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Abstract

We address the problem of finding the maxi-
mizer of a nonlinear function that can only be
evaluated, subject to noise, at a finite number
of query locations. Further, we will assume
that there is a constraint on the total num-
ber of permitted function evaluations. We
introduce a Bayesian approach for this prob-
lem and show that it empirically outperforms
both the existing frequentist counterpart and
other Bayesian optimization methods. The
Bayesian approach places emphasis on de-
tailed modelling, including the modelling of
correlations among the arms. As a result,
it can perform well in situations where the
number of arms is much larger than the num-
ber of allowed function evaluation, whereas
the frequentist counterpart is inapplicable.
This feature enables us to develop and deploy
practical applications, such as automatic ma-
chine learning toolboxes. The paper presents
comprehensive comparisons of the proposed
approach with many Bayesian and bandit op-
timization techniques, the first comparison of
many of these methods in the literature.

1 Introduction

This paper draws connections between Bayesian op-
timization approaches and best arm identification in
the bandit setting. It focuses on problems where the
number of permitted function evaluations is bounded.
To solve these constrained optimization problems, we
introduce a new algorithm: BayesGap. The paper
shows, via comprehensive comparisons of a large num-
ber of bandit, experimental design and Bayesian opti-
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mization techniques, that this Bayesian best arm iden-
tification method outperforms other methods in this
domain. Moreover, the Bayesian treatment enables us
to attack problems where gap techniques relying on
independent arms are inapplicable.

A typical example of this problem is that of automatic
product testing [Kohavi et al., 2009, Scott, 2010],
where common “products” correspond to configura-
tion options for ads, websites, mobile applications, and
online games. In this scenario, a company o↵ers di↵er-
ent product variations to a small subset of customers,
with the goal of finding the most successful product for
the entire customer base. The crucial problem is how
best to query the smaller subset of users in order to
find the best product with high probability. A second
example, is that of automating machine learning algo-
rithms. Here, the goal is to automatically select the
best technique (boosting, random forests, support vec-
tor machines, neural networks, etc.) and its associated
hyper-parameters for solving a machine learning task
with a given dataset. For big datasets, cross-validation
is very expensive and hence it is often important to
find the best technique within a fixed budget of cross-
validation tests (function evaluations).

In order to properly attack this problem there are three
design aspects that must be considered. By taking
advantage of correlation among di↵erent actions it is
possible to learn more about a function than just its
value at a specific query. This is particularly impor-
tant when the number of actions greatly exceeds the
finite query budget T . In this same vein, it is impor-
tant to take into account that a recommendation must
be made at time T in order to properly allocate actions
and explore the space of possible optima. Finally, the
fact that we are interested only in the value of the
recommendation made at time T should be handled
explicitly. In other words, we are only interested in
finding the best action and are concerned with the re-
wards obtained during learning only insofar as they
inform us about this optimum.

In this work, we introduce a Bayesian approach that
meets the above design goals and show that it empiri-
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cally outperforms the existing frequentist counterpart
[Gabillon et al., 2012]. The Bayesian approach places
emphasis on detailed modelling, including the mod-
elling of correlations among the arms. As a result,
it can perform well in situations where the number
of arms is much larger than the number of allowed
function evaluation, whereas the frequentist counter-
part is inapplicable. The paper presents comprehen-
sive comparisons of the proposed approach, Thompson
sampling, classical Bayesian optimization techniques,
more recent Bayesian bandit approaches, and state-of-
the-art best arm identification methods. This is the
first comparison of many of these methods in the lit-
erature and allows us to examine the relative merits of
their di↵erent features. The paper also shows that one
can easily obtain the same theoretical guarantees for
the Bayesian approach that were previously derived in
the frequentist setting [Gabillon et al., 2012].

