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Supplemental Material
A Proofs

When bounding the Rademacher complexity for Lipschitz
continuous loss classes (such as the hinge loss or the
squared loss), the following lemma is often very helpful.

Lemma A.1 (Talagrand’s lemma [41]). Let l : R → R be a
loss function that is L-Lipschitz continuous and l(0) = 0.
Let F be a hypothesis class of real-valued functions and
denote its loss class by G := l ◦ F . Then the following
inequality holds:

Rn(G) ≤ 2LRn(F).

We can use the above result to prove Lemma 3.

Proof of Lemma 3. Since the LATENTSVDD loss function
is 1-Lipschitz with l(0) = 0, by Lemma A.1, it is sufficient
to bound R(FSVDD(z)). To this end, it holds
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Note that the term to the right is zero because the
Rademacher variables are random signs, independent of
x1, . . . ,xn. The term to the left can be bounded as fol-
lows:
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where for (∗) we employ Jensen’s inequality. Moreover,
applying the Cauchy-Schwarz inequality and Jensen’s in-

equality, respectively, we obtain
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because P(�Ψ(xi, z)� ≤ B) = 1. Hence, inserting the
results (A.3.2) and (A.3.3) into (A.3.1), yields the claimed
result, that is,
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(A.3.4)

Next, we invoke the following result, taken from [23]
(Lemma 8.1).

Lemma A.2. LetF1, . . . ,Fl be hypothesis sets inRX , and
let F := {max(f1, . . . , fl} : fi ∈ Fi, i ∈ {1, . . . , l}}.
Then,

Rn(F) ≤
l�

j=1

Rn(Fj).

Sketch of proof [23]. The idea of the proof is to
write max(h1, h2) = 1

2 (h1 + h2 + |h1 − h2|), and
then to show that
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This proof technique also generalizes to l > 2.

We can use Lemma A.2 and Lemma 3, to conclude the
main theorem of this paper, that is, Theorem 2, which
establishes generalization guarantees of the usual order
O(1/

√
n) for the proposed LATENTSVDD method.

Proof of Theorem 2. First observe that, because l is 1-
Lipschitz,

Rn(GLATENTSVDD) ≤ Rn(FLATENTSVDD).
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Next, note that we can write
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Thus, by Lemma 2 and Lemma 4,
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Moreover, observe that the loss function in the definition
of GLATENTSVDD can only range in the interval [0, B]. Thus,
Theorem 2 in the main paper gives the claimed result, that
is,
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