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Abstract

We study a probabilistic numerical method
for the solution of both boundary and ini-
tial value problems that returns a joint Gaus-
sian process posterior over the solution. Such
methods have concrete value in the statis-
tics on Riemannian manifolds, where non-
analytic ordinary differential equations are
involved in virtually all computations. The
probabilistic formulation permits marginalis-
ing the uncertainty of the numerical solution
such that statistics are less sensitive to in-
accuracies. This leads to new Riemannian
algorithms for mean value computations and
principal geodesic analysis. Marginalisation
also means results can be less precise than
point estimates, enabling a noticeable speed-
up over the state of the art. Our approach
is an argument for a wider point that uncer-
tainty caused by numerical calculations should
be tracked throughout the pipeline of machine
learning algorithms.

1 Introduction

Systems of ordinary differential equations (ODEs), de-
fined here as equations of the form

c(n)(t) = f(c(t), c′(t), . . . , c(n−1)(t), t) (1)

with c ∶ R_RD and f ∶ RnD × R_RD are essential
tools of numerical mathematics. In machine learning
and statistics, they play a role in the prediction of
future states in dynamical settings, but another area
where they have a particularly central role are statisti-
cal computations on Riemannian manifolds. On such
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manifolds, the distance between two points is defined
as the length of the shortest path connecting them, and
calculating this path requires solving ordinary differen-
tial equations. Distances are elementary, so virtually all
computations in Riemannian statistics involve numer-
ical ODE solvers (Sec. 2). Just calculating the mean
of a dataset of P points, trivial in Euclidean space,
requires optimisation of P geodesics, thus the repeated
solution of P ODEs. Errors introduced by this heavy
use of numerical machinery are structured and biased,
but hard to quantify, mostly because numerical solvers
do not return sufficiently structured error estimates.

The problem of solving ordinary differential equations
is very well studied (Hairer et al. [1987, §1] give a his-
torical overview), and modern ODE solvers are highly
evolved. But at their core they are still based on the
seminal work of Runge [1895] and Kutta [1901], a care-
fully designed process of iterative extrapolation. In
fact, ODE solvers, like other numerical methods, can
be interpreted as inference algorithms [Diaconis, 1988,
O’Hagan, 1992], in that they estimate an intractable
quantity (the ODE’s solution) given “observations” of
an accessible quantity (values of f). Like all estimators,
these methods are subject to an error between estimate
and truth. Modern solvers can estimate this error
[Hairer et al., 1987, §II.3 & §II.4], but generally only
as a numerical bound at the end of each local step, not
in a functional form over the space of solutions. In this
paper we study and extend an idea originally proposed
by John Skilling [1991] to construct (Sec. 3) a class
of probabilistic solvers for both boundary value prob-
lems (BVPs) and initial value problems (IVPs). Our
version of Skilling’s algorithm returns nonparametric
posterior probability measures over the space of solu-
tions of the ODE. This kind of structured uncertainty
improves Riemannian statistics, where the solution of
the ODE is a latent “nuisance” variable. As elsewhere,
it is beneficial to replace point estimates over such vari-
ables with probability distributions and marginalise
over them (Sec. 4). A second, remarkable result is that,
although the probabilistic solver presented here pro-
vides additional functionality, when applied to concrete
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problems in Riemannian statistics, it can actually be
faster than standard boundary value problem solvers
(as implemented in Matlab). One reason is that the
answers returned by the probabilistic solver can be less
precise, because small errors are smoothed out when
marginalised over the posterior uncertainty. As the
cost of Riemannian statistics is dominated by that of
solving ODEs, time saved by being “explicitly sloppy”
in the probabilistic sense is of great value. Sec. 5 offers
some empirical evaluations. A Matlab implementation
of the solver is published alongside this manuscript1.

The focus of this text is on the concrete case of Rie-
mannian statistics and ODEs. But we believe it to
be a good example for the value of probabilistic nu-
merical methods to machine learning and statistics
more generally. Treating numerical algorithms as black
boxes ignores their role as error sources and can cause
unnecessary computational complexity. Our results
show that algorithms designed with probabilistic calcu-
lations in mind can offer qualitative and quantitative
benefits. In particular, they can propagate uncertainty
through a numerical computation, providing a joint
approximate distribution between input and output of
the computation.