1.1 Related work

Bayesian optimization has enjoyed success in a broad
range of optimization tasks; see the work of Brochu
et al. [2010b] for a broad overview. Recently, this
approach has received a great deal of attention as a
black-box technique for the optimization of hyperpa-
rameters [Snoek et al., 2012, Hutter et al., 2011, Wang
et al., 2013b]. This type of optimization combines
prior knowledge about the objective function with pre-
vious observations to estimate the posterior distribu-
tion over f . The posterior distribution, in turn, is used
to construct an acquisition function that determines
what the next query point at should be. Examples of
acquisition functions include probability of improve-
ment (PI), expected improvement (EI), Bayesian up-
per confidence bounds (UCB), and mixtures of these
[Močkus, 1982, Jones, 2001, Srinivas et al., 2010, Ho↵-
man et al., 2011]. One of the key strengths under-
lying the use of Bayesian optimization is the ability
to capture complicated correlation structures via the
posterior distribution.

Many approaches to bandits and Bayesian optimiza-
tion focus on online learning (e.g., minimizing cumula-
tive regret) as opposed to optimization [Srinivas et al.,
2010, Ho↵man et al., 2011]. In the realm of optimizing
deterministic functions, a few works have proven expo-
nential rates of convergence for simple regret [de Fre-
itas et al., 2012, Munos, 2011]. A stochastic variant
of the work of Munos has been recently proposed by
Valko et al. [2013]; this approach takes a tree-based
structure for expanding areas of the optimization prob-
lem in question, but it requires one to evaluate each
cell many times before expanding, and so may prove
expensive in terms of the number of function evalua-
tions.

The problem of optimization under budget constraints
has received relatively little attention in the Bayesian
optimization literature, though some approaches with-
out strong theoretical guarantees have been proposed
recently [Azimi et al., 2011, Hennig and Schuler, 2012,
Snoek et al., 2011, Villemonteix et al., 2009]. In con-
trast, optimization under budget constraints has been
studied in significant depth in the setting of multi-
armed bandits [Bubeck et al., 2009, Audibert et al.,
2010, Gabillon et al., 2011, 2012]; see also [Kaufmann
and Kalyanakrishnan, 2013]. Here, a decision maker
must repeatedly choose query points, often a finite
number known as “arms”, in order to observe their
associated rewards [Cesa-Bianchi and Lugosi, 2006].
However, unlike most methods in Bayesian optimiza-
tion the underlying value of each action is generally as-
sumed to be independent from all other actions. That
is, the correlation structure of the arms is often ig-
nored.

2 Problem formulation

In order to attack the problem of Bayesian optimiza-
tion from a bandit perspective we will consider a finite
collection of arms A = {1, . . . ,K} such that the im-
mediate reward of pulling arm k 2 A is characterized
by a distribution ⌫k with mean µk. From the Bayesian
optimization perspective we can think of this as a col-
lection of points {a1, . . . , aK} where µk = f(ak). Note
that while we will assume the distributions ⌫k are in-
dependent of past actions this does not mean that
the means of each arm cannot share some underlying
structure—only that the act of pulling arm k does not
a↵ect the future rewards of pulling this or any other
arm. This distinction will be relevant later in this sec-
tion.

The problem of identifying the best arm in this bandit
problem can now be introduced as a sequential de-
cision problem. At each round t the decision maker
will select or “pull” an arm at 2 A and observe an
independent sample yt drawn from the corresponding
distribution ⌫at . At the beginning of each round t,
the decision maker must decide which arm to select
based only on previous interactions, which we will de-
note with the tuple (a1:t�1, y1:t�1). For any arm k we
can also introduce the expected immediate regret of
selecting that arm as

Rk = µ⇤ � µk, (1)

where µ⇤ denotes the expected value of the best arm.
Note that while we are interested in finding the arm
with the minimum regret, the exact value of this quan-
tity is unknown to the learner.

In standard bandit problems the goal is generally to
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minimize the cumulative sum of immediate regrets in-
curred by the arm selection process. Instead, in this
work we consider the pure exploration setting [Bubeck
et al., 2009, Audibert et al., 2010], which divides the
sampling process into two phases: exploration and
evaluation. The exploration phase consists of T rounds
wherein a decision maker interacts with the bandit
process by sampling arms. After these rounds, the
decision maker must make a single arm recommenda-
tion ⌦T 2 A. The performance of the decision maker
is then judged only on the performance of this recom-
mendation. The expected performance of this single
recommendation is known as the simple regret, and
we can write this quantity as R⌦T . Given a tolerance
✏ > 0 we can also define the probability of error as the
probability that R⌦T > ✏. In this work, we will con-
sider both the empirical probability that our regret
exceeds some ✏ as well as the actual reward obtained.
The related fixed confidence setting is one in which the
learner continues selecting arms until some desired er-
ror probability is reached; however we will not address
this setting in this work.

