d)M*Y) <,

3 Robust PCA Stochastic Algorithms

In this section we use ideas from the batch robust-PCA
methods of GMS [44] and REAPER [27] to extend the
three types of online algorithms considered in Arora
et al. [1] to the robust setting.

Here E, denotes the expectation with respect to the
random variable z, which obeys a certain distribution
D’. We may assume that D’ is a mixture of two com-
ponents, which represent inliers (with distribution D)
and outliers. The aim is to apply a sufficiently ro-
bust objective function so that the minimizers when
x ~ D' and & ~ D are sufficiently close. The anal-
ysis in [44, 27] shows that under some strict assump-
tions on the underlying distributions the minimizers
are the same for the objective functions of both GMS
and REAPER and with weaker assumptions they are
nearby.

3.1 Robust SGD

We suggest two robust modifications of the minimiza-
tion problem in (2) and apply SGD to solve them. Here
we do not use directly the formulations of [44, 27], but
similar ones.

3.1.1 Method One

We introduce the following analogue to the PCA ob-
jective:

max E,||U'z| subject to ||U||z < 1.

10
UeRDxd ( )

Indeed, by replacing E,||Utz||s with E,||Utz||3 we ob-
tain the PCA objective. One may also use E,||U'z|5
with 0 < p < 2. We have chosen p = 1 since then the
optimization problem is still convex (which is true for
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any p > 1), while more robust to outliers (we expect
robustness to strengthen when lowering p). If d = 1,
then the solution of (10) is the well-known projection-
pursuit PCA [30, 33], whose robustness is established
in [30, 11]. We are unaware though of references estab-
lishing the robustness of the minimizer of (10) when
d>1.

The gradient of the new objective function with re-
spect to U is given as ||Uz|; " - 22TU. This leads us
to consider updates of the form

gt —p_ (U<t> + o TUO /| U(t)Tx”g—p) .
(11)
In fact, per the argument presented in Arora et al. [1],
this projection needs only be done infrequently for nu-
merical reasons. The number of operations remains

O(N Dd), where N is the number of data points pro-
cessed, and with memory O(Dd).

3.1.2 Method Two

We consider the formulation

E.||U"z||5 subject to UTU = I.

min

UeRDx(D—d) (12)

Again, we may replace E.||U'z|y with E,|U'z|%,
where p > 0 and p = 2 results in the PCA solution.
While the objective function E,||Utxz||3 of (12) is con-
vex, the constraint, and thus the optimization prob-
lem, is not convex. Robustness of the solution of (12)
under special conditions was studied in [28, 29].

This leads to the update formula

U = P, (U0 — el UO U O3
(13)

We can parametrize the U € RP*(P=4) matrices
by their complements and preserve the complexity
achievements of Method One above. We remark that
this second method is very similar to [45], when ap-
plied to a single subspace modeling (instead of hybrid
linear modeling).

3.2 Robust Incremental Method

This method is based on the GMS formulation. We
recall that the GMS algorithm defines the “robust pre-
cision” matrix
Q = arg min
QERM 4 tr(Q)=1

giving ¥ = Q7! as the “robust covariance”. Differen-

tiating we see that
o\ L
: E:L’ )

Trr

1Q ]l

Q=c

(15)
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where c is a constant. Equivalently,

zf\:: 71. .'EIT

c x
|

|(2)~tall2

This leads us to consider the update

.Ttl'tT

IR > NN D 3{ Ut SN el S
ted IS0 g

). an

However, after taking the rank-d projection, the in-
verse will not be defined.

By Sherman-Morrison-Woodbury formula,

SlggTy—1
S+z’) =8 - .
(24 227) 14+ 27X 1z

In order to compute and store this update efficiently,
we consider the inverse update

Z(t_l))_lxxT(Z(t_l))_l

()1 — (n(t=1))—-1 _ (
E9)7 = E T T (S0-D) 1

L(18)

Combining the rank-d update with the inverse update
yields the result. The inverse update can be com-
puted in 4D + 5Dd flops, with the subsequent rank-
one update remaining as efficient as in Arora et al. [1].
Therefore the robust incremental PCA still has run-
time O(N Dd?) and space complexity O(Dd).

3.3 Robust Online PCA

This method is based on the REAPER formulation.

