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Department of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8

Abstract

In this paper we provide generalization
bounds for semiparametric regression with
the so-called partially linear models where
the regression function is written as the sum
of a linear parametric and a nonlinear, non-
parametric function, the latter taken from a
some set H with finite entropy-integral. The
problem is technically challenging because
the parametric part is unconstrained and the
model is underdetermined, while the response
is allowed to be unbounded with subgaussian
tails. Under natural regularity conditions, we
bound the generalization error as a function
of the metric entropy of H and the dimen-
sion of the linear model. Our main tool is a
ratio-type concentration inequality for incre-
ments of empirical processes, based on which
we are able to give an exponential tail bound
on the size of the parametric component. We
also provide a comparison to alternatives of
this technique and discuss why and when the
unconstrained parametric part in the model
may cause a problem in terms of the expected
risk. We also explain by means of a specific
example why this problem cannot be detected
using the results of classical asymptotic anal-
ysis often seen in the statistics literature.

1 INTRODUCTION

In this paper we consider finite-time risk bounds for
empirical risk-minimization algorithms for partially
linear stochastic models of the form

Yi = φ(Xi)
>θ + h(Xi) + εi, 1 ≤ i ≤ n, (1)
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where Xi is an input, Yi is an observed, potentially
unbounded response, εi is noise, φ is the known basis
function, θ is an unknown, finite dimensional parameter
vector and h is a nonparametric function component.
The most well-known example of this type of model
in machine learning is the case of Support Vector Ma-
chines (SVMs) with offset (in this case φ(x) ≡ 1). The
general partially linear stochastic model, which per-
haps originates from the econometrics literature [e.g.,
Engle et al., 1986, Robinson, 1988, Stock, 1989], is a
classic example of semiparametric models that combine
parametric (in this case φ(·)>θ) and nonparametric
components (here h) into a single model. The appeal
of semiparametric models has been widely discussed
in statistics, machine learning, control theory or other
branches of applied sciences [e.g., Bickel et al., 1998,
Smola et al., 1998, Härdle et al., 2004, Gao, 2007,
Kosorok, 2008, Greblicki and Pawlak, 2008, Horowitz,
2009]. In a nutshell, whereas a purely parametric model
gives rise to the best accuracy if correct, it runs the
risk of being misspecified. On the other hand, a purely
nonparametric model avoids the risk of model mis-
specification, therefore achieving greater applicability
and robustness, though at the price of the estimates
perhaps converging at a slower rate. Semiparametric
models, by combining parametric and nonparametric
components into a single model, aim at achieving the
best of both worlds. Another way of looking at them is
that they allow to add prior “structural” knowledge to
a nonparametric model, thus potentially significantly
boosting the convergence rate when the prior is correct.
For a convincing demonstration of the potential advan-
tages of semiparametric models, see, e.g., the paper by
Smola et al. [1998].

Despite all the interest in semiparametric modeling,
to our surprise we were unable to find any work that
would have been concerned with the finite-time predic-
tive performance (i.e., risk) of semiparametric methods.
Rather, existing theoretical works in semiparametrics
are concerned with discovering conditions and algo-
rithms for constructing statistically efficient estimators
of the unknown parameters of the parametric part.
This problem has been more or less settled in the book
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by Bickel et al. [1998], where sufficient and necessary
conditions are described along with recipes for con-
structing statistically efficient procedures. Although
statistical efficiency (which roughly means achieving the
Cramer-Rao lower bound as the sample size increases
indefinitely) is of major interest, statistical efficiency
does not give rise to finite-time bounds on the excess
risk, the primary quantity of interest in machine learn-
ing. In this paper, we make the first initial steps to
provide these missing bounds.

The closest to our work are the papers of Chen et al.
[2004] and Steinwart [2005], who both considered the
risk of SVMs with offset (a special case of our model).
Here, as noted by both authors, the main difficulty is
bounding the offset. While Chen et al. [2004] bounded
the offset based on a property of the optimal solution
for the hinge loss and derived finite-sample risk bounds,
Steinwart [2005] considered consistency for a larger
class of “convex regular losses”. Specific properties of
the loss functions were used to show high probability
bounds on the offset. For our more general model,
similarly to these works the bulk of the work will be to
prove that with high probability the parametric model
will stay bounded (we assume supx ‖φ(x)‖2 < +∞).
The difficulty is that the model is underdetermined
and in the training procedures only the nonparametric
component is penalized. This suggests that perhaps
one could modify the training procedure to penalize
the parametric component, as well. However, it ap-
pears that the semiparametric literature largely rejects
this approach. The main argument is that a penalty
would complicate the tuning of the method (because
the strength of the penalty needs to be tuned, too), and
that the parametric part is added based on a strong
prior belief that the features added will have a signif-
icant role and thus rather than penalizing them, the
goal is to encourage their inclusion in the model. Fur-
thermore, the number of features in the parametric
part are typically small, thus penalizing them is largely
unnecessary. However, we will return to discussing this
issue at the end of the article.