3 Bayesian bandits

We will now consider a bandit problem wherein the
distribution of rewards for each arm is assumed to de-
pend on unknown parameters ✓ 2 ⇥ that are shared
between all arms. We will write the reward distribu-
tion for arm k as ⌫k(·|✓). When considering the bandit
problem from a Bayesian perspective, we will assume
a prior density ✓ ⇠ ⇡0(·) from which the parameters
are drawn. Next, after t � 1 rounds we can write the
posterior density of these parameters as

⇡t(✓) / ⇡0(✓)
Y

n<t

⌫an(yn|✓). (2)

Here we can see the e↵ect of choosing arm an at each
time n: we obtain information about ✓ only indirectly
by way of the likelihood of these parameters given re-
ward observations yn. Note that this also generalizes
the uncorrelated arms setting. If the rewards for each
arm k depend only on a parameter (or set of parame-
ters) ✓k, then at time t the posterior for that parameter
would only depend on those times in the past that we
had pulled arm k.

We are, however, only partially interested in the pos-
terior distribution of the parameters ✓. Instead, we are
primarily concerned with the expected reward for each
arm under these parameters, which can be written as
µk = E[Y |✓] =

R
y ⌫k(y|✓) dy. The true value of ✓ is

unknown, but we have access to the posterior distribu-
tion ⇡t(✓). This distribution induces a marginal dis-
tribution over µk, which we will write as ⇢kt(µk). The
distribution ⇢kt(µk) can then be used to define upper

and lower confidence bounds that hold with high prob-
ability and, hence, engineer acquisition functions that
trade-o↵ exploration and exploitation. We will derive
an analytical expression for this distribution next.

We will assume that each arm k is associated with
a feature vector xk 2 Rd and where the rewards for
pulling arm k are normally distributed according to

⌫k(y|✓) = N (y;xT
k ✓,�

2) (3)

with variance �2 and unknown ✓ 2 Rd. The re-
wards for each arm are independent conditioned on
✓, but marginally dependent when this parameter is
unknown. In particular the level of their dependence
is given by the structure of the vectors xk. By plac-
ing a prior ✓ ⇠ N (0, ⌘2I) over the entire parameter
vector we can compute a posterior distribution over
this unknown quantity. One can also easily place an
inverse-Gamma prior on � and compute the posterior
analytically, but we will not describe this in order to
keep the presentation simple.

The above linear observation model might seem re-
strictive. However, because we are only considering K
actions (arms), it includes the Gaussian process (GP)
setting. More precisely, let the matrix G 2 RK⇥K

be the covariance of a GP prior. Our experiments
will detail two ways of constructing this covariance in
practice. We can apply the following transformation
to construct the design matrix X = [x1 . . . xK ]T :

X = V D
1
2 , where G = V DV T .

The rows of X correspond to the vectors xk neces-
sary for the construction of the observation model in
Equation (3). By restricting ourselves to finite ac-
tions spaces, we can also implement strategies such a
Thompson sampling with GPs. For pragmatic reasons,
many existing popular Bayesian optimization software
tools consider either finite grids of actions, or some
other such discretization of the query space [Hennig
and Schuler, 2012, Swersky et al., 2013]. Although the
question of how to best to discretize the space is a
very interesting one, we defer it to future work and,
in this work, only consider a finite, discreted subset of
the action space.

We will now let Xt = [xa1 . . . xat�1 ]
T denote the design

matrix and Yt = [y1 . . . yt�1]T the vector of observa-
tions at the beginning of round t. We can then write
the posterior at time t as ⇡t(✓) = N (✓; ✓̂t, ⌃̂t), where

⌃̂�1
t = ��2XT

t Xt + ⌘�2I, and (4)

✓̂t = ��2⌃̂tX
T
t Yt. (5)

From this formulation we can see that the expected
reward associated with arm k is marginally normal
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Figure 1: Example GP setting with finite arms. The full
GP is plotted with observations and confidence intervals
at each of K = 9 arms (mean and confidence intervals of
⇢kt(µk)). Shown in green is a single sample from the GP.

