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Abstract

A new approach is proposed for topic mod-
eling, in which the latent matrix factoriza-
tion employs Gaussian priors, rather than
the Dirichlet-class priors widely used in such
models. The use of a latent-Gaussian model
permits simple and efficient approximate
Bayesian posterior inference, via the Laplace
approximation. On multiple datasets, the
proposed approach is demonstrated to yield
results as accurate as state-of-the-art ap-
proaches based on Dirichlet constructions, at
a small fraction of the computation. The
framework is general enough to jointly model
text and binary data, here demonstrated to
produce accurate and fast results for joint
analysis of voting rolls and the associated leg-
islative text. Further, it is demonstrated how
the technique may be scaled up to massive
data, with encouraging performance relative
to alternative methods.

1 INTRODUCTION

We are interested in analyzing matrices of the form
C ∈ Zp×n+ , where Z+ represents nonnegative integers
(i.e., counts). In many applications we have a count
matrix C ∈ Zp1×n+ and an associated binary matrix
B ∈ {0, 1}p2×n, with an interest in analyzing them
jointly. For example, one may analyze the binary votes
of p2 legislators on n pieces of legislation (Gerrish &
Blei, 2011; Zhang & Carin, 2012), where the text of
the legislation is in terms of p1 words. In this setting
one may wish to predict missing votes from B and,
often more importantly, in predicting the votes of the
p2 legislators on a new piece of legislation, based upon
counts of the p1 words in the associated text of that
legislation (predicting a new column of B, based on
observation of the associated column of C).
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In the context of topic modeling, the number of doc-
uments one may wish to analyze may be very large.
There is consequently also increasing interest in de-
veloping topic-modeling techniques that scale up effi-
ciently to a very large corpus of documents (Hoffman
et al., 2010).

Virtually all models of documents, as well as joint
analysis of text with auxiliary data (such as a binary
matrix as above), are based on generalizations of topic
models. Let C ∈ Zp×n+ represent a corpus of n doc-
uments, with a p-word vocabulary. Topic models im-
plicitly or explicitly perform a form of latent matrix
factorization, expressed in general as

X = DST (1)

where X is a p×n matrix, and Xij represents compo-
nent (i, j) of this matrix. Typically it is assumed that
Xij ≥ 0 for all (i, j).

In latent Dirichlet allocation (LDA) (Blei et al.,
2003) and related topic models, it is assumed that∑p
i=1Xij = 1 for all j. Here column j of X repre-

sents the probability with which each of the p words
are manifested in document j. Letting cj represent
column j of C, then LDA imposes cj ∼ Mult(|cj |,xj),
where xj is column j of X, and |cj | =

∑p
i=1 Cij is the

total number of words in document j.

In LDA, the factorization in (1) is defined by placing
a Dirichlet prior on the K columns of D, and a sep-
arate Dirichlet prior on the n rows of S, for K latent
topics. In recently developed topic models, like the
nested Chinese restaurant process (nCRP)(Blei et al.,
2010; Wang & Blei, 2009) and the focused topic model
(FTM) (Williamson et al., 2009), the means by which
the columns of D and rows of S are manifested are
more complicated, but in each case the basic construct
involves generalized usage of Dirichlet distributions.

In an alternative approach, the documents are mod-
eled as Cij ∼ Pois(Xij). Often a Dirichlet prior is
again imposed on the columns of D, and a gamma
prior is typically placed on the components of S
(M. Zhou & Carin, 2012). This Poisson-based model
has been associated with state-of-the-art topic mod-
els, notably the FTM (Williamson et al., 2009). In
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(M. Zhou & Carin, 2012) the authors make an ex-
tensive linkage between most topic models based on
Dirichlet (mixture model) constructions and those
based upon the Poisson setup.

In the above models, document j is characterized by
sj , the transpose of which is the jth row of S; sj char-
acterizes the strength with which each of the K topics
is responsible for the words in document j. The prob-
ability of word usage for topic k is defined by column k
of D. When jointly modeling documents and a matrix
like the binary matrix B discussed above (Gerrish &
Blei, 2011; Zhang & Carin, 2012), sj is typically also
employed to model the binary entries in column j of B.
Therefore, the latent sj is shared between the model
of the text and the associated binary matrix, linking
the two.