Finally, let us make some comments on the computa-
tional complexity of training partially linear models.
When the nonparametric component belongs to an
RKHS, an appropriate version of the representer theo-
rem can be used to derive a finite-dimensional optimiza-
tion problem [Smola et al., 1998], leading to quadratic
optimization problem subject to linear constrains. Re-
cent work by Kienzle and Schölkopf [2005] and Lee
and Wright [2009] concern specialized solvers to find
an approximate optimizer of the arising problem. In
particular, in their recent work Lee and Wright [2009]
proposed a decomposition algorithm that is capable to
deal with large-scale semiparametric SVMs.

The main tool in the paper is a ratio-type concentration
inequality due to van de Geer [2000]. With this, the
boundedness of the parameter vector is derived from
the properties of the loss function: The main idea is
to use the level sets of the empirical loss to derive
the required bounds. Although our main focus is the
case of the quadratic loss, we study the problem more
generally. In particular, we require the loss function to
be smooth, Lipschitz, “non-flat” and convex, of which
the quadratic loss is one example.

The paper is organized as follows. We first define the
notation we use and give the details of the problem
setting. In the next section, we state our assumptions
and the results, together with a comparison to alter-
native approaches. All the proofs are in the Appendix
due to space limits.

2 PROBLEM SETTING AND
NOTATION

Throughout the paper, the input space X will be a
separable, complete metric space, and Y, the label
space, will be a subset of the reals R. In this paper, we
allow Y ∈ Y to be unbounded. Given the independent,
identically distributed sample Z1:n = (Z1, ..., Zn), Zi =
(Xi, Yi), Xi ∈ X , Yi ∈ Y, the partially constrained
empirical risk minimization problem with the partially
linear stochastic model (1) is to find a minimizer of

min
θ∈Rd,h∈H

1

n

n∑
i=1

`
(
Yi, φ(Xi)

>θ + h(Xi)
)
,

where ` : Y×R→ [0,∞) is a loss function, φ : X → Rd
is a basis function andH is a set of real-valued functions
over X , holding the “nonparametric” component h.
Our main interest is when the loss function is quadratic,
i.e., `(y, y′) = 1

2 (y − y′)2, but for the sake of exploring
how much we exploit the structure of this loss, we will
present the results in an abstract form.

Introducing G =
{
φ(·)>θ : θ ∈ Rd

}
, the above prob-

lem can be written in the form

min
g∈G,h∈H

Ln(g + h), (2)

where Ln(f) = 1
n

∑n
i=1 `(Yi, f(Xi)). Typically, H

arises as the set {h : X → R : J(h) ≤ K} with some
K > 0 and some functional J that takes larger values
for “rougher” functions.1

1 The penalized empirical risk-minimization problem,
ming∈G,h Ln(h + g) + J(h) is closely related to (2) as
suggested by the identity ming∈G,h Ln(g + h) + λJ(h) =
minK≥0 λK + ming∈G,h:J(h)≤K Ln(g+ h) explored in a spe-
cific context by Blanchard et al. [2008].
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The goal of learning is to find a predictor with a small
expected loss. Given a measurable function f : X → R,
the expected loss, or risk, of f is defined to be L(f) =
E [`(Y, f(X))], where Z = (X,Y ) is an independent
copy of Zi = (Xi, Yi) (i = 1, . . . , n). Let (gn, hn) be a
minimizer2 of (2) and let fn = gn + hn.

When analyzing a learning procedure returning a func-
tion fn, we compare the risk L(fn) to the best risk
possible over the considered set of functions, i.e., to
L∗ = infg∈G,h∈H L(g + h). A bound on the excess risk
L(fn)− L∗ is called a generalization (error) bound. In
this paper, we seek bounds in terms of the entropy-
integral of H. Our main result, Theorem 3.2, provides
such a bound, essentially generalizing the analogue re-
sult of Bartlett and Mendelson [2002]. In particular,
our result shows that, in line with existing empirical
evidence, the price of including the parametric com-
ponent in terms of the increase of the generalization
bound is modest, which, in favourable situations, can
be far outweighed by the decrease of L∗ that can be
attributed to including the parametric part. However,
in terms of the expected excess risk, the unconstrained
parametric part may cause a problem in some case.