2 Riemannian Statistics

Statistics on Riemannian manifolds is becoming in-
creasingly acknowledged as it allows for statistics in
constrained spaces, and in spaces with a smoothly
changing metric. Examples include analysis of shape
[Freifeld and Black, 2012, Fletcher et al., 2004], hu-
man poses [Hauberg et al., 2012b] and image features
[Porikli et al., 2006]. Here we focus on Riemannian
statistics in metric learning, where a smoothly chang-
ing metric locally adapts to the data [Hauberg et al.,
2012a].

Let M(x) ∈ RD×D denote a positive definite, smoothly
changing, metric tensor function at x ∈ RD. It locally
defines a norm ∥y∥2

M(x) = y⊺M(x)y. This norm in

turn defines [Berger, 2007] the length of a curve c ∶
[0,1]_RD as Length(c) ∶= ∫

1
0 ∥c′(t)∥M(c(t))dt. For

two points a, b, the shortest connecting curve, c =
arg minĉ Length(ĉ) is known as a geodesic, and defines
the distance between a and b on the manifold. Using
the Euler-Lagrange equation, it can be shown [Hauberg
et al., 2012a] that geodesics must satisfy the system of
homogenous second-order boundary value problems

c′′(t) = −1

2
M−1(c(t)) [∂

# ‰

M(c(t))
∂c(t)

]
⊺
[c′(t)⊗ c′(t)]

=∶ f(c(t), c′(t)), with c(0) = a, c(1) = b. (2)

1http://probabilistic-numerics.org/ODEs.html

where the notation
# ‰

M indicates the vectorization oper-

ation returning a vector ∈ RD
2

, formed by stacking the
elements of the D ×D matrix M row by row, and ⊗ is
the Kronecker product, which is associated with the
vectorization operation [van Loan, 2000]. The short-
hand f(c(t), c′(t)) is used throughout the paper. For
simple manifolds this BVP can be solved analytically,
but most models of interest require numerical solutions.

The geodesic starting at a with initial direction v is
given by the initial value problem

c′′(t) = f(c(t), c′(t)), c(0) = a and c′(0) = v. (3)

By the Picard–Lindelöf theorem [Tenenbaum and Pol-
lard, 1963], this curve exists and is locally unique. As v
is the derivative of a curve on the manifold at a, it be-
longs to the tangent space of the manifold at a. Eq. (3)
implies that geodesics can be fully described by their
tangent v at c(0). This observation is a corner-stone of
statistical operations on Riemannian manifolds, which
typically start with a point µ (often the mean), com-
pute geodesics from there to all data points, and then
perform Euclidean statistics on the tangents v1∶P at µ.
This implicitly gives statistics of the geodesics.

These concepts are formalised by the exponential and
logarithm maps, connecting the tangent space and the
manifold. The exponential map Expa(v) returns the
end-point of the geodesic c satisfying Eq. (3) such that
Length(c) = ∥v∥. The logarithm map Loga(b) is the
inverse of the exponential map. It returns the initial
direction of the geodesic from a to b, normalised to the
length of the geodesic, i.e.

Loga(b) =
c′(0)

∥c′(0)∥Length(c). (4)

The following paragraphs give examples for how this
theory is used in statistics, and how the use of numerical
solvers in these problems affect the results and their
utility, thus motivating the use of a probabilistic solver.

Means on Manifolds The most basic statistic of
interest is the mean, which is defined as the minimiser of
the sum of squared distances on the manifold. A global
minimiser is called the Frechét mean, while a local
minimiser is called a Karcher mean [Pennec, 1999]. In
general, closed-form solutions do not exist and gradient
descent is applied; the update rule of µk with learning
rate α is [Pennec, 1999]

µk+1 = Expµk
(α 1

P

P

∑
i=1 Logµk

(xi)) . (5)

One practical issue is that, in each iteration, the ex-
ponential and logarithm maps need to be computed
numerically. Each evaluation of Eq. (5) requires the
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solution of P BVPs and one IVP. Practitioners thus
perform only a few iterations rather than run gradient
descent to convergence. Intuitively, it is clear that these
initial steps of gradient descent do not require high nu-
merical precision. The solver should only control their
error sufficiently to find a rough direction of descent.