Equation (3), which formulates the REAPER’s mini-

mization, suggests the following stochastic analogue:
ming E,[|Qz]|2 (19)

subject to tr(Q) = 1 and ||Q||2 < 51

D—d-

We remark that the minimizer of (19) is semi-definite
positive, so the constraint @ = 0 can be added to (19)
(in analogy to (6)).

Applying the mirror-descent algorithm to (19) with
the distance generating function being a shifted-and-
scaled version of the negative von Neumann entropy:
(M) = } (traceM In M + In D), we get the following
MEG updates:

(xta:tTQ(t)—FQ(t)xta:tT)
QU =11 (exp (lo QWY — .
T T

For the robust online PCA update above in (20), we
prove the following convergence guarantee.
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Lemma 3.1. If we perform T iterations with step size

N = % 5L, then

A . d(D—d
(D~ d)E, |Qall> < (D~d) inf Bq | Qx| + %
where Q is  sampled uniformly from the set
{QW,.Q®@,...QD}y.

Proof. Using Lemma 2 of [39], and an online-to-batch
conversion [8], we have that

A . 2B
(D — .| Qalle < (D - D) inf B |Qella + |/ 57

where B = supg ¥(Q), and we used a step size of

0, =1/ %. It is easy to check that ¥ is nonnegative and
1-strongly convex with respect to || - ||1. Furthermore,
the maximum value of V¥ is achieved on the corners of
the matrix simplex constraints:

1 1 d
sup W =—1 InD ) <-—.
i (@) 4<HD—d+n >_4D—d
Using this bound and a step-size of n, = 4n, =

% ﬁ, we get the desired bound. O

The efficiency of the online updates depends on the
ranks of the intermediate iterates. If k; denotes the
rank of the intermediate iterate Q*), the online algo-
rithm requires O(Nk2?D) operations to process N data
points, where k? = Ztlil k2.

4 Experimental Results

We run both artificial and natural experiments to ver-
ify that these algorithms reliably detect linear struc-
ture in the presence of outliers. We also try to measure
how well the algorithms perform in various regimes of
D, d, Noug, Nin, where Ny and Vi, represent the num-
ber of outliers and inliers respectively.

4.1 Artificial Data

We consider a data regime which consists of a low-
dimensional linear structure in the presence of high-
dimensional outliers (we follow [27] but allow asym-
metric covariance for the outliers). We summarize its
components in Table 1, while explaining them in de-
tails below.

The model for the inliers’ component fixes a d-
dimensional space L and the D x D matrix ¥;,, which
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Table 1: A model for sampling a low-dimensional lin-
ear structure in the presence of high-dimensional out-
liers

D Ambient dimension

L A d-dim. subspace of RP containing inliers
N; Number of inliers

Nouwt  Number of outliers

Pin Inlier number-per-dimension ratio: Ni,/d
Pout  Outlier number-per-dimension ratio: Noyu/D
Yout Asymmetric outlier covariance matrix

Yin Symmetric inlier covariance matrix

A knob to control outlier magnitude

is the identity on L and zero elsewhere. We draw in-
liers from N(0, (1/d)%y).

The model for the outliers fixes the D x D diagonal ma-
trix Xout, whose eigenvalues are 1,2,...,D. We draw
outliers from N (0, Eout(m)), where we nor-
malize by the mean of the eigenvalues of ¥, (which
we denote by mean(X,,;) to give outliers a compara-
ble magnitude to inliers. The multiplicative factor A
is used as a knob to control the outlier magnitude.

Figures 1, 2 and 3 show the outcome of experiments in
various data regimes at extremes. The robust online
PCA clearly outperforms all algorithms consistently in
all these regimes and converges quickly to the ground
truth. The second stochastic formulation of robust
PCA is also doing well.

Following the discussion in [27], we introduce the use-
ful statistics pin, pout (see Table 1). Using (batch)
REAPER, recovery guarantees are seen to be linear
with respect to pi, and poyt. This may be visualized
in Figure 4, which is the result of the robust online
PCA algorithm running after 3000 iterations. Note
that because our initializations are random, some noise
is introduced into this graph that indicates some sen-
sitivity to initialization.