By the standard reasoning, the excess risk is decom-
posed as follows:

L(fn)− L(f∗) = (L(fn)− Ln(fn))

+ (Ln(fn)− Ln(f∗))︸ ︷︷ ︸
≤0

+(Ln(f∗)− L(f∗)) ,

(3)

where f∗ = arg minf∈G+H L(f). Here, the third term
can be upper bounded as long as f∗ is “reasonable”
(e.g., bounded). On the other hand, the first term is
more problematic, at least for unbounded loss functions
and when Y is unbounded. Indeed, in this case fn can
take on large values and correspondingly L(fn) could
also be rather large. Note that this is due to the fact
that the parametric component is unconstrained.

The classical approach to deal with this problem is to
introduce, clipping, or truncation of the predictions
(cf. Theorem 11.5 of Györfi et al. [2002]). However,
clipping requires additional knowledge such as that Y
is bounded with a known bound. Furthermore, the clip-
ping level appears in the bounds, making the bounds
weak when the level is conservatively estimated In fact,
one suspects that clipping is unnecessary in our setting
where we will make strong enough assumptions on the
tails of Y (though much weaker than assuming that

2For simplicity, we assume that this minimizer and in
fact all the others that we will need later exist. This is done
for the sake of simplifying the presentation: The analysis is
simple to extend to the general case. Further, if there are
multiple minimizers, we choose one.

Y is bounded). In fact, in practice, it is quite rare to
see clipping implemented. Hence, in what follows we
will keep to our original goal and analyze the proce-
dure with no clipping. Further comparison to results
with clipping will be given after our main results are
presented.

To analyze the excess risk we will proceed by showing
that with large probability, ‖gn‖∞ is controlled. This
is, in fact, where the bulk of the work will lie.

3 ASSUMPTIONS AND RESULTS

In this section we state our assumptions, which will be
followed by stating our main result. We also discuss
a potential problem caused by including the uncon-
strained parametric part, and explain why standard
asymptotic analysis can not detect this problem. Due
to the space limit, all the proofs are postponed to
the Appendix. Before stating our assumptions and
results, we introduce some more notation. We will
denote the Minkowski-sum of G +H of G and H by F :
F = G+H .

= {g + h : g ∈ G, h ∈ H}. The L2-norm of
a function is defined as ‖f‖22

.
= E

[
f2(X)

]
, while given

the random sample X1:n = (X1, . . . , Xn), the n-norm
of a function is defined as the (scaled) `2-norm of the re-

striction of the function to X1:n: ‖f‖2n = 1
n

∑
i f(Xi)

2.
The vector (f(X1), . . . , f(Xn))> is denoted by f(X1:n).
The matrix (φ(X1), . . . , φ(Xn))> ∈ Rn×d is denoted
by Φ (or Φ(X1:n) if we need to indicate its dependence
on X1:n). We let Ĝ = 1

nΦ>Φ ∈ Rd×d be the empiri-
cal Grammian matrix and G = E[φ(X)φ(X)>] be the
population Grammian matrix underlying φ. Denote
the minimal positive eigenvalue of G by λmin, while let
λ̂min be the same for Ĝ. The rank of G is denoted by
ρ = rank(G). Lastly, let Lh,n(g) = Ln(h+ g), Ln(f) =
E [Ln(f) |X1:n] and Lh,n(g) = E [Ln(h+ g) |X1:n].

3.1 Assumptions

In what follows we will assume that the functions in
H are bounded by r > 0. If K is an RKHS space with
a continuous reproducing kernel κ and X is compact
(a common assumption in the literature, e.g., Cucker
and Zhou 2007, Steinwart and Christmann 2008), this
assumption will be satisfied if J(h) = ‖h‖K and H =
{h ∈ K : J(h) ≤ r}, where, without loss of generality
(WLOG), we assume that the maximum of κ is below
one.

We will also assume that R = supx∈X ‖φ(x)‖2 is finite.
If φ is continuous and X is compact, this assumption
will be satisfied, too. In fact, by rescaling the basis
functions if needed, we will assume WLOG that R = 1.

Definition 1. Let β,Γ be positive numbers. A (non-
centered) random variable X is subgaussian with pa-
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rameters (β,Γ) if

E
[
exp

(
|βX|2

)]
≤ Γ <∞.

Let us start with our assumptions that partly concern
the loss function, `, partly the joint distribution of
(X,Y ).

