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Section 1 provides details on the photometric data set used to illustrate the spectral series

density ratio estimator. Section 2 provides additional details on the galaxy data set used to illustrate

the spectral series likelihood estimator. This section also includes additional graphics with the

estimated likelihood functions, omitted from the main document for the sake of space. In Section 3

we prove the bounds in the paper for the Spectral Series Density Ratio estimator. Section 4 shows

analogous bounds to the Spectral Series Likelihood estimator, and presents an outline of the proofs.

1 Details on Photometric Redshift Problem and Sloan Digital Sky

Survey Data

In spectroscopy, the flux of a galaxy, i.e., the number of photons emitted per unit area per unit

time, is measured as a function of wavelength. By using these measurements it is possible to

determine the redshift of a galaxy with great precision. On the other hand, in photometry–an

extremely low-resolution spectroscopy– the photons are collected into a few (≈ 5) wavelength bins

(also named bands). In each of these bins, the magnitudes - which are logarithmic measurements

of photon flux - are measured. Typical instruments measure in five bands, denoted by u, g, r, i,

and z. The differences between contiguous magnitudes (also named colors; e.g., g − r) are useful

predictors for the redshift of the galaxy. Multiple estimators of the magnitudes exist, here we work

with two of them: model and cmodel (Sheldon et al., 2012). Our covariates are the 4 colors in

each magnitude system, plus the raw value of r-band magnitude in both system. Hence there are

4× 2 = 10 covariates x.

Because it is difficult to acquire the spectroscopic redshift of faint galaxies, these data suffer

from selection bias. We take this into account by making the covariate shift assumption: although

fL(x) can be different from fU (x), we assume the conditional distribution f(z|x) is the same in

both populations (Shimodaira, 2000). This correction will reweight labeled data to account for the

difference in their distribution as compared to the unlabeled data (Gretton et al., 2010).
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The data we use are similar to that used by Sheldon et al. (2012). The labeled data set contains

spectroscopic information about 435,875 galaxies from the Sloan Digital Sky Survey (SDSS). It also

contains model and cmodel magnitudes in the bands u, g, r, i and z. These samples were chosen

by applying cuts to both main sample galaxies and luminous red galaxies of SDSS. Only galaxies in

which the redshift information has confidence level at least 0.9 were selected. It was also required

that the galaxies were not too faint. The unlabeled data set contains a subset of 538,974 galaxies of

SDSS data. The only variables that are observed are the photometric magnitudes. These samples

were chosen by applying cuts to the original unlabeled SDSS data imposing that the galaxies are

not too faint and have reasonable colors, see Sheldon et al. (2012) for more details.

2 Additional Figures for Galaxy Likelihood Estimation Example

The first column of Figure 1 shows examples of galaxies with different parameter values, generated

by GalSim toolkit. To make the situation more realistic, we assume we cannot observe the images

of the uncontaminated galaxies in the first row, but instead only the 20 × 20 images from the

last row. These are low-resolution images degraded by observational effects, background noise, and

pixelization; see Bridle et al. (2009) for more details.

	 	 	
	 	 	
	 	 	

1

Figure 1: Examples of galaxies with different orientations and axis ratios. From left to right:
High-resolution, uncontaminated galaxy image; effect of PSF caused by atmosphere and telescope;
pixelated image; and observed image containing additional Poisson noise. We only observe images
on the right.
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Figure 2: Comparison of level sets of estimated likelihood function L(x; (α, ρ)) for the galaxy
example for 4 samples sizes. Horizontal and vertical lines are the true values of the parameters. In
all cases, the spectral series estimator gets closer to the real distribution, which is uncomputable
in practice.

3 Spectral Series Density Ratio Estimator

Here we prove the bounds from the paper. We recall the assumption we make:

Assumption 1.
∫
β2(x)dG(x) <∞.

Assumption 2. λ1 > λ2 > . . . > λJ > 0.