Principal Geodesic Analysis A generalisation of
principal component analysis (PCA) to Riemannian
manifolds is principal geodesic analysis (PGA) [Fletcher
et al., 2004]. It performs ordinary PCA in the tangent
space at the mean, i.e. the principal directions are found
as the eigenvectors of Logµ(x1∶P ), where µ is the mean
as computed by Eq. (5). The principal direction v is
then mapped back to the manifold to form principal
geodesics via the exponential map, i.e. γ(t) = Expµ(tv).

Again, this involves solving for P geodesics: one from
each xi to the mean. As the statistics are performed
on the (notoriously unstable) derivatives of the nu-
merical solutions, here, high-accuracy solvers are re-
quired. These computational demands only allow for
low-sample applications of PGA.

Applications in Metric Learning The original ap-
peal of Riemannian statistics is that many types of data
naturally live on known Riemannian manifolds [Freifeld
and Black, 2012, Fletcher et al., 2004, Porikli et al.,
2006], for example certain Lie groups. But a recent
generalisation is to estimate a smoothly varying metric
tensor from the data, using metric learning, and per-
form Riemannian statistics on the manifold implied by
the smooth metric [Hauberg et al., 2012a]. The idea
is to regress a smoothly changing metric tensor from
learned metrics M1∶R as

M(x) =
R

∑
r=1

w̃r(x)
∑Rj=1 w̃j(x)Mr, where (6)

w̃r(x) = exp(−ρ
2
(x − µr)⊺Mr(x − µr)) . (7)

As above, geodesics on this manifold require numeric so-
lutions; hence this approach is currently only applicable
to fairly small problems. The point estimates returned
by numerical solvers, and their difficult to control com-
putational cost, are both a conceptual and computa-
tional roadblock for the practical use of Riemannian
statistics. A method returning explicit probabilistic
error estimates, at low cost, is needed.

3 Solving ODEs with Gaussian
process priors

Writing in 1991, John Skilling proposed treating initial
value problems as a recursive Gaussian regression prob-
lem: Given a Gaussian estimate for the solution of the

ODE, one can evaluate a linearization of f , thus con-
struct a Gaussian uncertain evaluation of the derivative
of c, and use it to update the belief on c. The deriva-
tions below start with a compact introduction to this
idea in a contemporary notation using Gaussian process
priors, which is sufficiently general to be applicable to
both boundary and initial values. Extending Skilling’s
method, we introduce a way to iteratively refine the es-
timates of the method similar to implicit Runge-Kutta
methods, and a method to infer the hyperparameters
of the algorithm.

The upshot of these derivations is a method returning
a nonparametric posterior over the solution of both
boundary and initial value problems. Besides this more
expressive posterior uncertainty, another functional
improvement over contemporary solvers is that these
kind of algorithms allow for Gaussian uncertainty on
the boundary or initial values, an essential building
block of probabilistic computations.

In parallel work, Chkrebtii et al. [2013] have studied
several theoretical aspects of Skilling’s method thor-
oughly. Among other things, they provide a proof of
consistency of the probabilistic estimator and argue for
the uniqueness of Gaussian priors on ODE and PDE
solutions. Here, we focus on the use of such proba-
bilistic numerical methods within a larger (statistical)
computational pipeline, to demonstrate the strengths
of this approach, argue for its use, and highlight open
research questions. We also offer a minor theoretical
observation in Section 3.5, to highlight a connection be-
tween Skilling’s approach and the classic Runge-Kutta
framework that has previously been overlooked.

Conceptually, the algorithm derived in the following
applies to the general case of Eq. (1). For concreteness
and simplicity of notation, though, we focus on the
case of a second-order ODE. All experiments will be
performed in the Riemannian context, where the object
to be inferred is the geodesic curve c ∶ t ∈ R↦ c(t) ∈ RD
consistent with Eqs. (2) or (3): Distance calculations
between two points are boundary value problems of
the form c(0) = a, c(1) = b. Shifts of variables along
geodesics are initial value problems of the form c(0) = a,
c′(0) = v where v is the length of the geodesic. The
probabilistically uncertain versions of these are

p(c(0), c(1)) = N (c(0);a,∆a)N (c(1); b,∆b), or (8)

p(c(0), c′(0)) = N (c(0);a,∆a)N (c′(0); v,∆v). (9)

with positive semidefinite covariance matrices
∆a,∆b,∆v ∈ RD×D.