⇢kt(µk) = N (µk; µ̂kt, �̂2
kt) with mean µ̂kt = xT

k ✓̂t and

variance �̂2
kt = xT

k ⌃̂txk. Note also that the predictive
distribution over rewards associated with the kth arm
is normal as well, with mean µ̂kt and variance �̂2

kt+�2.
The previous derivations are textbook material; see for
example Chapter 7 of [Murphy, 2012].

Figure 1 depicts an example of the mean and con-
fidence intervals of ⇢kt(µk), as well as a single ran-
dom sample. Here the features xk were constructed by
first forming the covariance matrix with an squared-
exponential kernel k(x, x0) = e�(x�x0)2 over the 1-
dimensional domain. As with standard Bayesian op-
timization with GPs, the statistics of ⇢kt(µk) enable
us to construct many di↵erent acquisition functions
that trade-o↵ exploration and exploitation. Thomp-
son sampling in this setting also becomes straightfor-
ward, as we simply have to pick the maximum of the
random sample from ⇢kt(µk), at one of the arms, as
the next point to query.

4 Bayesian gap-based exploration

In this section we will introduce a gap-based solution
to the Bayesian optimization problem, which we call
BayesGap. This approach builds on the work of Gabil-
lon et al. [2011, 2012], which we will refer to as UGap1

and o↵ers a principled way to incorporate correlation
between di↵erent arms (whereas the earlier approach
assumes all arms are independent).

At the beginning of round t we will assume that the
decision maker is equipped with high-probability up-
per and lower bounds Uk(t) and Lk(t) on the unknown
mean µk for each arm. While this approach can en-
compass more general bounds, for the Gaussian-arms
setting that we consider in this work we can define
these quantities in terms of the mean and standard de-
viation, i.e. µ̂kt ± ��̂kt. These bounds also give rise to
a confidence diameter sk(t) = Uk(t)� Lk(t) = 2��̂kt.

Given bounds on the mean reward for each arm, we

1Technically UGapEb, denoting bounded horizon.

Algorithm 1 BayesGap

1: for t = 1, . . . , T do
2: set J(t) = argmink2A Bk(t)
3: set j(t) = argmaxk 6=J(t) Uk(t)
4: select arm at = argmaxk2{j(t),J(t)} sk(t)
5: observe yt ⇠ ⌫at(·)
6: update posterior µ̂kt and �̂kt

7: update bound on H✏ and re-compute �
8: update posterior bounds Uk(t) and Lk(t)
9: end for

10: return ⌦T = J
�
argmintT BJ(t)(t)

�

can then introduce the gap quantity

Bk(t) = max
i 6=k

Ui(t)� Lk(t), (6)

which involves a comparison between the lower bound
of arm k and the highest upper bound among all al-
ternative arms. Ultimately this quantity provides an
upper bound on the simple regret (see Lemma B1 in
the supplementary material) and will be used to de-
fine the exploration strategy. However, rather than
directly finding the arm minimizing this gap, we will
consider the two arms

J(t) = argmin
k2A

Bk(t) and

j(t) = argmax
k 6=J(t)

Uk(t).

We will then define the exploration strategy as

at = argmax
k2{j(t),J(t)}

sk(t). (7)

Intuitively this strategy will select either the arm min-
imizing our bound on the simple regret (i.e. J(t)) or
the best “runner up” arm. Between these two, the arm
with the highest uncertainty will be selected, i.e. the
one expected to give us the most information. Next,
we will define the recommendation strategy as

⌦T = J
�
argmin

tT
BJ(t)(t)

�
, (8)

i.e. the proposal arm J(t) which minimizes the regret
bound, over all times t  T . The reason behind this
particular choice is subtle, but is necessary for the
proof of the method’s simple regret bound2. In Al-
gorithm 1 we show the pseudo-code for BayesGap.