Assumption 3.1 (Loss function).

(i) Convexity: The loss function ` is convex with
respect to its second argument, i.e., `(y, ·) is a
convex function for all y ∈ Y.

(ii) There exists a bounded measurable function ĥ and
a constant Q <∞ such that

E
[
`
(
Y, ĥ(X)

)
|X
]
≤ Q almost surely.

(iii) Subgaussian Lipschitzness: There exists a func-
tion K` : Y × (0,∞) → R such that for any
constant c > 0 and c1, c2 ∈ [−c, c],

|`(y, c1)− `(y, c2)| ≤ K`(y, c) |c1 − c2| ,

and such that E
[
exp(|βK`(Y, c)|2)|X

]
≤ Γc <

∞ for some constant Γc depending only on c
almost surely. WLOG, we assume that K`(y, ·)
is a monotonically increasing function for any
y ∈ Y.

(iv) Level-Set: For any X1:n ⊂ X , and any c ≥ 0,
Rc = supf∈F :E[Ln(f)|X1:n]≤c ‖f‖n is finite and in-
dependent of n.

The convexity assumption is standard.

Remark 3.1. Assumption 3.1(ii) basically requires Y ,
even if it is unbounded, still can be approximated by a
function in H at every X with constant expected loss.

Remark 3.2. The subgaussian Lipschitzness assumption
is a general form of Lipschitzness property which allows
the Lipschitzness coefficient to depend on y.

Remark 3.3. If the loss function is the quadratic loss,
the subgaussian Lipschitzness assumption is an imme-
diate corollary of the subgaussian property of Y condi-
tioning on X. In particular, |(Y − c1)2 − (Y − c1)2| =
|2Y − c1 − c2||c1 − c2|. Thus we can pick K`(Y, c) =
2|Y | + 2c and β = 1

2
√

2
, then E

[
exp(|βK`(Y, c)|2)

]
=

E
[
exp( 1

2 (|Y |+ c)2)
]
≤ E

[
exp(|Y |2)

]
+ exp(c2).

Remark 3.4. Unlike the first three assumptions, As-
sumption 3.1(iv), which requires that the sublevel sets
of E [Ln(·) |X1:n] are bounded in ‖·‖n, is nonstandard.
This assumption will be crucial for showing the bound-
edness of the parametric component of the model. We
argue that in some sense this assumption, given the
method considered, is necessary. The idea is that since

fn minimizes the empirical loss it should also have a
small value of E [Ln(·) |X1:n] (in fact, this is not that
simple to show given that it is not known whether
fn is bounded). As such, it will be in some sublevel
set of E [Ln(·) |X1:n]. Otherwise, nothing prevents
the algorithm from choosing a minimizer (even when
minimizing E [Ln(·) |X1:n] instead of Ln(·)) with an
unbounded ‖·‖n norm.

Remark 3.5. One way of weakening Assumption 3.1(iv)
is to assume that there exist a minimizer of
E [Ln(·) |X1:n] over F that has a bounded norm and
then modify the procedure to pick the one with the
smallest ‖·‖n norm.

Example 3.1 (Quadratic Loss). In the case of quadratic
loss, i.e., when `(y, y′) = 1

2 (y−y′)2, R2
c ≤ 4c+8Q+4s2

where s = ‖ĥ‖∞. Indeed, this follows from

‖f‖2n ≤
2

n

∑
i

E
[
(f(Xi)− Yi)2 |X1:n

]
+ E

[
Y 2
i |X1:n

]
≤ 4E [Ln(f) |X1:n] +

2

n

∑
i

E
[
Y 2
i |Xi

]
.

Then E
[
Y 2
i |Xi

]
≤ 2E

[
(Yi − ĥ(Xi))

2 |Xi

]
+2ĥ2(Xi) ≤

4Q + 2s2. Here, the last inequality is by Assump-
tion 3.1(ii) and the boundedness of ĥ.

Example 3.2 (Exponential Loss). In the case of ex-
ponential loss, i.e., when `(y, y′) = exp(−yy′) and if
Y = {+1,−1} the situation is slightly more complex.
Rc will be finite as long as the posterior probability of
seeing either of the labels is uniformly bounded away
from one, as assumed e.g., by Blanchard et al. [2008].
Specifically, if η(x)

.
= P(Y = 1|X = x) ∈ [ε, 1 − ε]

for some ε > 0 then a simple calculation shows that
R2
c ≤ c/ε.