3.1 Prior

We assign a joint Gaussian process prior over the el-
ements of the geodesic, with a covariance function
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factorizing between its input and output dependence
(ci(t) is the i-th element of c(t) ∈ RD):

p(c(t)) = GP(c;µc, V ⊗ k), that is, (10)

cov(ci(t1), cj(t2)) = Vijk(t1, t2),

with a positive semidefinite matrix V – the covariance
between output dimensions, and a positive semidefinite
kernel k ∶ R × R_R defining the covariance between
scalar locations along the curve. The geodesic problem
only involves values t ∈ [0, 1], but this restriction is not
necessary in general. The mean functions µc ∶ R_RD
have only minor effects on the algorithm. For BVPs
and IVPs, we choose linear functions µ(t) = a+ (b−a)t
and µ(t) = a + vt, respectively. There is a wide space
of covariance functions available for Gaussian process
regression [Rasmussen and Williams, 2006, §4]. In prin-
ciple, every smooth covariance function can be used for
the following derivations (more precisely, see Eq. (11)
below). For our implementation we use the popular
square-exponential (aka. radial basis function, Gaus-
sian) kernel k(t1, t2) = exp [−(t1 − t2)2/(2λ2)]. This
amounts to the prior assumption that geodesics are
smooth curves varying on a length scale of λ along t,
with output covariance V . Sec. 3.4 below explains how
to choose these hyperparameters.

Gaussian processes are closed under linear transforma-
tions. For any linear operator A, if p(x) = GP(x;µ, k)
then p(Ax) = GP(Ax;Aµ,AkA⊺). In particular, a
Gaussian process prior on the geodesics c thus also
implies a Gaussian process belief over any derivative
∂nc(t)/∂tn (see Rasmussen and Williams [2006, §9.4]),
with mean function ∂nµ(t)/∂tn and covariance function

cov(∂
nci(t1)
∂tn1

,
∂ncj(t2)
∂tn2

) = Vij
∂2nk(t1, t2)
∂tn1∂t

n
2

, (11)

provided the necessary derivatives of k exist, as they
do for the square-exponential kernel ∀n ∈ N. Explicit
algebraic forms for the square-exponential kernel’s case
can be found in the supplements.

The boundary or initial values a, b or a, v, can be in-
corporated into the Gaussian process belief over c an-
alytically via the factors defined in Eqs. (8) and (9).
For the case of boundary value problems, this gives
a Gaussian process conditional over c with mean and
covariance functions (c.f. supplements)

µc ∣a,b(t) = µc(t) + [V ⊗ (kt0 kt1)] (12)

⋅ [V ⊗ (k00 k01

k10 k11
) + (∆a 0

0 ∆b
)]

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶G−1

(a − µc(0)
b − µc(1)

)

and cov(c(t1), c(t2) ∣a, b) = V ⊗ kt1,t2

− [V ⊗ (kt10 kt11)]G−1 [V ⊗ (k0t2

k1t2
)] .

For IVPs, kt11, k1t2 have to be replaced with k′t10, k
′
0t2 ,

b with v and µc(1) with µ′c(0).
3.2 Likelihood

At this point we pick up Skilling’s idea: Select a se-
quence t1, . . . , tN ∈ [0,1] of representer points. The
algorithm now moves iteratively from t1 to tN . At
point ti, construct estimates [ĉi, ĉ′i] for the solution
of the ODE and its derivative. The mean (and si-
multaneously the most probable) estimate under the
Gaussian process belief on c is the mean function,
so we choose ĉi = µc ∣a,b(ti), ĉ′i = ∂tµc ∣a,b(ti). This
estimate can be used to construct an “observation”
yi ∶= f(ĉi, ĉ′i) ≈ c′′(ti) of the curvature of c along the
solution. For our application we use the f defined in
Eq. (2). This is homogeneous, so ti does not feature
as a direct input to f , but other f ’s, including inho-
mogeneous ones, can be treated in the exact same way.
The idea of constructing such approximately correct
evaluations of f along the solution is also at the heart
of classic ODE solvers such as the Runge-Kutta family
(see Section 3.5). Skilling’s idea, however, is to prob-
abilistically describe the error of this estimation by a
Gaussian distribution: Assume that we have access to
upper bounds U,U ′ ∈ RD on the absolute values of the
elements of the Jacobians of f with respect to c and
c′:
∣
∂fj(c(t), c′(t))