We now turn to the problem of which value of � to use.
First, consider the quantity �k = |maxi 6=k µi � µk|.
For the best arm this coincides with a measure of the
distance to the second-best arm, whereas for all other
arms it is a measure of their sub-optimality. Given

2See inequality (b) in the the supplementary material.
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this quantity let Hk✏ = max( 12 (�k + ✏), ✏) be an arm-
dependent hardness quantity; essentially our goal is to
reduce the uncertainty in each arm to below this level,
at which point with high probability we will identify
the best arm. Now, given H✏ =

P
k H

�2
k✏ we define our

exploration constant as

�2 =
�
(T �K)/�2 + /⌘2

��
(4H✏) (9)

where  =
P

k kxkk�2. We have chosen � such that
with high probability we recover an ✏-best arm, as de-
tailed in the following theorem. This theorem relies on
bounding the uncertainty for each arm by a function
of the number of times that arm is pulled. Roughly
speaking, if this bounding function is monotonically
decreasing and if the bounds Uk and Lk hold with high
probability we can then apply Theorem 2 to bound the
simple regret of BayesGap3.

Theorem 1. Consider a K-armed Gaussian bandit
problem, horizon T , and upper and lower bounds de-
fined as above. For ✏ > 0 and � defined as in Equa-
tion (9), the algorithm attains simple regret satisfying

Pr(R⌦T  ✏) � 1�KTe��2/2.

Proof. Using the definition of the posterior variance
for arm k, we can write the confidence diameter as

sk(t) = 2�
q
xT
k ⌃̂txk

= 2�
q
�2xT

k

�P
i Ni(t� 1)xixT

i + �2

⌘2 I
��1

xk

 2�
q
�2xT

k

�
Nk(t� 1)xkxT

k + �2

⌘2 I
��1

xk.

In the second equality we decomposed the Gram ma-
trixXT

t Xt in terms of a sum of outer products over the
fixed vectors xi. In the final inequality we noted that
by removing samples we can only increase the variance
term, i.e. here we have essentially replaced Ni(t � 1)
with 0 for i 6= k. We will let the result of this final
inequality define an arm-dependent bound gk. Let-
ting A = 1

N
�2

⌘2 we can simplify this quantity using the
Sherman-Morrison formula as

gk(N) = 2�
q
(�2/N)xT

k

�
xkxT

k +AI
��1

xk

= 2�

s
�2

N

kxkk2
A

⇣
1� kxkk2/A

1 + kxkk2/A

⌘

= 2�

vuut �2kxkk2
�2

⌘2 +Nkxkk2
,

which is monotonically decreasing in N . The inverse
of this function can be solved for as

g�1
k (s) =

4(��)2

s2
� �2

⌘2
1

kxkk2
.

3The additional Theorem is in supplementary material
and is a slight modification of that in [Gabillon et al., 2012].

By setting
P

k g
�1
k (Hk✏) = T � K and solving for �

we then obtain the definition of this term given in the
statement of the proposition. Finally, by reference to
Lemma B4 (supplementary material) we can see that
for each k and t, the upper and lower bounds must hold
with probability 1� e��/2. These last two statements
satisfy the assumptions of Theorem 2 (supplementary
material), thus concluding our proof.

Here we should note that while we are using Bayesian
methodology to drive the exploration of the bandit,
we are analyzing this using frequentist regret bounds.
This is a common practice when analyzing the regret of
Bayesian bandit methods [Srinivas et al., 2010, Kauf-
mann et al., 2012a]. We should also point out that
implicitly Theorem 2 assumes that each arm is pulled
at least once regardless of its bound. However, in our
setting we can avoid this in practice due to the corre-
lation between arms.

One key thing to note is that the proof and derivation
of � given above explicitly require the hardness quan-
tity H✏, which is unknown in most practical applica-
tions. Instead of requiring this quantity, our approach
will be to adaptively estimate it. Intuitively, the quan-
tity � controls how much exploration BayesGap does
(note that � directly controls the width of the uncer-
tainty sk(t)). Further, � is inversely proportional to
H✏. As a result, in order to initially encourage more
exploration we will lower bound the hardness quantity.
In particular, we can do this by upper bounding each
�k by using conservative, posterior dependent upper
and lower bounds on µk. In this work we use three
posterior standard deviations away from the posterior
mean, i.e. µ̂k(t)± 3�̂kt. (We emphasize that these are
not the same as Lk(t) and Uk(t).) Then the upper
bound on �k is simply

�̂k = max
j 6=k

(µ̂j + 3�̂j)� (µ̂k � 3�̂k).