It will be convenient to introduce the alternate notation
`((x, y), f) for `(y, f(x)) (i.e., `((x, y), f)

.
= `(y, f(x))

for all x ∈ X , y ∈ Y, f : X → R. Given h ∈ H, let
gh,n = arg ming∈G Ln(h+ g) = arg ming∈G Lh,n(g) and
gh,n = arg ming∈G Lh,n(g) (Lh,n and Lh,n are defined
at the end of Section 2). The next assumption states
that the loss function is locally “not flat”:

Assumption 3.2 (Non-flat Loss). Assume that there
exists ε > 0 such that for any h ∈ H and vector a ∈
[−ε, ε]n ∩ Im(Φ),

ε

n
‖a‖22 ≤ E

[
1

n

∑
i

`(Zi, h+ gh,n + ai)
∣∣∣X1:n

]

− E

[
1

n

∑
i

`(Zi, h+ gh,n)
∣∣∣X1:n

]
holds a.s., where recall that Zi = (Xi, Yi).

Note that it is key that the “perturbation” a is in the
image space of Φ and that it is applied at h+ gh,n and
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not at an arbitrary function h, as shown by the next
example:

Example 3.3 (Quadratic loss). In the case of the
quadratic loss, note that g(X1:n) = Φ(X1:n)θ. Let
θh,n be a minimizer of Lh,n(·) satisfying θh,n =(
Φ>Φ

)+
Φ>(E [Y1:n|X1:n]− h(X1:n)). Therefore,

E

[
1

n

∑
i

`((Xi, Yi), h+ gh,n + ai) |X1:n

]

− E

[
1

n

∑
i

`((Xi, Yi), h+ gh,n) |X1:n

]

=
1

n

∑
i

E
[
ai
{

2(gh,n(Xi) + h(Xi)− Yi) + ai
}
|X1:n

]
,

which is equal to 1
n‖a‖

2
2 +

2
na
>
{

Φ
(
Φ>Φ

)+
Φ> − I

}
{E [Y1:n|X1:n]− h(X1:n)} =

1
n‖a‖

2
2, where the last equality follows since a ∈ Im(Φ).

We will need an assumption that the entropy of H
satisfies an integrability condition. For this, recall the
definition of entropy numbers:

Definition 2. For ε > 0, the ε-covering number
N(ε,H, d) of a set H equipped with a pseudo-metric
d is the number of balls with radius ε measured with
respect to d necessary to cover H. The ε-entropy of H
is H(ε,H, d) = logN(ε,H, d).

We will allow d to be replaced by a pseudo-norm,
meaning the covering/entropy-numbers defined by the
pseudo-distance generated by the chosen pseudo-norm.
Note that if d′ ≤ d then the ε-balls w.r.t. d′ are bigger
than the ε-balls w.r.t. d. Hence, any ε-cover w.r.t. d is
also gives an ε-cover w.r.t. d′. Therefore, N(ε,H, d′) ≤
N(ε,H, d) and also H(ε,H, d′) ≤ H(ε,H, d).

Let ‖·‖∞,n be the infinity empirical norm: For f : X →
R, ‖f‖∞,n = max1≤k≤n |f(Xk)|. Note that trivially
‖f‖n ≤ ‖f‖∞,n ≤ ‖f‖∞. We use ‖·‖∞,n in our next
assumption:

Assumption 3.3 (Integrable Entropy Numbers of H).
There exists a (non-random) constant CH such that,∫ 1

0
H1/2(v,H, ‖·‖∞,n) dv ≤ CH holds a.s.

Remark 3.6. Assumption 3.3 is well-known in the lit-
erature of empirical processes to guarantee the uni-
form laws of large numbers [Dudley, 1984, Giné and
Zinn, 1984, Tewari and Bartlett, 2013]. The assump-
tion essentially requires that the entropy numbers of
H should not grow very fast as the scale approaches
to zero. For example, this assumption holds if for
any 0 < u ≤ 1, H(u,H, ‖·‖∞,n) ≤ cu−(2−ε) for some
c > 0, ε > 0. Based on our previous discussion,
H(u,H, ‖·‖∞,n) ≤ H(u,H, ‖·‖∞); the latter entropy
numbers are well-studied for a wide range of function

spaces (and enjoy the condition required here). For
examples see, e.g., [Dudley, 1984, Giné and Zinn, 1984,
Tewari and Bartlett, 2013].

For the next assumption let Gλmin be the event when

λ̂min ≥ λmin/2.