Assumption 3. cKx ≡ ||β(x)||2HKx
<∞.
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Define the following quantities:

βJ(x) =
J∑
j=1

βjψj(x), βj =

∫
ψj(x)dF (x)

β̂J(x) =
J∑
j=1

β̂iψ̂j(x), β̂j =
1

nF

n∑
k=1

ψ̂j(x
F
k )

and note that∫ (
β̂J(x)− β(x)

)2
dG(x) ≤

∫ (
β̂J(x)− βJ(x) + βJ(x)− β(x)

)2
dG(x)

≤ 2
(

VAR(β̂J(x), βJ(x)) +B(βJ(x), β(x))
)
.

where

B(β(x)J , β(x)) ≡
∫∫

(βJ(x)− β(x))2 dG(x)

can be interpreted as a bias term (or approximation error) and

VAR(β̂J(x), βJ(x)) ≡
∫∫ (

β̂J(x)− βJ(x)
)2
dG(x)dz

can be interpreted as a variance term. First we bound the variance.

Lemma 1. There exists C > 0 such that |β(x)| < C for all x ∈ X .

Proof. Using Assumption 3 and the fact the kernel is bounded, it follows from the reproducing

property and Cauchy-Schwartz inequality that

β(x) = 〈β(.),K(x, .)〉HKx
≤ ||β(.)||HKx

√
Kx(x,x) < C

for some C > 0.

Lemma 2. For all 1 ≤ j ≤ J ,

∫ (
ψ̂j(x)− ψj(x)

)2
dG(x) = OP

(
1

λjδ2
jnG

)
,

where δj = λj − λj+1.

For a proof of Lemma 2 see, e.g., Sinha and Belkin (2009).

Lemma 3. For all 1 ≤ j ≤ J ,

∫ (
ψ̂j(x)− ψj(x)

)2
dF (x) = OP

(
1

λjδ2
jnG

)
,
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where δj = λj − λj+1.

Proof. It follows from Lemmas 1 and 2 that∫ (
ψ̂j(x)− ψj(x)

)2
dF (x) =

∫ (
ψ̂j(x)− ψj(x)

)2
β(x)dG(x) ≤

C

∫ (
ψ̂j(x)− ψj(x)

)2
dG(x) = OP

(
1

λjδ2
jnG

)

Lemma 4. For all 1 ≤ j ≤ J , there exists C <∞ that does not depend on nG such that

E

[(
ψ̂j(X

F )− ψj(XF )
)2
]
< C.

Proof. Let δ ∈ (0, 1). From Sinha and Belkin (2009), it follows that

P

(∫ (
ψ̂j(x)− ψj(x)

)2
dG(x) >

16 log
(

2
δ

)
δ2
jnG

)
< δ,

and therefore for all ε > 0,

P
(∫ (

ψ̂j(x)− ψj(x)
)2
dG(x) > ε

)
< 2e−

δ2j nGε

16 .

Hence , using Lemma 1,

E
[(
ψ̂j(X

F )− ψj(XF )
)2
]

= E
[∫ (

ψ̂j(x)− ψj(x)
)2
dF (x)

]
≤ CE

[∫ (
ψ̂j(x)− ψj(x)

)2
dG(x)

]
∫ ∞

0
P
(∫ (

ψ̂j(x)− ψj(x)
)2
dG(x) > ε

)
dε ≤

∫
2e−

δ2j nGε

16 dε <

∫
2e−

δ2j ε

16 dε <∞

Lemma 5. For all 1 ≤ j ≤ J , there exists C <∞ that does not depend on m such that

E
[
V
[(
ψ̂j(X

F )− ψj(XF )
) ∣∣∣∣XG

1 , . . . ,X
G
nG

]]
< C

Proof. We have that

E
[
V
[(
ψ̂j(X

F )− ψj(XF )
) ∣∣∣∣XG

1 , . . . ,X
G
nG

]]
≤ V

[
ψ̂j(X

F )− ψj(XF )
]
≤ E

[(
ψ̂j(X

F )− ψj(XF )
)2
]
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The result follows from Lemma 4.

Lemma 6. For all 1 ≤ j ≤ J ,[
1

n

n∑
k=1

(
ψ̂j(X

F
k )− ψj(XF

k )
)
−
∫ (

ψ̂j(x)− ψj(x)
)
dF (x)

]2

= OP

(
1

n

)

Proof. By Chebyshev’s inequality it holds that for all M > 0

P

∣∣∣∣∣ 1n
n∑
k=1

(
ψ̂j(X

F
k )− ψj(XF

k )
)
−
∫ (

ψ̂j(x)− ψj(x)
)
dF (x)

∣∣∣∣∣
2

> M

∣∣∣∣XG
1 , . . . ,X

G
nG

 ≤
1

nFM
V
[(
ψ̂j(X

F )− ψj(XF )
) ∣∣∣∣XG

1 , . . . ,X
G
nG

]
.