∂ci(t)
∣ < Uij and ∣

∂fj(c(t), c′(t))
∂c′i(t) ∣ < U ′

ij

(13)
for all t ∈ [0,1]; i, j ∈ (1, . . . ,D). In the specific case
of the Riemannian problem on learned metrics, these
bounds arise from analysis of Eq. (7). The uncertainty
on c, c′ around ĉi, ĉ

′
i is Gaussian, with covariance (see

also supplements)

(Σcci Σcc
′

i

Σc
′c
i Σc

′c′

i

) ∶= V ⊗ (ktiti k′ti,ti
k′titi k′′titi ) (14)

− [V ⊗ (kti0 kti1
k′ti0 k′ti1)]G

−1 [V ⊗ (k0ti k′0ti
k1ti k′1ti)] ∈ R

2D×2D.

Considering this prior uncertainty on c, c′ to first order,
the error caused by the estimation of c, c′ used to con-
struct the observation yi is bounded by a zero-mean
Gaussian, with covariance (in RD×D)

Λi = U⊺Σcci U + ∣U ′⊺Σc
′c
i U ∣ + ∣U⊺Σcc

′

i U ′∣ +U ′⊺Σc
′c′

i U ′.
(15)

This uncertain observation yi of c′′(ti) is included into
the belief over c as the likelihood factor

p(yi ∣ c) = N (yi; c′′(ti),Λi). (16)
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Figure 1: Convergence of probabilistic ODE solver as number of evaluation points increases. Each panel shows a
dataset (grey points) whose distribution determines a Riemannian manifold. The algorithm infers the geodesic
connecting two points (black) on this manifold. Mean of inferred Gaussian process posterior in red. Evaluation
points of the ODE in orange. Green lines are samples drawn from the posterior belief over geodesics. Left-most
panel: no ODE evaluations (only boundary values). The supplements contain an animated version of this figure.

The algorithm now moves to ti+1 and repeats.

3.3 Posterior

After N steps, the algorithm has collected N evalu-
ations yi = f(ĉi, ĉ′i), and constructed equally many
uncertainty estimates Λi. The marginal distribution
over the yi under the prior (10) is Gaussian with mean
[∂2µc(t1)/∂t2, . . . , ∂2µc(tN)/∂t2]⊺ and covariance

Γ ∶= V ⊗ k(4)TT +Λ (17)

where k
(4)
TT ∈ RN×N with k

(4)
TT,ij =

∂4k(ti, tj)
∂t2i ∂t

2
j

.

The matrix Λ ∈ RDN×DN is a rearranged form of the
block diagonal matrix whose N -th block diagonal ele-
ment is the matrix Λi ∈ RD×D. The posterior distribu-
tion over c, and the output of the algorithm, is thus a
Gaussian process with mean function

µc ∣a,b,Y (t) = µc(t) + [V ⊗ (kt0 kt1 k′′tT )] ⋅
⎡⎢⎢⎢⎢⎢⎣
V ⊗

⎛
⎜
⎝

k00 k01 k′′0T
k10 k11 k′′1T
k′′T0 k′′T1 k

(4)
TT

⎞
⎟
⎠
+
⎛
⎜
⎝

∆a 0 0
0 ∆b 0
0 0 Λ

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶Γ−1
⋅ [a − µc(0) b − µc(1) Y − µ′′c (T )]⊺ (18)

(where k′′0tj = ∂k(0, tj)/∂t2j , etc.) and covariance func-
tion (see also supplements)

cov(c(t1), c(t2) ∣a, b, Y ) = V ⊗ kt1,t2

− [V ⊗ (kt0 kt1 k′′tT )]Γ−1

⎡⎢⎢⎢⎢⎢⎣
V ⊗

⎛
⎜
⎝

k0t2

k1t2

k′′Tt2
⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
. (19)

Fig. 1 shows conceptual sketches. Crucially, this poste-
rior is a joint distribution over the entire curve, not just
about its value at a particular value along the curve.

This sets it apart from the error bounds returned by
classic ODE solvers, and means it can be used directly
for Riemannian statistics (Sec. 4).

