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A Proofs

Proof of Lemma 4.2

Recall that di is arranged in decreasing order, and from

(4.9) we have ∥x∥2 =
∑n

i
|λc̃i|2
|di−λ|2 . Defining x̃ = Q⊤x,

this is equal to
∑n

i |x̃i|2. Now consider x′ defined by
x′ = Qx̃′, where x̃′ = (x̃1, x̃2, . . . ,−(x̃n − c̃n) + c̃n).
The vector x′ is obtained by flipping the sign of the
last element in the coordinate system defined by the
ellipsoid centered at c. Then since x is on the ellipse,
so is x′. Now if λ > dn and c̃n ̸= 0 then we have
∥x′∥ < ∥x∥ , as ∥x∥2 − ∥x′∥2 = |x̃n|2 − |x̃n − 2c̃n|2 =

|yn|2
(

|λ|2
|dn−λ|2 − |λ−2dn|2

|dn−λ|2

)
> 0. This shows x is not

the minimizer of (4.1). Hence the KKT point of inter-
est corresponds to λ < dn.

Such λ exists and is unique as the left-hand side g(λ)
of (4.8) is monotonically decreasing on (−∞, dn) and
g(−∞) > 0, limϵ→0+ g(dn) < 0.

Proof of Theorem 4.1

If c̃n ̸= 0 then the previous lemma proves the claim.
Below we suppose that c̃n = 0, or more generally |c̃k| >
c̃k+1 = · · · = c̃n = 0.

Recalling c̃ = Q⊤c and x̃ = Q⊤x, the two equations
(4.2) and (4.4) are equivalent to (x̃− c̃)⊤D−1(x̃− c̃) =
κ2 and (D − λI)x̃ = −λc̃. These can be written in
componentwise forms as

n∑
i=1

(x̃i − c̃i)
2

di
= κ2, (A.1)

(di − λ)x̃i = −λc̃i. i = 1, . . . , n. (A.2)

Since (A.2) for i = k+1, . . . , n means either x̃i = 0 or
λ = di, we have the following possible candidates for
the optimal λ: λ = dk+i for some i ∈ {1, . . . , n − k},
or λ ̸= dk+i is a solution of (4.8), which reduces to

κ2 −
k∑

i=1

dic̃
2
i

(λ− di)2
= 0. (A.3)

Note the sum is up to i = k instead of n.

First suppose λ = dk+j for some j ∈ {1, . . . , n − k}.
Then the values of x̃i for i ̸= k + j are determined to
x̃i = − λc̃i

di−λ by (A.2). Then we set for example

x̃k+1 = c̃k+1 +

√√√√λ(κ2 −
k∑

i=1

dic̃2i
(λ− di)2

) (A.4)

and x̃k+i = c̃k+i for i ≥ 2, so that (A.1) is satisfied. If∑k
i=1

(x̃i−c̃i)
2

di
> κ2 then λ is not a KKT point.

Next suppose λ ̸= dk+j is a solution of (A.3). There
can be as many as 2k of them, and once λ is chosen
the whole x̃ is determined by (A.2), which in particu-
lar gives x̃k+i = 0. The same “flipping” argument as
above, now flipping the kth element, shows that the
only candidate is the smallest solution λ0, which is
the unique solution of (A.3) smaller than dk.

Note that necessarily λ0 > dk+j holds if dk+j is a
Lagrange multiplier that admits a KKT point. To see

this, set g(λ) = κ2 −
∑k

i=1
dic̃

2
i

(λ−di)2
, which is monotone

decreasing on (−∞, dk). Then λ0 and dk+j are all
below dk, and g(λ0) = 0 and g(dk+j) > 0 by (A.4).
Hence λ0 > dk+j , as required.

Among the two groups of such candidate KKT points,
we find the λ that gives the smallest ∥x∥. The key is
to note that in both cases we can write

∥x∥2 =

n∑
i=1

x̃2
i

=

k∑
i=1

(λc̃i)
2

(λ− di)2
+ λ

(
κ2 −

k∑
i=1

dic̃
2
i

(λ− di)2

)

= κ2λ+
k∑

i=1

c̃2iλ

λ− di

The derivative of the right-hand side with respect to
λ coincides with g(λ), which is positive on (−∞, λ0),
because λ0 is the smallest solution of (A.3). This shows
that the smallest ∥x∥ is given by the KKT point with
the smallest value of λ.