From this point we can recompute H✏ and in turn re-
compute � (step 7 in the pseudocode). For all experi-
ments we will use this adaptive method.

Comparison with UGap. The method in this sec-
tion provides a Bayesian version of the UGap algo-
rithm which modifies the bounds used in this earlier
algorithm’s arm selection step. By modifying step 6
of the BayesGap pseudo-code to use either Hoe↵ding
or Bernstein bounds we can re-obtain the UGap algo-
rithm. Note, however, that in doing so UGap assumes
independent arms with bounded rewards.

We can now roughly compare UGap’s probability of er-
ror, i.e. O(KT exp(�T�K

H✏
)), with that of BayesGap,

O(KT exp(�T�K+�2/⌘2

H✏�2 )). We can see that with mi-
nor di↵erences, these bounds are of the same order.
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Figure 2: Probability of error on the optimization do-
main of tra�c speed sensors (840 runs). For this real
data set, BayesGap provides considerable improvements
over the Bayesian cumulative regret alternatives and the
frequentist simple regret counterparts.

First, we can ignore the additional �2 term as this
quantity is primarily due to the distinction between
bounded and Gaussian-distributed rewards. The ⌘2

term corresponds to the concentration of the prior,
and we can see that the more concentrated the prior is
(smaller ⌘) the faster this rate is. Note, however, that
the proof of BayesGap’s simple regret relies on the true
rewards for each arm being within the support of the
prior, so one cannot increase the algorithm’s perfor-
mance by arbitrarily adjusting the prior. Finally, the
 term is related to the linear relationship between
di↵erent arms. Additional theoretical results on im-
proving these bounds remains for future work.

5 Experiments

In the following subsections, we benchmark the pro-
posed algorithm against a wide variety of methods on
two real-data applications. In Section 5.1, we revisit
the tra�c sensor network problem of Srinivas et al.
[2010]. In Section 5.2, we consider the problem of au-
tomatic model selection and algorithm configuration.

5.1 Application to a tra�c sensor network

In this experiment, we are given data taken from tra�c
speed sensors deployed along highway I-880 South in
California. Tra�c speeds were collected at K = 357
sensor locations for all working days between 6AM and
11AM for an entire month. Our task is to identify the
single location with the highest expected speed, i.e.
the least congested. This data was also used in the
work of Srinivas et al. [2010].

Naturally, the readings from di↵erent sensors are cor-
related, however, this correlation is not necessarily
only due to geographical location. Therefore speci-
fying a similarity kernel over the space of tra�c sensor
locations alone would be overly restrictive. Following
the approach of Srinivas et al. [2010], we construct the
design matrix treating two-thirds of the available data
as historical and use the remaining third to evaluate
the policies. In more detail, The GP kernel matrix
G 2 RK⇥K is set to be empirical covariance matrix
of measurements for each of the K sensor locations.
As explained in Section 4, the corresponding design
matrix is X = V D

1
2 , where G = V DV T .

Following Srinivas et al. [2010], we estimate the noise
level � of the observation model using this data. We
consider the average empirical variance of each indi-
vidual sensor (i.e. the signal variance corresponding to
the diagonal of G) and set the noise variance �2 to 5%
of this value; this corresponds to �2 = 4.78. We choose
a broad prior with regularization coe�cient ⌘ = 20.

In order to evaluate di↵erent bandit and Bayesian opti-
mization algorithms, we use each of the remaining 840
sensor signals (the aforementioned third of the data)
as the true mean vector µ for independent runs of the
experiment. Note that using the model in this way
enables us to evaluate the ground truth for each run
(given by µ, but not observed by the algorithm), and
estimate the actual probability that the policies return
the best arm.

In this experiment, as well as in the next one, we es-
timate the hardness parameter H✏ using the adaptive
procedure outlined at the end of Section 5.

We benchmark the proposed algorithm (BayesGap)
against the following methods:

(1) UCBE: Introduced by Audibert et al. [2010]; this
is a variant of the classical UCB policy of Auer et al.
[2002] that replaces the log(t) exploration term of UCB
with a constant of order log(T ) for known horizon T .