3.3.1 Iterative Refinements

We have found empirically that the estimates of the
method can be meaningfully (albeit not drastically)
improved by a small number of iterations over the
estimates ĉi, ĉ

′
i after the first round, without changing

the Gram matrix Γ. In other words, we update the
mean estimates used to construct ĉ, ĉ′ based on the
posterior arising from later evaluations. This idea
is related to the idea behind implicit Runge-Kutta
methods [Hairer et al., 1987, §II.7]. It is important not
to update Γ based on the posterior uncertainty in this
process; this would lead to strong over-fitting, because
it ignores the recursive role earlier evaluation play in
the construction of later estimates.

3.4 Choice of Hyperparameters and
Evaluation Points

The prior definitions of Eq. (10) rely on two hyperpa-
rameters V and λ. The output covariance V defines
the overall scale on which values c(t) are expected to
vary. For curves within a dataset x1∶P ∈ RD, we assume
that the curves are typically limited to the Euclidean
domain covered by the data, and that geodesics con-
necting points close within the dataset typically have
smaller absolute values than those geodesics connecting
points far apart within the dataset. For curves between
a, b, we thus set V in an empirical Bayesian fashion
to V = [(a − b)⊺Sx(a − b)] ⋅Sx ∈ RD×D, where Sx is the
sample covariance of the dataset x1∶P . For IVPs, we
replace (a − b) in this expression by v.

The width λ of the covariance function controls the
regularity of the inferred curve. Values λ ≪ 1 give
rise to rough estimates associated with high posterior
uncertainty, while λ≫ 1 gives regular, almost-straight
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curves with relatively low posterior uncertainty. Follow-
ing a widely adapted approach in Gaussian regression
[Rasmussen and Williams, 2006, §5.2], we choose λ to
maximise its marginal likelihood under the observa-
tions Y . This marginal is Gaussian. Using the Gram
matrix Γ from Eq. (18), its logarithm is

−2 log p(Y, a, b ∣λ) =
⎛
⎜
⎝

a − µc(0)
b − µc(1)
Y − µ′′c (T )

⎞
⎟
⎠

⊺
Γ−1

⎛
⎜
⎝

a − µc(0)
b − µc(1)
Y − µ′′c (T )

⎞
⎟
⎠

+ log ∣Γ∣ + (2 +N) log 2π. (20)

A final design choice is the location of the evaluation
points ti. The optimal choice of the grid points depends
on f and is computationally prohibitive, so we use a
pre-determined grid. For BVP’s, we use sigmoid grids
such as ti = 0.5(1+erf(−1.5+3i/N)) as they emphasise
boundary areas; for IVP’s we use linear grids. But
alternative choices give acceptably good results as well.

x1 [arbitrary units]

x
2
[a
rb

it
ra

ry
u
n
it
s]

Figure 2: Solving five BVPs within a dataset (grey
points). Orange: solutions found by Matlab’s bvp5c.
For the probabilistic solver, 30 posterior samples (thin
green), and mean as thick red line. Simpler short curves
lead to confident predictions, while the challenging
curve to the bottom left has drastic uncertainty. Top
right curve demonstrates the ability, not offered by
classic methods, to deal with uncertain boundary values
(the black ellipse represents two standard deviations).

Cost Because of the inversion of the ((N + 2)D) ×
((N +2)D) matrix Γ in Eq. (18), the method described
here has computational cost O(D3N3). This may
sound costly. However, both N and D are usually
small numbers for problems in Riemannian statistics.
Modern ODE solvers rely on a number of additional
algorithmic steps to improve performance, which lead
to considerable computational overhead. Since point
estimates require high precision, the computational
cost of existing methods is quite high in practice. We
will show below that, since probabilistic estimates can
be marginalised within statistical calculations, our al-
gorithm in fact improves computation time.