Proof of Proposition 4.2

Suppose that λ = a + bi where a, b ∈ R and b > 0
is a nonreal eigenvalue. Then a − bi must also be an
eigenvalue. Now if a < λ∗, then the previous discus-
sion shows λ∗ < dj for all j such that cj ̸= 0, hence

a < dj . We have g(a+ bi) = κ2−
∑n

i=1,ci ̸=0
dic̃

2
i

(a−di+bi)2 ,

and since the imaginary part of (a−di+bi)2 is negative
for all i with ci ̸= 0, we conclude that the imaginary
part of g(a+ bi) is also negative. Hence a+ bi cannot
be an eigenvalue of M(s), a contradiction.

B Illustration of the KKT points

Here we illustrate the discussion in Section 4.3, in
which we showed that the KKT point with the smallest
Lagrange multiplier corresponds to the globally opti-
mal solution for (4.1). We start by considering the
n = 2 dimensional case. Figure 3 shows the normal
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vectors at points on the ellipse; recall that the KKT
condition (4.3) requires that the solution x is such that
the normal vector there points toward the origin.

Figure 3: An ellipse and its normal vectors pointing
towards the x1-axis, and its close-up look (below). The
black dot at which x1 = x∗ is the center of the curva-
ture at x1 = 1, x2 = 0.

Suppose the origin lies on the x1−axis, corresponding
to c̃2 = 0. The black dot x∗ is the center of the cur-
vature at the rightmost point of the ellipse. There is
a KKT point in the strict first quadrant if and only
if the origin is to the left of x∗: this condition corre-

sponds to κ2 >
∑k

i=1
(x̃i−c̃i)

2

di
, recall (A.4). This KKT

point corresponds to the Lagrange multiplier λ = d1,
and if such KKT point exists it is the globally optimal
solution of (4.1). Moreover, we note that if such KKT
point exists, then the solution x is not unique: for
example in the above figure, the point on the ellipse
obtained by flipping the y-value gives the same ∥x∥.
More generally, if the ellipsoid is in a three-dimensional
space, any point obtained by rotating the ellipse about
the x-axis satisfies the KKT conditions. Hence there
are infinitely many KKT points with the same value
of λ. This non-uniqueness corresponds to the freedom
in choosing x̃k+i in (A.4), and since they all give the
same distance with no fundamental geometric differ-
ence, in this case we simply choose one representative
point.

Our analysis above shows that essentially the same ar-
gument carries over to arbitrary n: if the origin has
zero component in the last (nth) coordinate, and if
there is a KKT point with nonzero nth coordinate
and in the correct quadrant seen from the center of
the ellipsoid, that corresponds to the globally opti-
mal solution. In this case, the solution is not unique
according to the freedom in choosing (A.4); there
can be infinitely many solutions with the same x if
c̃n = c̃n−1 = 0. If not, the solution has zero nth coor-
dinate x̃n = 0.

Although c̃n = 0 is a nongeneric case that never arises
for example when c is a random vector, its analysis
is important in applications since the origin can natu-
rally lie on an axis on the coordinate system of A (its
eigenvectors).

C Remark on implementation

There is one practical issue for a successful implemen-
tation of Algorithm 4.1. Recall that the linear term
M1 in M̃(s) = M0 + sM1 is singular, and this causes
a direct attempt of MATLAB’s eigs to fail, since it
requires M1 to be nonsingular. A workaround for this
is to form a transformed pencil M1+ s(M0− τM1) for
a scalar τ , whose eigenvalues µ are related to those
λ of M̃(s) by µ = 1

λ−τ with unchanged eigenvectors.
We choose τ to be smaller than the leftmost eigenvalue
λ∗. Such τ can be obtained as a value of τ < dn for
which g(τ) in (4.8) is positive. Taking τ sufficiently
small accomplishes this, but taking τ too small slows
down the convergence of the Arnoldi iteration. The
desired pair (λ∗, v) can be obtained from the eigenpair
of M1 + s(M0 − τM1) with the largest real part µ∗ by
λ∗ = τ + 1

µ∗
.