Assumption 3.4 (Lipschitzness of the Parametric So-
lution Path). Let PX denote the distribution of X.
There exists a constant Kh such that on Gλmin

for [PX ]
almost all x ∈ X , h 7→ gh,n(x) is Kh-Lipschitz w.r.t.
‖·‖∞,n over H.

Remark 3.7. When gh,n is uniquely defined, Assump-
tion 3.4 will be satisfied whenever ` is sufficiently
smooth w.r.t. its first argument, as follows, e.g., from
the Implicit Function Theorem.

Example 3.4 (Quadratic loss). In the case of the
quadratic loss, by Example 3.3,

gh,n(x) = 〈φ(x),
(
Φ>Φ

)+
Φ>(E [Y1:n|X1:n]− h(X1:n))〉

=
1

n

∑
i

〈φ(x), Ĝ+φ(Xi) (E [Yi|X1:n]− h(Xi))〉

Thus, for h, h′ ∈ H, on Gλmin
,

|gh,n(x)− gh′,n(x)|

=
∣∣∣〈φ(x),

(
Φ>Φ

)+
Φ> (h′(X1:n)− h(X1:n)〉

∣∣∣
≤

2 ‖φ(x)‖2
λmin

1

n

∑
i

|h′(Xi)− h(Xi)| ‖φ(Xi)‖2

≤ 2

λmin
‖h′ − h‖∞,n

where we used ‖φ(x)‖2 ≤ 1 multiple times which holds
[PX ] a.e. on X .

3.2 Results

Our first main result implies that gn is bounded with
high probability:

Theorem 3.1. Let Assumptions 3.1 to 3.4 hold. Then,
there exist positive constants c1, c2, U such that for any

0 < δ < 1 and n such that n ≥ c1 + c2
log( 2ρ

δ )
λmin

, it holds
that

P
(

sup
h∈H
‖gh,n‖∞ ≥ U

)
≤ δ . (4)

The result essentially states that for some specific value
of U , the probability that the event suph∈H ‖gh,n‖∞ >
U happens is exponentially small as a function of the
sample size n. The constant U is inversely proportional
to λmin and depends on both Rc from the level-set
assumption and r. Here c depends on Q, ‖ĥ‖∞ from
Assumption 3.1(ii) and the subgaussian parameters.
The actual value of U can be read out from the proof.
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The main challenges in the proof of this result are that
the bound has to hold uniformly over H (this allows
us to bound ‖gn‖∞), and also that the response Y is
unbounded, as are the functions in G. The main tool
is a ratio type tail inequality for empirical processes,
allowing us to deal both with the unbounded responses
and functions, which is then combined with our as-
sumptions on the loss function, in particular, with the
level-set assumption.

Given Theorem 3.1, various high-probability risk
bounds can be derived using more or less standard
techniques, although when the response is not bounded
and clipping is not available, we were not able to iden-
tify any result in the literature that would achieve
this. In our proof, we use the technique of van de
Geer [1990], which allows us to work with unbounded
responses without clipping the predictions, to derive
our high-probability risk bound. Since this technique
was developed for the fixed design case, we combine it
with a method, which uses Rademacher complexities,
upper bounded in terms of the entropy integral, We
use the technique of van de Geer [1990], which allows
us to work with unbounded responses without clipping
the predictions. Since this technique was developed for
the fixed design case, we combine it with a method,
which uses Rademacher complexities, upper bounded
in terms of the entropy integral, so as to get an out-
of-sample generalization bound.3 The bound in our
result is of the order 1/

√
n, which is expected given our

constraints on the nonparametric class H. However,
we note in passing, that under stronger conditions,
such as L(f∗) = 0 [Pollard, 1995, Haussler, 1992], or
the convexity of F (which does not hold in our case
unless we take the convex hull of F = G + H), that
the true regression function belongs to F , the loss is
the quadratic loss (or some other loss which is strongly
convex), a faster rate of O(1/n) can also be proved [Lee
et al., 1998, Györfi et al., 2002, Bartlett et al., 2005,
Koltchinskii, 2006, 2011], though the existing works
seem to make various assumptions about Y which we
would like to avoid. Hence, we leave the proof of such
faster rates for future work.

Let (x)+ = max(x, 0) denote the positive part of x ∈ R.