In the above-summarized models, which characterize
the basic properties of virtually all topic models em-
ployed in the literature, the use of priors like the
Dirichlet and gamma distributions complicate infer-
ence. While one may often derive MCMC (M. Zhou &
Carin, 2012), VB (Beal, 2003) and EP (Minka, 2001)
update equations with analytic update distributions,
the computation time needed for such approaches can
be significant in many applications.

In this paper we develop a new topic model based
upon latent Gaussian priors. Approximate Bayesian
posterior inference can be done accurately and effi-
ciently via the Laplace approximation. We leverage
ideas from the recently developed integrated nested
Laplace approximation (INLA) (Rue et al., 2009) to
make our method efficient to implement. INLA was
originally developed for linear latent Gaussian models,
and here we extend these ideas to latent matrix factor-
ization, and for the joint analysis of text and auxiliary
matrices, like associated binary data. The key thing
the model exploits is that while the latent parameters
with Gaussian priors may be very high-dimensional,
the number of hyperparameters is typically small (here
of dimension one or two). This property is leveraged
in INLA, and it is utilized here in a new way in the
context of topic modeling. It is demonstrated that
the proposed simple and computationally efficient ap-
proach yields results as accurate as the most advanced
topic models in the literature. We also demonstrate
how the model may be scaled to consider data of mas-
sive dimension.

When computing the maximum a posterior (MAP) es-
timate of the parameters within the Laplace approxi-
mation, we are solving an optimization problem. This
is attractive, in that it allows us to leverage many
methods from the optimization literature (Jenatton
et al., 2010; Bittorf et al., 2012; Lee & Seung, 2000;

Boyd et al., 2010; Lin, 2007) when computing the
MAP, thereby effectively integrating ideas from the
Bayesian and optimization communities. Additionally,
this approach provides very simple and efficient paral-
lization of the computations, yielding further acceler-
ation.

2 LATENT GAUSSIAN MODEL

2.1 Gaussian Priors

Let d1i ∈ RK represent a column vector, the transpose
of which corresponds to row i in D1; we are assuming
a K-factor model (equivalent to K topics). We use
a subscript 1 on D from (1), in anticipation of also
modeling an associated binary matrix, with its own
related matrix D2. Element (i, j) of X1 = D1S

T in
(1) is X1,ij = dT1isj .

We have considered two means of modeling count data,
the first based on a probit link. The ordinal probit
model, which we denote it as latent Gaussian ordinal
probit model (LG-OP), is expressed as

Cij = h if ch ≤ gij < ch+1, gij ∼ N (X1,ij , 1) (2)

where c0, c1, . . . are “cut points,” with c0 = −∞, c1 =
0, c2 = 1, c3 = 2, etc. The model in (2) is widely
applied for binary data, with h = 0 or h = 1, and
c0 = −∞, c1 = 0 and c2 = ∞; here we extend it to
analysis of count data from a document corpus, with
h a nonnegative integer.

To our knowledge, a model like (2) has not been con-
sidered previously for topic modeling. However, re-
lated models have been considered in which the bin-
ning reflected in (2) is avoided, and C is simply treated
as a nonnegative real matrix. Dictionary learning and
related methods (Jenatton et al., 2010; Bittorf et al.,
2012; Lee & Seung, 2000; Boyd et al., 2010; Lin, 2007)
have been applied for the analysis of such matrices.

So motivated, another means of modeling the count
data, which is anologous to the ordinal probit model,
employs Cij ∼ N (X1,ij , 1), with the requirement that
the elements of D1 and S are nonnegative. This model
imposes that X1,ij typically has unit variance from the
observed count Cij , analogous to the ordinal probit
model.

In the experiments of Section 5, results are primar-
ily (but not exclusively) presented based the second
method of modeling counts, which we term LG-NMF
due to its close connection to nonnegative matrix fac-
torization. We therefore consider that method when
presenting priors for {d1i} and {sj}. Specifically, we
impose

d1i ∼ N+(0,
1

K
IK), sj ∼ N+(0, α−11 IK) (3)
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where IK represents the K ×K identity matrix, α1 ∈
R+, and N+(·, ·) is the truncated normal distribution
(restricted to be positive). We impose a weak gamma
prior on α1 (i.e., Ga(10−6, 10−6)). For LG-OP we sim-
ply use Gaussian priors, without the positivity con-
straint.