3.5 Relationship to Runge-Kutta methods

The idea of iteratively constructing estimates for the
solution and using them to extrapolate may seem ad
hoc. In fact, the step from the established Runge-
Kutta (RK) methods to this probabilistic approach is
shorter than one might think. RK methods proceed in
extrapolation steps of length h. Each such step con-
sists of N evaluations yi = f(ĉi, ti). The estimate ĉi is
constructed by a linear combination of the previous
evaluations and the initial values: ĉi = w0c0+∑i−1

j=1wjyj .
This is exactly the structure of the mean prediction of
Eq. (18). The difference lies in the way the weights wj
are constructed. For RK, they are constructed carefully
such that the error between the true solution of the
ODE and the estimated solution is O(h−N). Ensuring
this is highly nontrivial, and often cited as a historical
achievement of numerical mathematics [Hairer et al.,
1987, §II.5]. In the Gaussian process framework, the
wi arise much more straightforwardly, from Eq. (18),
the prior choice of kernel, and a (currently ad hoc)
exploration strategy in t. The strength of this is that it
naturally gives a probabilistic generative model for so-
lutions, and thus various additional functionality. The
downside is that, in this simplistic form, the proba-
bilistic solver can not be expected to give the same
local error bounds as RK methods. In fact one can
readily construct examples where our specific form of
the algorithm has low order. It remains a challenging
research question whether the frameworks of nonpara-
metric regression and Runge-Kutta methods can be
unified under a consistent probabilistic concept.

4 Probabilistic Calculations on
Riemannian Manifolds

We briefly describe how the results from Sec. 3 can be
combined with the concepts from Sec. 2 to define tools
for Riemannian statistics that marginalise numerical
uncertainty of the solver.

Exponential maps Given an initial point a ∼
N (ā,Σa) and initial direction v ∼ N (v̄,Σv), the ex-
ponential map can be computed by solving an IVP (3)
as described in Sec. 3. This makes direct use of the
ability of the solver to deal with uncertain boundary
and initial values.

Logarithm maps The logarithm map (4) is slightly
more complicated to compute as the length of a geodesic
cannot be computed linearly. We can, however, sample
from the logarithm map as follows. Let a ∼ N (ā,Σa)
and b ∼ N (b̄,Σb) and construct the geodesic Gaussian
process posterior. Sample cs and c′s from this process
and compute the corresponding logarithm map using
Eq. (4). The length of cs is evaluated using standard

352



Hennig & Hauberg

quadrature. The mean and covariance of the logarithm
map can then be estimated from the samples. Resorting
to a sampling method might seem expensive, but in
practice the runtime is dominated by the BVP solver.

Computing Means The mean of x1∶P is computed
using gradient descent (5), so we need to track the
uncertainty through this optimisation. Let µk ∼
N (µ̄k,Σµi) denote the estimate of the mean at itera-
tion i of the gradient descent scheme. First, compute
the mean and covariance of

v = 1

P
∑
i

Logµk
(xi) (21)

by sampling as above. Assuming v follows a Gaussian
distribution with the estimated mean and covariance,
we then directly compute the distribution of

µk+1 = Expµk
(αv). (22)

Probabilistic optimisation algorithms [Hennig, 2013],
which can directly return probabilistic estimates for the
shape of the gradient (5), are a potential alternative.

Computing Principal Geodesics Given a mean
µ ∼ N (µ̄,Σµ), estimate the mean and covariance of
Logµ(x1∶P ) and use these to estimate the mean and
covariance of the principal direction v. The principal
geodesic can then be computed as γ = Expµ(v).

5 Experiments

This section reports on experiments with the suggested
algorithms. It begins with an illustrative experiment on
the well-known MNIST handwritten data set2, followed
by a study of the running time of the algorithms on
the same data. Finally, we use the algorithms for
visualising changes in human body shape.

5.1 Handwritten Digits

Fig. 3 (next page, for layout reasons), left and cen-
tre, show 1000 images of the digit 1 expressed in the
first two principal components of the data. This data
roughly follows a one-dimensional nonlinear structure,
which we estimate using PGA. To find geodesics that
follow the local structure of the data, we learn local
metric tensors as local inverse covariance matrices, and
combine them to form a smoothly changing metric
using Eq. 7. The local metric tensors are learned us-
ing a standard EM algorithm for Gaussian mixtures
[McLachlan and Krishnan, 1997].

For comparison, we consider a state-of-the-art BVP
solver as implemented in Matlab in bvp5c (a four-
stage implicit Runge-Kutta method [Hairer et al., 1987,

2http://yann.lecun.com/exdb/mnist/
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Figure 4: Inferred curve lengths for the 1000 geodesics
from Figure 3. The probabilistic estimates for the
lengths (mean ± 2 standard deviations) are plotted
against the (assumed reliable) point estimates of Mat-
lab’s bvp5c.
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Figure 5: Runtime of bvp5c against that of the prob-
abilistic solver for the same geodesics (note differing
abscissa and ordinate scales). The color of points en-
codes the length of the corresponding curve, from 0
(white) to 200 (dark red), for comparison with Fig. 4.