Theorem 3.2. Let Assumptions 3.1 to 3.4 hold and
let f∗ = g∗ + h∗ be a minimizer of L over G + H
(i.e., g∗ ∈ G, h∗ ∈ H). There exist positive con-
stants c, c1, c2, c3, c4, α and U ≥ ‖g∗‖∞ such that
for any 0 < δ < 1 satisfying log 1

δ ≥ c and n ≥

3“In-sample” generalization bounds concern the devia-
tion Ln(fn)−Ln(f∗), while “out-of-sample bounds” concern
L(fn)− L(f∗).

c1 + c2 log
(

4ρ
δ

)
/λmin, with probability at least 1− 3δ,

L(fn)− L(f∗) ≤ c3
CH + ρ1/2(log(U))+√

n

+ 2(r + U)

√
log 2

δ

αn
+ c4

√
log 1

δ

2n

(5)

where fn = hn+gn is a minimizer of Ln(·) over H+G.

Remark 3.8. The constants ρ and λmin appear both
in U and in the lower bound constraint of n. Defining
`(x, p) = E [`(Y, p)|X = x], Constant c3 depends on
the (essential) Lipschitz coefficient of `(X, p) when
p ∈ [−r − U, r + U ] and constant c4 depends on the
(essential) range of `(X, p). Both of them can be shown
to be finite based on Assumption 3.1. The bound has a
standard form: The first and the last of the three terms
comes from bounding the out-of-sample generalization
error, while the term in the middle (containing α)
bounds the in-sample generalization error. We use a
measure-disintegration technique to transfer the results
of van de Geer [1990] which are developed for the
fixed design setting (i.e., when the covariates X1:n are
deterministic) to the random design setting that we
consider in this paper.

Notice that the above high probability result holds only
if n is large compared to log(1/δ), or, equivalently when
δ is not too small compared to n, a condition that is
inherited from Theorem 3.1. Was this constraint absent,
the tail of L(fn)−L(f∗) would be of a subgaussian type,
which we could integrate to get an expected risk bound.
However, because of the constraint, this does not work.
With no better idea, one can introduce clipping, to limit
the magnitude of the prediction errors on an event of
probability (say) 1/n. This still result in an expected
risk bound of the order (i.e., O(1/

√
n)), as expected,

although with an extra logarithmic factor. However,
if one needs to introduce clipping, this could be done
earlier, reducing the problem to studying the metric
entropy of the clipped version of F (which is almost
what is done in Lemma A.2 given in the supplementary
material). For this, assuming Y is bounded, one can
use Theorem 11.5 of Györfi et al. [2002]. Note, however,
that in this result, for example, the clipping level, which
one would probably select conservatively in practice,
appears raised to the 4th power. We do not know
whether this is a proof artifact (this might worth to
be investigated). In comparison, with our technique,
the clipping level could actually be made appear only
through its logarithm in our bound if we choose δ =
1/(Ln). On the other hand, our bound scales with λ−1

min

through U . This is alarming unless the eigenvalues
of the Grammian are well-controlled, in which case
λ−1

min = O(
√
ρ).

Given the imbroglio that the constraint connecting n
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and δ causes, the question arises whether this condition
could be removed from Theorem 3.2. The following
example, based on Problem 10.3 of Györfi et al. [2002],
shows that already in the purely parametric case, there
exist perfectly innocent looking problems which make
ordinary least squares fail:

Example 3.5 (Failure of Ordinary Least Squares). Let
X = [0, 1], Y = R, `(y, p) = (y − p)2, φ : X → R3,
φ1(x) = I[0,1/2](x), φ2(x) = x · I[0,1/2](x), φ3(x) =
I(1/2,1](x), where IA denotes the indicator of set A ⊂ X .

Let fθ(x) = φ(x)>θ, θ ∈ R3. As to the data,
let (X,Y ) ∈ X × {−1,+1} be such that X and Y
are independent of each other, X is uniform on X
and P (Y = +1) = P (Y = −1) = 1/2. Note that
E [Y |X] = 0, hence the model is well-specified (the true
regression function lies in the span of basis functions).
Further, f∗(x) = 0. Now, let (X1, Y1), . . . , (Xn, Yn)

be n independent copies of (X,Y ) and let θ̂n =
arg minθ∈R3 Ln(φ>θ). Denote the empirical Grammian

on the data by Ĝn = 1
n

∑
k φ(Xk)φ(Xk)>, λ̂min(n) =

λmin(Ĝn), λmin = λmin(E
[
φ(X)φ(X)>

]
). The follow-

ing hold:

(a) E
[
Ln(fθ̂n)

]
=∞ (infinite risk!);

(b) E
[
Ln(fθ̂n)− L(f∗)

]
→ 0 as n→∞ (well-behaved

in-sample generalization);

(c) For some event Bn with P (Bn) ∼ e−n, c(
√
t−2t) ≤

P
(
λ̂min(n) ≤ tλmin|Bn

)
≤ c′(

√
t − 2t) for some

0 < c < c′;

(d) E
[
λ̂−1

min(n)
]

= +∞.