(2) UGap: A gap-based exploration approach intro-
duced by Gabillon et al. [2012].

(3) BayesUCB and GPUCB: Bayesian extensions
of UCB which derive their confidence bounds from the
posterior. Introduced by Kaufmann et al. [2012a] and
Srinivas et al. [2010] respectively.

(4) Thompson sampling: A randomized, Bayesian
index strategy wherein the kth arm is selected with
probability given by a single-sample Monte Carlo ap-
proximation to the posterior probability that the arm
is the maximizer [Chapelle and Li, 2012, Kaufmann
et al., 2012b, Agrawal and Goyal, 2013].

(5) Probability of Improvement (PI): A clas-
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sic Bayesian optimization method which selects points
based on their probability of improving upon the cur-
rent incumbent.

(6) Expected Improvement (EI): A Bayesian op-
timization, related to PI, which selects points based
on the expected value of their improvement.

Note that techniques (1) and (2) above attack the
problem of best arm identification and use bounds
which encourage more aggressive exploration. How-
ever, they do not take correlation into account. On the
other hand, techniques such ad (3) are designed for cu-
mulative regret, but model the correlation among the
arms. It might seem at first that we are comparing
apples and oranges. However, the purpose of compar-
ing these methods, even if their objectives are di↵er-
ent, is to understand empirically what aspects of these
algorithms matter the most in practical applications.
There exist other approaches within the framework of
Bayesian nonlinear experimental design, such as [Hen-
nig and Schuler, 2012] for finding maxima and [Kueck
et al., 2006, 2009], for learning functions, but we do not
consider these here. These approaches involve many
approximations, making them expensive and hard to
deploy in practice.

The results, shown in Figure 2, are the probabilities
of error for each strategy, using a time horizon of
T = 400. (Here we used ✏ = 0, but varying this
quantity had little e↵ect on the performance of each
algorithm.) By looking at the results, we quickly learn
that techniques that model correlation perform better
than the techniques designed for best arm identifica-
tion, even when they are being evaluated in a best arm
identification task. The important conclusion is that
one must always invest e↵ort in modelling the correla-
tion among the arms.

The results also show that BayesGap does better than
alternatives in this domain. This is not surprising be-
cause BayesGap is the only competitor that addresses
budgets, best arm identification and correlation simul-
taneously.

5.2 Automatic machine learning

There exist many machine learning toolboxes, such as
Weka and scikit-learn. However, for a great many
data practitioners interested in finding the best tech-
nique for a predictive task, it is often hard to un-
derstand what each technique in the toolbox does.
Moreover, each technique can have many free hyper-
parameters that are not intuitive to most users.

Bayesian optimization techniques have already been
proposed to automate machine learning approaches,
such as MCMC inference [Mahendran et al., 2012,

Hamze et al., 2013, Wang et al., 2013a], deep learn-
ing [Bergstra et al., 2011], preference learning [Brochu
et al., 2007, 2010a], reinforcement learning and control
[Martinez-Cantin et al., 2007, Lizotte et al., 2012], and
more [Snoek et al., 2012]. In fact, methods to auto-
mate entire toolboxes (Weka) have appeared very re-
cently [Thornton et al., 2013], and go back to old pro-
posals for classifier selection [Maron and Moore, 1994].

Here, we will demonstrate BayesGap by automating
regression with scikit-learn. Our focus will be on
minimizing the cost of cross-validation in the domain
of big data. In this setting, training and testing each
model can take a prohibitive long time. If we are work-
ing under a finite budget, say if we only have three
days before a conference deadline or the deployment
of a product, we cannot a↵ord to try all models in
all cross-validation tests. However, it is possible to
use techniques such as BayesGap and Thompson sam-
pling to find the best model with high probability. In
our setting, the action of “pulling an arm” will involve
selecting a model, splitting the dataset randomly into
training and test sets, training the model, and record-
ing the test-set performance.