The above priors are similar to those in the work of
(Salakhutdinov & Mnih, 2008; Silva & Carin, 2012),
except there topic modeling was not considered. In Je-
natton et al. (2010), a related model was considered for
topic modeling, but an optimization solution was con-
sidered. As discussed below, the proposed Bayesian
solution leverages optimization approaches like that
considered in Jenatton et al. (2010).

2.2 Joint Analysis of Text and Binary Matrix

If we have an accompanying binary matrix B ∈
{0, 1}p2×n, we assume an associated latent matrix

X2 = D2S
T (4)

where D2 ∈ Rp2×K and S ∈ Rn×K is the same matrix
as used in (1) for representation of the text data C.
Therefore, S is shared between the model of the text
and binary matrix. With d2i ∈ RK representing the
transpose of row i of D2, we impose the prior

d2i ∼ N (0, α−12 IK) (5)

The link between X2 and B is the probit link function
as in (2), modified for two observations, h = 0 or h = 1.
We again place a weak gamma hyperprior on α2.

2.3 Model Characteristics

The above model is defined by many vectors {d1i},
{d2i} and {sj}, but only two hyperparameters θ =
(α1, α2)T . When we only model text, or only model
a binary matrix, there is only one hyperparameter,
θ = α1 or θ = α2. The fact that each of the many
vectors that we model has a Gaussian prior, and we
only have a very small set of hyperparameters, signifi-
cantly simplifies inference, yielding a procedure closely
connected to the recently developed INLA algorithm
(Rue et al., 2009).

3 APPROXIMATE INFERENCE

3.1 MAP Estimate

We consider the joint analysis of a count matrix C and
an associated binary matrix B; the method simplifies
when only C or B is analyzed. The negative log of the
posterior is

− log p({d1i}, {d2i}, {sj}, α1, α2|C,B)

=
∑p1
i=1

∑n
j=1(Cij − dT1isj)2

−
∑p2
i=1

∑n
j=1 log Ψ(Bij ,d

T
2isj) (6)

+α1

2

∑n
j=1 ‖sj‖22 + K

2

∑p1
i=1 ‖d1i‖22

+α2

2

∑p2
i=1 ‖d2i‖22 + f(α1, α2) + const

where Ψ(Bij ,d
T
2isj) = [F (dT2isj)]

Bij [1 −
F (dT2isj)]

1−Bij , with F (x) =
∫ x
−∞N (β; 0, 1)dβ.

For fixed values of the hyperparameters θ = (α1, α2)T ,
one may estimate point values of {d1i}, {d2i}, and
{sj}, and in fact this problem is very similar to
that considered in the optimization literature Jenat-
ton et al. (2010). Specifically, we have implemented
the following iterative procedure. With two of the sets
of vectors {d1i}, {d2i} and {sj} held fixed, we per-
form a gradient optimization for the third set of vec-
tors. We sequentially cycle through the three sets of
vectors, optimizing one set of vectors while the other
two are fixed. While there are not guarantees of a glob-
ally optimal solution, this iterative approach is assured
to converge, and is widely employed (Jenatton et al.,
2010; Chan & Wong, 2000).

Gradient descent is used to update a given set of pa-
rameters, and many methods exist in the literature
for this (see Jenatton et al. (2010) and the references
therein). For brevity we omit details here, other than
to note that the gradients for the representation in (6)
may be expressed analytically. It is important to em-
phasize that the proposed Bayesian inference method
has the salutary property of being able to leverage
many of the optimization methods that have been de-
veloped in the literature Recht (2011); Candès & Recht
(2012); Abernethy et al. (2009); Boyd et al. (2010), for
estimation of the MAP with fixed θ. This provides
computational speed, and will also allow the model to
scale to large problems, as discussed in Section 4. Ad-
ditionally, for each setting of hyperparameters θ, these
optimization problems may be performed in parallel.

3.2 Approximate Hyperparameter Posterior

Let x be a vector that represents a concatenation of all
vectors {d1i}, {d2i} and {sj} on which Gaussian priors
are employed, and again the small vector θ represents
the hyperparameters. Then the posterior distribution
on the hyperparameters is

p(θ|C,B) =
p(x,θ|C,B)

p(x|θ,C,B)
∝ p(x,θ,C,B)

p(x|θ,C,B)
(7)

with proportionality constant p(C,B).