To understand what happens in this example, con-
sider the event An. On this event, which has
a probability proportional to e−n, θ̂n,1 = (Y1 +

Y2)/2 and θ̂n,2 = Y1−Y2

X1−X2
, so that fθ̂n(Xi) =

Yi, i = 1, 2. Then, the out-of-sample risk

can be lower bounded using E
[
(fθ̂n(X)− Y )2

]
=

E
[
fθ̂n(X)2

]
+ 1 ≥ (E

[
|fθ̂n(X)| |An

]
P (An))2 + 1.

Now, E
[
|fθ̂n(X)− Y | |An

]
= 2E [X/|X1 −X2| |An] =

E [1/|X1 −X2| |An] = +∞. A similar calculation
shows the rest of the claims.

This example leads to multiple conclusions: (i) Ordi-
nary least squares is guaranteed to have finite expected
risk if and only E

[
λmin(Gn)−1

]
< +∞, a condition

which is independent to previous conditions such as
“good statistical leverage” [Hsu et al., 2012]. (ii) The
constraint connecting δ and n cannot be removed from
Theorem 3.2 without imposing additional conditions.

(iii) Not all high probability bounds are equal. In par-
ticular, the type of in Theorem 3.2 constraining n to be
larger than log(1/δ) does not guarantee small expected
risk. (iv) Under the additional condition that the in-
verse moment of λmin(Gn) is finite, Theorem 3.2 gives
rise to an expected risk bound. (v) Good in-sample gen-
eralization, or in-probability parameter convergence, or
that the estimated parameter satisfies the central limit
theorem (which all hold in the above example) does not
lead to good expected risk for ordinary least-squares;
demonstrating a practical example where out-of-sample
generalization error is not implied by any of these “clas-
sical” results that are extensively studied in statistics
(e.g., [Bickel et al., 1998]). (vi) Although the “Eigen-
value Chernoff Bound” (Theorem 4.1) of Gittens and
Tropp [2011] captures the probability of the smallest
positive eigenvalue being significantly underestimated
correctly as a function of the sample size, it fails to
capture the actual behavior of the left-tail, and this
behavior can be significantly different for different dis-
tributions. Understanding this phenomenon remains
an important problem to study.

Based on this example, we see that another option
to get an expected risk bound without clipping the
predictions or imposing an additional restriction on the
basis functions and the data generating distribution, is
to clip the eigenvalues of the data Grammian before
inversion at a level of O(1/n) or to add this amount
to all the eigenvalues. One way of implementing the
increase of eigenvalues is to employ ridge regression by
introducing penalty of form ‖θ‖22 in the empirical loss
minimization criterion. Then, by slightly modifying
our derivations and setting δ = O(1/n2), an expected
risk bound can be derived from Theorem 3.2, e.g.,
for the squared loss, since then outside of an event
with probability O(1/n2), the risk is controlled by the
high probability bound of Theorem 3.2, while on the
remaining “bad event”, the prediction error will stay
bounded by n2. Although numerical algebra packages
implement pseudo-inverses by cutting the minimum
eigenvalue, this may be insufficient since they usually
cut at the machine precision level, which translates into
sample size which may not be available in practice.

4 CONCLUSIONS AND FUTURE
WORK

In this paper we set out to investigate the question
whether current practice in semiparametric regression
of not penalizing the parametric component is a wise
choice from the point of view of finite-time performance.
We found that for any error probability level, for sample
sizes n = Ω(log(1/δ)), the risk of such a procedure can
indeed be bounded with high probability, proving the
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first finite-sample generalization bound for partially lin-
ear stochastic models. The main difficulty of the proof
is to guarantee the parametric component is bounded in
the supremum norm. However, we have also found that
an additional restriction connecting the data generat-
ing distribution and the parametric part is necessary
to derive an expected risk bound. This second observa-
tion is based on an example where the model is purely
parametric. Thus, unless this additional knowledge is
available, we think that it is too risky to follow current
practice and recommend introducing some form of reg-
ularization for the parametric part and/or clipping the
predictions when suitable bounds are available on the
range of the Bayes predictor. We have also identified
that existing bounds in the literature do not capture
the behavior of the distribution of the minimum posi-
tive eigenvalue of empirical Grammian matrices, which
would be critical to understand for improving our un-
derstanding of the basic question of how the expected
risk of ordinary least-squares behaves.
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