In this bandit domain, our arms will consist of
five scikit-learn techniques and associated pa-
rameters selected on a discrete grid. We con-
sider the following methods for regression: Lasso
(8 models) with regularization parameters alpha

= (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,
0.5), Random Forests (64 models) where we vary
the number of trees, n estimators=(1,10,100,1000),
the minimum number of training examples in a
node to split min samples split=(1,3,5,7) and the
minimum number of training examples in a leaf
min samples leaf=(2,6,10,14), linSVM (16 models)
where we vary the penalty parameter C= (0.001, 0.01,
0.1, 1) and the tolerance parameter epsilon=(0.0001,
0.001, 0.01, 0.1), rbfSVM (64 models) where we
use the same grid as above for C and epsilon,
and we add a third parameter which is the length
scale � of the RBF kernel used by the SVM
gamma = (0.025, 0.05, 0.1, 0.2), and K-nearest neigh-
bors (8 models) where we vary number of neighbors
n neighbors = (1, 3, 5, 7, 9, 11, 13, 15). The total num-
ber of models is 160. Within a class of regressors, we
model correlation using a squared exponential kernel
with unit length scale, i.e., k(x, x0) = e�(x�x0)2 . Using
this kernel, we compute a kernel matrix G and con-
struct the design matrix as before.

When an arm is pulled we select training and test
sets that are each 10% of the size of the original,
and ignore the remaining 80% for this particular arm
pull. We then train the selected model on the train-
ing set, and test on the test set. This specific form of
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Figure 3: Boxplot of RMSE over 100 runs with a fixed
budget of T = 10. EI, PI, and GPUCB get stuck in local
minima. Note: lower is better.

Figure 4: Allocations and recommendations of BayesGap
(top) and EI (bottom) over 100 runs at a budget of T =
40 training and validation tests, and for 160 models (i.e.,
more arms than possible observations). Histograms along
the floor of the plot show the arms pulled at each round
while the histogram on the far wall shows the final arm
recommendation over 100 di↵erent runs. The solid black
line on the far wall shows the estimated “ground truth”
RMSE for each model. Note that EI quite often gets stuck
in a locally optimal rbfSVM.

cross-validation is similar to that of repeated learning-
testing [Arlot and Celisse, 2010, Burman, 1989].

We use the wine dataset from the UCI Machine Learn-
ing Repository, where the task is to predict the quality
score (between 0 and 10) of a wine given 11 attributes
of its chemistry. We repeat the experiment 100 times.
We report, for each method, an estimate of the RMSE
for the recommended models on each run. Unlike in
the previous section, we do not have the ground truth
generalization error, and in this scenario it is di�cult
to estimate the actual “probability of error”. Instead
we report the RMSE, but remark that this is only a
proxy for the error rate that we are interested in.

The performance of the final recommendations for
each strategy and a fixed budget of T = 10 tests
is shown in Figure 3. The results for other budgets
are almost identical. It must be emphasized that the
number of allowed function evaluations (10 tests) is
much smaller than the number of arms (160 models).
Hence, frequentist approaches that require pulling all
arms, e.g. UGap, are inapplicable in this domain.

The results indicate that Thompson and BayesGap are
the best choices for this domain. Figure 4 shows the in-
dividual arms pulled and recommended by BayesGap
(above) and EI (bottom), over each of the 100 runs,
as well as an estimate of the ground truth RMSE for
each individual model. EI and PI often get trapped in
local minima. Due to the randomization inherent to
Thompson sampling, it explores more, but in a more
uniform manner (possibly explaining its poor results
in the previous experiment).

6 Conclusion

We proposed a Bayesian optimization method for best
arm identification with a fixed budget. The method
involves modelling of the correlation structure of the
arms via Gaussian process kernels. As a result of com-
bining all these elements, the proposed method out-
performed techniques that do not model correlation
or that are designed for di↵erent objectives (typically
cumulative regret). This strategy opens up room for
greater automation in practical domains with budget
constraints, such as the automatic machine learning
application described in this paper.

Although we focused on a Bayesian treatment of the
UGap algorithm, the same approach could conceiv-
ably be applied to other techniques such as UCBE.
As demonstrated by Srinivas et al. [2010] and in this
paper, it is possible to easily show that the Bayesian
bandits obtain similar bounds as the frequentist meth-
ods. However, in our case, we conjecture that much
stronger bounds should be possible if we consider all
the information brought in by the priors and measure-
ment models.
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