We have an explicit expression for p(x,θ,C,B), and
for any fixed setting of the hyperparameters θ, we may
construct an approximation for p(x|θ,C,B). Specif-
ically, since we have a Gaussian prior on x, it is
reasonable to approximate p(x|θ,C,B) as Gaussian,
p(x|θ,C,B) ≈ pG(x|θ,C,B), yielding the Laplace ap-
proximation

p̃(θ|C,B) ∝ p(x,θ,C,B)

pG(x|θ,C,B) |x=x∗(θ)

(8)
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where x∗(θ) represents the approximate MAP solu-
tion for hyperparameters θ, computed as discussed in
Section 3.1. We use the symbol p̃(θ|C,B) to empha-
size that this is an approximation; note that while
p(x,θ,C,B) is approximated as Gaussian, p̃(θ|C,B)
is generally not Gaussian.

We represent the Gaussian approximation as
pG(x|θ,C,B) = N (x∗(θ),Σ(θ,x∗(θ))),

Σ(θ,d∗1i) = KIK + STS (9)

Σ(θ, s∗j ) = α1IK + DT
1 D1 −

∂`B
∂sjsTj

(10)

Σ(θ,d∗2i) = α2IK −
∂`B

∂d2id
T
2i

(11)

where

`B =

p2∑
i=1

n∑
j=1

[Bij logF (dT2isj) (12)

+ (1−Bij) log(1− F (dT2isj))]

All derivatives in (10) and (11) may be computed an-
alytically.

Note that in the Gaussian approximation, the mean
x∗(θ) estimates all x∗(θ) parameters jointly, while the
covariance is factorized between the different associ-
ated vector parameters, for simplicity.

3.3 Making Predictions
Assume that {θm}m=1,M represent a discrete set of hy-
perparameters at which p̃(θm|C,B) is computed; the
normalization constant is readily inferred by imposing∑M
m=1 ∆mp̃(θm|C,B) = 1, where ∆m represents the

gridding rate of hyperparameter space. Assume for ex-
ample that we wish to infer missing entry (i, j) in B,
Bij ∈ {0, 1}, then

p(Bij |D) ≈
∑

m ∆mp̃(θm|D)pm(Bij |D) (13)

pm(Bij |D) =
∫
dd2i

∫
dsjp(d2i, sj |D,θm)p(Bij |d2i, sj)

where p(Bij |d2i, sj) is defined by the binary probit
link function(Albert & Chib, 1993), and D represents
the observed portion of C and/or B.

When computing metrics like preplexity on held-out
documents, a MAP estimate of D1 is learned for each
θm based upon the training data (characteristic of the
K topics), and after inferring a posterior on S for the
test data, we may a computation like in (13), but the
nonnegative topic model is used, rather than the bi-
nary one.

What remains for computation of (13) is an ap-
proximation for p(d2i, sj |D,θm). Several options im-
mediately suggest themselves. Recall that in con-
stituting the approximate posterior for θ, the em-
ployed Laplace approximation used a Gaussian ap-
proximation for expressions like p(d2i, sj |D,θm); that

same Gaussian approximation may be used here. Al-
ternatively, a more accurate approximation may be
constituted by making another Laplace approxima-
tion, now on p(d2i, sj |D,θm). If we were to do
this, we would be making the Laplace approximation
twice: once for approximating p(θ|D), and another
for p(d1i,d2i, sj |D,θ). This latter approach corre-
sponds to the integrated nested Laplace approxima-
tion (INLA) developed by Rue et al. (2009). Note
however that to date INLA has only been applied to
linear models, not the nonlinear model proposed here,
which involves products of vectors in the sets {d1i},
{d2i}, and {sj}.

The simplest approximation in (13) is to let
pm(Bij |D) ≈ p(Bij |d∗2i(θm), s∗j (θm)), which just cor-
responds to evaluating the probit link for parameters
(d∗2i(θm), sj(θm)) corresponding to the MAP solution
at θm. This is by far the simplest approach, and the
excellent quality of our results mitigates against us-
ing either of the two more-complicated approximations
discussed above. The utilized method reduces to a
weighted average of a finite set of models, with each
model defined by discrete x(θm), and the weights de-
fined by ∆mp̃(θm|D).

