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A Theorem 2

The proof of this section and the lemmas of the next
section follow from the proofs of Gabillon et al. [2012].
The modifications we have made to this proof corre-
spond to the introduction of the function gk which
bounds the uncertainty sk in order to make it simpler
to introduce other models. We also introduce a su�-
cient condition on this bound, i.e. that it is monotoni-
cally decreasing in N in order to bound the arm pulls
with respect to g�1

k . Ultimately, this form of the theo-
rem reduces the problem of of proving a regret bound
to that of checking a few properties of the uncertainty
model.

Theorem 2. Consider a bandit problem with horizon
T and K arms. Let Uk(t) and Lk(t) be upper and
lower bounds that hold for all times t  T and all
arms k  K with probability 1 � �. Finally, let gk be
a monotonically decreasing function such that sk(t) 
gk(Nk(t � 1)) and

P
k g

�1
k (Hk✏)  T � K. We can

then bound the simple regret as

Pr(R⌦T  ✏) � 1�KT �. (10)

Proof. We will first define the event E such that on this
event every mean is bounded by its associated bounds
for all times t. More precisely we can write this as

E = {8k  K, 8t  T, Lk(t)  µk  Uk(t)}.

By definition, these bounds are given such that the
probability of deviating from a single bound is �. Using
a union bound we can then bound the probability of
remaining within all bounds as Pr(E) � 1�KT �.

We will next condition on the event E and assume
regret of the form R⌦T > ✏ in order to reach a con-
tradiction. Upon reaching said contradiction we can
then see that the simple regret must be bounded by ✏
with probability given by the probability of event E ,
as stated above. As a result we need only show that a
contradiction occurs.

We will now define ⌧ = argmintT BJ(t)(t) as the time
at which the recommended arm attains the minimum
bound, i.e. ⌦T = J(⌧) as defined in (8). Let tk 
T be the last time at which arm k is pulled. Note
that each arm must be pulled at least once due to the
initialization phase. We can then show the following
sequence of inequalities:

min(0, sk(tk)��k) + sk(tk) � BJ(tk)(tk) (a)

� B⌦T (⌧) (b)

� R⌦T (c)

> ✏. (d)

Of these inequalities, (a) holds by Lemma B3, (c) holds
by Lemma B1, and (d) holds by our assumption on

the simple regret. The inequality (b) holds due to the
definition ⌦T and time ⌧ . Note, that we can also write
the preceding inequality as two cases

sk(tk) > 2sk(tk)��k > ✏, if �k > sk(tk);

2sk(tk)��k � sk(tk) > ✏, if �k  sk(tk)

This leads to the following bound on the confidence
diameter,

sk(tk) > max( 12 (�k + ✏), ✏) = Hk✏

which can be obtained by a simple manipulation of the
above equations. More precisely we can notice that in
each case, sk(tk) upper bounds both ✏ and 1

2 (�k + ✏),
and thus it obviously bounds their maximum.

Now, for any arm k we can consider the final number
of arm pulls, which we can write as

Nk(T ) = Nk(tk � 1) + 1  g�1(sk(tk)) + 1

< g�1(Hk✏) + 1.

This holds due to the definition of g as a monotonic
decreasing function, and the fact that we pull each arm
at least once during the initialization stage. Finally,
by summing both sides with respect to k we can see
that

P
k g

�1(Hk✏) + K > T , which contradicts our
definition of g in the Theorem statement.

B Lemmas

In order to simplify notation in this section, we will
first introduce B(t) = mink Bk(t) as the minimizer
over all gap indices for any time t. We will also note
that this term can be rewritten as

B(t) = BJ(t)(t) = Uj(t)(t)� LJ(t)(t),

which holds due to the definitions of j(t) and J(t).

Lemma B1. For any sub-optimal arm k 6= k⇤, any
time t 2 {1, . . . , T}, and on event E, the immediate
regret of pulling that arm is upper bounded by the index
quantity, i.e. Bk(t) � Rk.

Proof. We can start from the definition of the bound
and expand this term as

Bk(t) = max
i 6=k

Ui(t)� Lk(t)

� max
i 6=k

µi � µk = µ⇤ � µk = Rk.

The first inequality holds due to the assumption of
event E , whereas the following equality holds since we
are only considering sub-optimal arms, for which the
best alternative arm is obviously the optimal arm.
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Lemma B2. For any time t let k = at be the arm
pulled, for which the following statements hold:

if k = j(t), then Lj(t)(t)  LJ(t)(t),

if k = J(t), then Uj(t)(t)  UJ(t)(t).

Proof. We can divide this proof into two cases based
on which of the two arms is selected.