§II.7]). This does not provide an uncertain output, so
we resort to the deterministic Riemannian statistics
algorithms (Sec. 2). Fig. 3, left, shows a few geodesics
from the mean computed by our solver as well as bvp5c.
The geodesics provided by the two solvers are compa-
rable and tend to follow the structure of the data.
Fig. 3, centre, shows the principal geodesics of the data
computed using the different solvers; the results are
comparable. This impression is supported by a more
close comparison of the results: Figure 4 shows curve
lengths achieved by the two solvers. While bvp5c tends
to perform slightly better, in particular for long curves,
the error estimates of the probabilistic solvers reflect
the algorithm’s imprecision quite well.

Even within this simple two-dimensional setting, the
running times of the two different solvers can diverge
considerably. Figure 5 plots the two runtimes against
each other (along with the corresponding curve length,
in color). The probabilistic solvers’ slight decrease in
precision is accompanied by a decrease in computa-
tional cost by about an order of magnitude. Due to
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Figure 3: Results on 1000 images of the digit 1 from the MNIST handwritten digits data set, projected into its
first two principal components. Left: Several geodesics from the mean computed using the probabilistic solver
(red mean predictions, green samples) as well as Matlab’s bvp5c (orange). Middle: The principal geodesics
estimated using the same two solvers. Right: Running time of a mean value computation using different solvers
as a function of the dimensionality.

µ − 3σ µ µ + 3σ

Figure 6: Samples from the posterior over the principal
geodesic through the body shape dataset, estimated
under a metric learned to emphasise belly circumfer-
ence. Six samples each at the inferred manifold mean
(centre) and three standard deviations of the dataset
in either direction (left, right). The variation is shown
in the supplementary video.

its design, the computational cost of the probabilistic
solver is almost unaffected by the complexity of the
problem (length of the curve). Instead, harder problems
simply lead to larger uncertainty. As dimensionality
increases, this advantage grows. Fig. 3, right, shows
the running time for computations of the mean for an
increasing number of dimensions. For this experiment
we use 100 images and 5 iterations of the gradient
descent scheme. As the plot shows, the probabilistic
approach is substantially faster in this experiment.

5.2 Human Body Shape

We also experimented with human body shape data,
using 1191 laser scans and anthropometric measure-
ments of the belly circumference of female subjects
[Robinette et al., 1999]. Body shape is represented
using a 50-dimensional SCAPE model [Anguelov et al.,
2005], such that each scan is a vector in R50. Following
Hauberg et al. [2012a], we partition the subjects in 7
clusters by belly circumferences, learn a diagonal Large
Margin Nearest Neighbour (LMNN) metric [Weinberger
and Saul, 2009] for each cluster, and form a smoothly
changing metric using Eq. 7. Under this metric vari-

ance is inflated locally along directions related to belly
circumference. We visualise this increased variance
using PGA. Based on the timing results above, we
only consider the probabilistic algorithm here, which
achieved a runtime of ∼10 minutes.

Fig. 6 shows the first principal geodesic under the
learned metric, where we show bodies at the mean as
well as ± three standard deviations from the mean. Un-
certainty is visualised by six samples from the principal
geodesic at each point; this uncertainty is not described
by other solvers (this is more easily seen in the sup-
plementary video). In general, the principal geodesic
shows an increasing belly circumference (again, see
supplementary video).

6 Conclusion

We have studied a probabilistic solver for ordinary
differential equations in the context of Riemannian
statistics. The method can deal with uncertain bound-
ary and initial values, and returns a joint posterior
over the solution. The theoretical performance of such
methods is currently not as tightly bounded as that
of Runge-Kutta methods, but their structured error
estimates allow a closed probabilistic formulation of
computations on Riemannian manifolds. This includes
marginalisation over the solution space, which weakens
the effect of numerical errors. This, in turn, means
computational precision, and thus cost, can be low-
ered. The resulting improvement in computation time
and functionality is an example for the conceptual and
applied value of probabilistically designed numerical
algorithms for computational statistics.
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