3.4 Gridding Hyperparameter Space

The proposed approach differs from INLA in two ways:
(i) the matrix factorization is a nonlinear function of
the vectors x on which Gaussian priors are imposed
(INLA assumes a linear model); and (ii) we only em-
ploy one layer of Laplace approximation, on p(θ|D),
while INLA also imposes a Laplace approximation to
p(x|D,θ). However, the proposed model borrows a key
component of INLA, on how to select the set {θm}.
The reader is referred to Rue et al. (2009) for further
details, and here we summarize the approach.

A gradient-descent algorithm is employed to infer the
parameter θ that maximizes (8). Once that parame-
ter θ∗ is determined approximated, we use finite dif-
ferences to approximate the Hessian, H (recall that,
for our problem, θ is two dimensional for joint anal-
ysis of text and a binary matrix, and it is only one
dimensional when only considering text; so H is ei-
ther a scalar precision, or a 2×2 precision matrix. Let
Ω = H−1 approximate the covariance matrix of θ. We
perform an SVD of Ω, and then grid up in a 2D or 1D
grid, where in the 2D case the grid is Cartesian in di-
rections defined by the principal vectors. The gridding
size ∆m is made small relative to the variance in the
principal dimensions.

Note that once the grid of hyperparameters
{θm}m=1,M is so defined, the means by which
the associated {x(θm)} are computed reduces to an
optimization problem when each θm is fixed; the
optimization problem is defined in (6). As discussed
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in the next section, the fact that for each θm we need
solve an optimization problem allows the leveraging
of a vast optimization literature, within a Bayesian
solution. It is also important to note that solutions
for x(θm) may be computed independently for each
θm, on separate processors in parallel, manifesting
significant computational speedup. By contrast,
approximate Bayesian inference techniques like vari-
ational Bayesian (VB) and expectation propagation
(EP) do not admit such simple parallelization. One
may run parallel MCMC chains (Suchard et al., 2012).
However, that is less relevant for the work considered
here: for computational convenience and practical
use, in machine learning one typically runs a relatively
small number of MCMC samples, which must be done
serially (discussed further when presenting results in
Section 5).

4 SCALING UP

The large-scale datasets that we have access to are
text-only (no binary matrix B), and therefore we spe-
cialize this discussion to analysis of a count matrix C.
Similar techniques may be applied for joint analysis of
large-scale C and B.

For each discrete setting of hyperparameters θm, we
wish to infer

x∗(θm) = argmaxx(θm) − log p(x,θm|C) (14)

where x is a concatenation of {d1i} and {sj}, on which
we have imposed the Gaussian priors. This optimiza-
tion is performed in parallel for each of the set of dis-
crete {θm}.

We perform stochastic gradient descent (SGD) (Bot-
tou, 1998; Mairal et al., 2009) for the learning of x(θ),
for each θ. The data batches and the sequence with
which they are analyzed is the same for all {θm}. For
each epoch t ∈ {1, ..., T}, we randomly permute the
data set C and group the shuffled data into L mini-
batches of size B (batches are defined by selecting a
subset of documents, which corresponds to columns of
C).

Let Cb be a batch of documents, and let ` =
− log p({d1i}, {sj}, α1|Cb). For each batch Cb, we it-
eratively update D and S by Dt+1

1,ik = Dt
1,ik − η ∂`

∂D1,ik
,

and St+1
jk = Stjk − η ∂`

∂Sjk
, where η is the step size. We

set η = 0.003 in our experiments. The gradient with
respect to D1,ik and Sjk can be computed by

∂`
∂D1,ik

=
∑n
j=1(dT1isj − Cb,ij)Sjk +KeT(p1)d:k (15)

∂`
∂Sjk

=
∑p1
i=1(dT1isj − Cb,ij)D1,ik + α1e

T
(n)s:k (16)

where e(p1) and e(n) are p1 × 1 and n × 1 column

vectors with all entries being 1.

5 RESULTS

We examine the proposed latent Gaussian model with
Laplace approximation on several data sets, with com-
parisons to some of the most recently developed topic-
modeling alternatives. In some comparisons the LG
model will be implemented with MCMC inference, and
those results are denoted LG-MCMC (by comparing
LG-NMF and LG-MCMC, the model is the same and
the only thing that is different is the inference method;
for long MCMC chains, LG-MCMC may be used as a
reference for comparison). All computations were run
on a computer with Intel i5 2.6 GHz processor with
4 GB RAM. For all models except one, the software
was written in Matlab. The online LDA-VB model
(Hoffman et al., 2010) was written in Python.