Case 1: let k = j(t) be the arm selected. We will then
assume that Lj(t)(t) > LJ(t)(t) and show that this is a
contradiction. By definition of the arm selection rule
we know that sj(t)(t) � sJ(t)(t), from which we can
easily deduce that Uj(t)(t) > UJ(t)(t) by way of our
first assumption. As a result we can see that

Bj(t)(t) = max
j 6=j(t)

Uj(t)� Lj(t)(t)

< max
j 6=J(t)

Uj(t)� LJ(t)(t) = BJ(t)(t).

This inequality holds due to the fact that arm j(t)
must necessarily have the highest upper bound over all
arms. However, this contradicts the definition of J(t)
and as a result it must hold that Lj(t)(t)  LJ(t)(t).

Case 2: let k = J(t) be the arm selected. The proof
follows the same format as that used for k = j(t).

Corollary B2. If arm k = at is pulled at time t,
then the minimum index is bounded above by the un-
certainty of arm k, or more precisely

B(t)  sk(t).

Proof. We know that k must be restricted to the set
{j(t), J(t)} by definition. We can then consider the
case that k = j(t), and by Lemma B2 we know that
this imposes an order on the lower bounds of each pos-
sible arm, allowing us to write

B(t)  Uj(t)(t)� Lj(t)(t) = sj(t)(t)

from which our corollary holds. We can then easily see
that a similar argument holds for k = J(t) by ordering
the upper bounds, again via Lemma B2.

Lemma B3. On event E, for any time t 2 {1, . . . , T},
and for arm k = at the following bound holds on the
minimal gap,

B(t)  min(0, sk(t)��k) + sk(t).

Proof. In order to prove this lemma we will consider
a number of cases based on which of k 2 {j(t), J(t)}
is selected and whether or not one or neither of these
arms corresponds to the optimal arm k⇤. Ultimately,
this results in six cases, the first three of which we will
present are based on selecting arm k = j(t).

Case 1: consider k⇤ = k = j(t). We can then see that
the following sequence of inequalities holds,

µ(2)

(a)
� µJ(t)(t)

(b)
� LJ(t)(t)

(c)
� Lj(t)(t)

(d)
� µk � sk(t).

Here (b) and (d) follow directly from event E and (c)
follows from Lemma B2. Inequality (a) follows triv-
ially from our assumption that k = k⇤, as a result J(t)
can only be as good as the 2nd-best arm. Using the
definition of �k and the fact that k = k⇤, the above
inequality yields

sk(t)� (µk � µ(2)) = sk(t)��k � 0

Therefore the min in the result of Lemma B3 vanishes
and the result follows from Corollary B2.

Case 2: consider k = j(t) and k⇤ = J(t). We can
then write

B(t) = Uj(t)(t)� LJ(t)(t)

 µj(t)(t) + sj(t)(t)� µJ(t)(t) + sJ(t)(t)

 µk � µ⇤ + 2sk(t)

where the first inequality holds from event E , and the
second holds because by definition the selected arm
must have higher uncertainty. We can then simplify
this as

= 2sk(t)��k

 min(0, sk(t)��k) + sk(t),

where the last step evokes Corollary B2.

Case 3: consider k = j(t) 6= k⇤ and J(t) 6= k⇤. We
can then write the following sequence of inequalities,

µj(t)(t) + sj(t)(t)
(a)
� Uj(t)(t)

(b)
� Uk⇤(t)

(c)
� µ⇤.

Here (a) and (c) hold due to event E and (b) holds since
by definition j(t) has the highest upper bound other
than J(t), which in turn is not the optimal arm by
assumption in this case. By simplifying this expression
we obtain sk(t)��k � 0, and hence the result follows
from Corollary B2 as in Case 1.

Cases 4–6: consider k = J(t). The proofs for these
three cases follow the same general form as the above
cases and is omitted. Cases 1 through 6 cover all pos-
sible scenarios and prove Lemma B3.

Lemma B4. Consider a normally distributed random
variable X ⇠ N (µ,�2) and � � 0. The probability that
X is within a radius of �� from its mean can then be
written as

Pr
�
|X � µ|  ��

�
� 1� e��2/2.
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Proof. Consider Z ⇠ N (0, 1). The probability that Z
exceeds some positive bound c > 0 can be written

Pr(Z > c) =
e�c2/2

p
2⇡

Z 1

c

e(c
2�z2)/2 dz

=
e�c2/2

p
2⇡

Z 1

c

e�(z�c)2/2�c(z�c) dz

 e�c2/2

p
2⇡

Z 1

c

e�(z�c)2/2 dz = 1
2e

�c2/2.

The inequality holds due to the fact that e�c(z�c)  1
for z � c. Using a union bound we can then bound
both sides as Pr(|Z| > c)  e�c2/2. Finally, by setting
Z = (X �µ)/� and c = � we obtain the bound stated
above.