4.2 Astronomical Data

An interesting test of our streaming algorithms are
astronomical data sets. As telescopes gather more and
more astronomical data, it is critical to find ways of
processing these data sets quickly without sacrificing
much in accuracy.

A particularly interesting data set is the VIMOS Very
Large Telescope (VIMOS-VLT) Deep Survey [16],
which is aimed at understanding the evolution of
galaxies. For details on the problem and data set,
consult [16, 6].

Batch-PCA does not work well in this context because
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Table 2: The subspace recovery error || Py, — P;||r/3v/2 for the different algorithms and the face experiment

SGD | R-SGD1 | R-SGD2 | Inc | R-Inc | MD | R-MD
0.64 0.84 0.74 0.62 | 0.60 | 0.52 | 045
of the high noise-to-signal ratio. We compare the top  the best.

4 eigenspectra of our robust online method with the
top 4 given by [6].

We seek to represent the spectrum of a galaxy by a
few continuous parameters that account for the best-
fit spectrum. Thus good methods are roughly con-
tinuous. Figure 5 compares the robust online PCA
algorithm with the robust PCA algorithm employed
in the state-of-the art eigenspectra extraction and the
non-robust online PCA algorithm. Visually the eigen-
pectra uncovered by robust online PCA are a close and
relatively smooth fit to ground truth (closely approx-
imated by the eigenspectra uncovered by [6]), while
online PCA is completely failing to discover the eigen-
spectra.

4.3 Face Data

We compose a data set containing images of faces un-
der different illuminating conditions, which serve as in-
liers concentrated around a low-dimensional subspace,
and random natural images, which serve as outliers.

The inliers are 640 face images from the Extended Yale
Face Database [26], where there are 10 faces and for
each face 64 images were taken under different illu-
minating conditions (the images are cropped to con-
tain only the region of the face). In theory, images
of a face under varying illuminating conditions are
well-approximated by a 3-dimensional linear subspace
if there are no shadows [26] and well-approximated
by a 9-dimensional subspace when they contain shad-
ows [3]. In practice, 5-dimensional subspaces approxi-
mate well each one of these faces. Here we consider a
low-rank model to the set of all faces. We set d = 9
since we were still able to recover faces after projecting
them onto a 9-dimensional subspace.

The outliers are 400 random images from the
BACKGROUND/Google folder of the Caltechl01
database [13] as outliers. All images (both inliers and
outliers) are converted to grayscale and downsampled
to 20 x 20 pixels.

We apply the algorithms of Section 3 to this data set
to obtain a 9-dimensional subspace. In Figure 6, we
visually demonstrate the results by showing the projec-
tions of the face images to the learned subspace; clearer
images indicate on better performance for this partic-
ular images. For these examples the robust methods
performs better, while the robust online PCA performs

We also quantitatively measure the performance
of these algorithms by the error term |Pr, —
P;||r/(3v2), where L is the fitted subspace by the
algorithms and L, is the subspace fitted by PCA to
the set of inliers. When L* L L, | Py, — P;illp = 3V2;
therefore, we normalize | P, — P; || by 3v/2 in order
to get an error between 0 and 1. The smaller the er-
ror the better the estimated subspace. These errors
are recorded in Table 2, which indicates that generally
the robust methods work better than the non-robust
ones and that the robust online PCA has the smallest
subspace recovery error.

5 Conclusion

We have developed stochastic formulations of robust
PCA in analogy to common stochastic formulations of
PCA. As in the PCA case, there remain no quanti-
tative guarantees for the gradient descent or the pure
incremental methods. However we have shown in arti-
ficial and real data that our algorithms perform better
than stochastic PCA (non-robust) methods on outlier-
corrupted data. We extended the previous stochastic
formulations without sacrificing computation or speed.
We also proved a sub-linear convergence rates for a ro-
bust analogue to the online PCA algorithm.

It is worth noting for the practitioner that projecting
all data points onto the sphere as a pre-processing step
in and of itself introduces quite a bit of robustness even
to traditional online PCA. In particular the algorithm
of Warmuth and Kuzmin [40] closely parallels the suc-
cess of robust online PCA after projecting data to the
sphere, though even here robust PCA retains a slight
edge.
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Figure 6: From left to right: the original images, the projection of original images to the fitted subspace by the
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