Figure 1: Perplexity versus computation time for LDA,
AD-LDA, FTM, LG-NMF, LG-MCMC, and LG-OP, for
the PsyRev dataset. For LDA, FTM and LG-MCMC,
Gibbs sampling is used for inference.

Figure 2: Perplexity versus computation time for LDA,
AD-LDA, FTM, LG-NMF, LG-MCMC, and LG-OP, for
the NIPS dataset. For LDA, FTM and LG-MCMC, Gibbs
sampling is used for inference.

Table 1: Perplexity of different methods, on PsyRev and
NIPS datasets.

DATA LDA AD-LDA FTM LG-NMF LG-MCMC LG-OP

PsyRev 940 946 911 902 919 915
NIPS 187 177 185 175 183 185
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5.1 Topic Modeling on Small Corpora

We first consider the topic-modeling component of the
LG-NMF model alone, on two widely studied docu-
ment corpora: PsyRev abstracts and NIPS articles.
For comparison, we consider MCMC versions of LDA
(Blei et al., 2003), approximate distributed LDA (AD-
LDA)(Newman et al., 2009) and the focused topic
model (FTM) (Williamson et al., 2009), the latter one
of the most advanced topic models in the literature.
While here we consider LDA with MCMC inference,
for the large-scale application below we compare to a
VB LDA implementation. LDA and FTM are different
models than that associated with the proposed latent-
Gaussian (LG) model. Thus, in comparing with LDA
and FTM, the model is different from LG-NMF, and
the inference method is different. We therefore make
a comparison to LG-MCMC, as in this case the LG-
NMF and LG-MCMC models are the same, and the
differences are only associated with the manner of in-
ference. In addition, to give an understanding of how
LG-OP performs, experimental results with respect to
small corpora obtained by LG-OP are presented as
well. In practice we prefer LG-NMF over LG-OP, be-
cause we have observed the former consistently con-
verges faster (to similar models).

In Figures 1 and 2 we present the perplexity of each
method, as a function of computation time, for the
PsyRev and NIPS data, respectively. For the LG-NMF
and LG-OP methods, time is defined by number of it-
erations spent iteratively updating the factor loadings
and factor scores (iteratively computing the MAP so-
lution), while for the other methods time corresponds
to number of iterations of the MCMC sampler. For
LG-NMF and LG-OP, the grid on α1 was of dimen-
sion 10, and each grid point was analyzed in parallel.
The rank in the LG models is set as K = 50, and in
LDA, AD-LDA and FTM the number of topics is set
to 50. For AD-LDA, the documents were assigned to
10 CPU cores.

Each of the models considered in Figures 1 and 2 were
initialized exactly the same, to impose a fair compari-
son. Specifically, LDA is initialized at random, and
then run one MCMC iteration, from which we de-
fine the initial D1 and S in the latent Gaussian mod-
els. The FTM model also uses the same initialization.
The relative results in Figures 1 and 2 were robust to
numerous types of initializations (including random),
and the fast convergence of LG-NMF to a good result
was observed repeatedly.

Let Y be the word count matrix for the testing docu-
ments. The perplexity is defined as

Perplexity (Y) = exp

[
−
∑Ntest
d=1 log p (yd)∑Ntest
d=1 ntest,d

]
(17)

where ntest,d is the number of words in the dth testing
document, and yd denotes the vector of word counts
for the dth document. For the perplexity calculation
of our model, let G = [D1,S]. The numerator in equa-
tion 17 can then be written as

p(Y|C) =

∫
dα1

∫
dGp(Y|α1,G)p(G|α1,C)p(α1|C) (18)

For the LDA and FTM models, perplexity is com-
puted on these models as reported in the literature
(Williamson et al., 2009).

The PsyRev data contains a vocabulary of 9244 words
and 1281 documents, while the NIPS data contains
13649 unique words and 1740 documents. We choose
80% of the data at random as the training set, and use
the remaining 20% as the testing set.

As indicated in Figures 1 and 2, the proposed LG mod-
els asymptotically yield perplexity results very similar
to LDA and FTM (often slightly better than these
models; see Table 1), despite the fact that the ba-
sic model construction of the LG models is very dif-
ferent than the Dirichlet-distribution-based LDA and
FTM. We have consistently observed that both the
LG-NMF and LG-OP methods converge to a good so-
lution much faster than LDA and FTM, and that LG-
NMF converges more quickly than LG-MCMC. AD-
LDA achieves similar perplexity compared with LDA,
but with much less time. However, LG-NMF and LG-
OP still converge faster than AD-LDA.

For each of the corpora considered here, we infer a set
of topics. In the context of the LG model, the top-
ics are characterized by the columns of D1, in which
column k defines the strength with which each of the
words contribute to topic k. As an example of the
types of topics the model learns, in Table 2 we sum-
marize a subset of topics inferred by LG-NMF for the
NIPS data, where for each topic we show a subset of
words that are most likely to occur. In all of our ex-
periments, the form of the topics learned by LG-NMF
was very similar to that learned by more-conventional
topic models, like LDA and FTM.

5.2 Joint Analysis of Text & Binary Matrices

We compare the LG-NMF and FTM-BMF (Zhang &
Carin, 2012) for predicting votes on legislation, with
the text C and votes B modeled jointly (this prob-
lem was also considered in (Gerrish & Blei, 2011)).
FTM-BMF is an advanced model, incorporating some
of the latest methods in Bayesian analysis. The FTM
analysis of the text (Williamson et al., 2009) yields
state-of-the-art results, and the binary matrix factor-
ization (BMF)(Meeds et al., 2006), based on the Indian
buffet process (Griffiths & Ghahramani, 2005), is a so-
phisticated method of jointly modeling text and votes.
FTM-BMF yields accurate results, but comes at the
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Table 2: Topics of NIPS dataset, obtained by proposed
LG-NMF method.

TOPIC 1 TOPIC 2 TOPIC 3

eeg error stimulus
ica test response
components rate cortex
component machine cortical
independent validation stimuli
analysis errors neurons
pca cross responses

TOPIC 4 TOPIC 5 TOPIC 6

circuit neurons tree
current neuron node
voltage connections nodes
design firing trees
winner spiking decision
circuits excitatory routing
gate lateral leaf

Figure 3: Prediction accuracy versus time, for FTM-BMF
and LG-NMF methods, considering the legislative voting
data and associated legislative text.

cost of computational complexity, as MCMC inference
is required (Zhang & Carin, 2012), and the model is
fairly complicated. We here follow the experimental
settings considered in (Zhang & Carin, 2012).

We consider legislation (text) and roll-call data (binary
matrix) for US House of Representatives (House) ses-
sion 110; the data are available from thomas.loc.gov.
Entry Bij = 1 in B denotes that legislator i voted
“Yea” or “Yes” to legislation j, and Bij = 0 denotes
the corresponding response is “Nay” or “No”. The
bills are partitioned into 6 folds, and 5 folds are used
as training data, and the remaining fold is the test
data. The rank for both LG-NMF and FTM-BMF is
K = 30. For LG-NMF, we use 20 grid points two
discretize θ = (α1, α2). In this test, as in (Zhang &
Carin, 2012), after learning the model based on the
training data, the topic model is employed on held-out
legislation, and based on the topic distribution of that
legislation, the votes of all legislators are predicted.
LG-NMF and FTM-BMF achieve virtually identical
performance on this test: 90.63% prediction accuracy
for FTM-BMF, and 90.65% for LG-NMF (these are
asymptotic results, after the model has converged, as
discussed next).

In Figure 3 we show the accuracy as a function of

Figure 4: Posterior distribution obtained by LG-MCMC
(top) and LG-NMF (bottom).

time consumed on the training data. For LG-NMF this
corresponds to number of iterations in updating the
factor loadings and scores, while for FTM-BMF this
corresponds to number of MCMC iterations. In both
cases we start from a random initialiation. Results
for LG-NMF were run independently in parallel, and
shown is the computation time per grid point of θ.
One clearly sees the advantage of LG-NMF from a
CPU perspective, with essentially no loss in accuracy.
In Figure 3, the curve for FTM-BMF starts after about
300 seconds; this is because FTM-BMF first uses FTM
on the documents alone, for model initialization, which
takes some time.

In the above examples, as well as the large-scale ex-
ample considered in the next subsection, it is observed
that LG-NMF yields quantitative performance as good
as the best Bayesian models in the literature, at a frac-
tion of the computational cost. The heart of the model
involves estimation of p(θ|C,B), and therefore it is of
interest to examine the accuracy of the LG-NMF ap-
proximation of this posterior. For this comparison, we
run the LG-NMF and LG-MCMC for the joint analy-
sis of the legislation and votes. The model is the same
in each case, only the inference method is different.
In Figure 4 we show the LG-MCMC approximation
of p(α,α2|C,B), as well as an approximation based
on LG-NMF; note that the scales of the figures are
exactly the same. The approximated posteriors are
in good agreement (again considering data from the
110th Congress). To obtain benchmark LG-MCMC
results, we ran the algorithm for about 50 hours, run-
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ning 30,000 burn-in iterations, and 40,000 iterations
after burn-in period. The posterior distribution is ob-
tained by samples collected every 4 iterations after the
burn-in period. The accuracy of this posterior based
on LG-NMF is to what we attribute the accuracy of
this model.

Figure 5: Perplexity as a function of the number of doc-
uments seen, for online LG-NMF, online LDA-VB and
Adapt-SVI, analyzing 1 million documents Wikipedia doc-
uments.

Figure 6: Perplexity versus computation time, for on-
line LG-NMF, online LDA-VB and Adapt-SVI, analyzing
1 million documents from the Wikipedia dataset.

Table 3: Perplexity obtained by online LDA-VB, online
LG-NMF and Adapt-SVI for Wikipedia dataset.

METHODS LDA-VB ADAPT-SVI LG-NMF

Perplexity 1761 1666 1683

5.3 Large-Scale Dataset

We now consider LG-NMF for a large-scale cor-
pora, in particular the Wikipedia data considered by
the online LDA-VB method (Hoffman et al., 2010)
and by stochastic variational inference with an adap-
tive learning rate (Adapt-SVI) (Ranganath et al.,
2013). Borrowing nomenclature from (Hoffman et al.,
2010), we refer to the stochatic gradient implemen-
tation of the model as “online LG-NMF,” although
the data are not processed in a streaming/online
manner, but rather we randomly select batches of
data from the corpus. We compare the performance

of online LDA-VB (Hoffman et al., 2010) and our
online LG-NMF. For the former, we use the pub-
licly available code from http://www.cs.princeton.

edu/~blei/topicmodeling.html, which is written in
Python, while our online LG-NMF is written in Mat-
lab. Therefore, the time comparisons are not exactly
fair, and if anything the Matlab code is at a disadvan-
tage.

The Wikipedia corpora contains 3.3 million articles,
and we randomly select 1 million documents in our
experiment. The number of topics for both models is
K = 200. The batch size is 64, and we use 640 doc-
uments as the held-out testing data. The time con-
sumed for online LDA-VB is about 90 hours. For on-
line LG-NMF, the parallel computation time consump-
tion is about 8 hours, with 8 grid points for parameter
α1 run in parallel; we set the number of iterations at
25 for the stochastic gradient descent method. When
run serially on one computer, the LG-NMF requires
about 64 hours for the entire corpus.

The per-word perplexity versus the number of docu-
ments analyzed (connected to number of batches pro-
cessed) and associated CPU time are shown in Figures
5 and 6. Adapt-SVI is more computationally effective
than online LDA-VB and requires fewer documents to
converge to a stable perplexity. Table 3 indicates that
Adapt-SVI achieves lower perplexity than online LDA-
VB. LG-NMF achieves similar perplexity as Adapt-
SVI, but with much less computation time.

In all experiments, LG-NMF inferred topics that were
similar in quality to those generated by conventional
topic models, like LDA and FTM.

6 CONCLUSIONS

Borrowing ideas from the recently developed INLA
method (Rue et al., 2009), we have developed a new
means of performing topic modeling, based on latent
Gaussian priors on the factor loadings and scores. We
have jointly analyzed text and associated binary data,
and have developed a stochastic-gradient-descent im-
plementation that scales to massive data. The use of
Gaussian priors for matrix factorization is widely em-
ployed (Salakhutdinov & Mnih, 2008; Silva & Carin,
2012), but to the authors’ knowledge its use in topic
modeling has been limited, and leveraging ideas from
INLA has not been considered previously. Encourag-
ing performance on a diverse set of applications was
observed relative to some of the most advanced meth-
ods in the literature. Optimization plays a key role
here in estimating the Bayesian posterior, offering the
potential in future work to further integrate ideas from
the optimization and Bayesian communities.
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