The conclusion follows from taking an expectations with respect to sample from G on both sides

of the equation and using Lemma 5.

Note that ψ̂′s are random functions, and therefore the proof of Lemma 6 relies on the fact that

these functions are estimated using a different sample than X1, . . . ,Xn.

Lemma 7. For all 1 ≤ j ≤ J ,

(
β̂j − βj

)2
= OP

(
1

n

)
+OP

(
1

λjδ2
jnG

)
.

Proof. It holds that

1

2

(
β̂j − βj

)2
≤

(
1

nF

nF∑
k=1

ψj(X
F
k )− βj

)2

+

(
1

nF

nF∑
k=1

(ψ̂j(X
F
k )− ψj(XF

k ))

)2

.

The first term is OP

(
1
nF

)
. The second term divided by two is bounded by

1

2

(
1

nF

nF∑
k=1

(ψ̂j(X
F
k )− ψj(XF

k ))−
∫

(ψ̂j(x)− ψj(x))dF (x) +

∫
(ψ̂j(x)− ψj(x))dF (x)

)2

≤

(
1

nF

nF∑
k=1

(ψ̂j(X
F
k )− ψj(XF

k ))−
∫

(ψ̂j(x)− ψj(x))dF (x)

)2

+

∫
(ψ̂j(x)− ψj(x))2dF (x)

= OP

(
1

nF

)
+OP

(
1

λjδ2
jnG

)
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The result follows from Lemma 3.

Lemma 8. [Sinha and Belkin 2009, Corollary 1] Under the stated assumptions,∫
ψ̂2
j (x)dG(x) = OP

(
1

λj∆2
JnG

)
+ 1

and ∫
ψ̂i(x)ψ̂j(x)dG(x) = OP

((
1√
λi

+
1√
λj

)
1

∆J
√
nG

)
where ∆J = min1≤j≤J δj.

Lemma 9. Let h(x) =
∑J

j=1 βjψ̂j(x). Then∫ ∣∣∣β̂J(x)− h(x)
∣∣∣2 dG(x) = J

(
OP

(
1

nF

)
+OP

(
1

λJ∆2
JnG

))
.

Proof.∫ ∣∣∣β̂J(z|x)− h(x)
∣∣∣2 dG(x)

=
J∑
j=1

(
β̂j − βj

)2
∫
ψ̂2
j (x)dG(x) +

J∑
j=1

J∑
l=1,l 6=j

(
β̂j − βj

)(
β̂l − βl

)∫
ψ̂j(x)ψ̂l(x)dG(x)

J∑
j=1

(
β̂j − βj

)2
∫
ψ̂2
j (x)dG(x) +

 J∑
j=1

(
β̂j − βj

)2

√√√√ J∑
j=1

J∑
l=1,l 6=j

(∫
ψ̂j(x)ψ̂l(x)dG(x)

)2


where the last inequality follows from using Cauchy-Schwartz repeatedly. The result follows

from Lemmas 7 and 8.

Lemma 10. Let h(x) be as in Lemma 9. Then∫
|h(x)− βJ(x)|2 dG(x) = JOP

(
1

λJ∆2
JnG

)
.

Proof. Using Cauchy-Schwartz inequality,

∫
|h(x)− βJ(x)|2 dG(x) ≤

∫ ∣∣∣∣∣∣
J∑
j=1

βj

(
ψj(x)− ψ̂j(x)

)∣∣∣∣∣∣
2

dG(x)

=


J∑
j=1

β2
j




J∑
j=1

∫ [
ψj(x)− ψ̂j(x)

]2
dG(x)

 .
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The conclusion follows from Lemma 2 and by noticing that
∑J

j=1 β
2
j ≤ ||β(x)||2 <∞.

It is now possible to bound the variance term:

Theorem 1. Under the stated assumptions,

VAR(β̂J(x), βJ(x)) = J

(
OP

(
1

nF

)
+OP

(
1

λJ∆2
JnG

))
.

Proof. Let h be defined as in Lemma 9. We have

1

2
VAR(β̂J(x), βJ(x)) =

1

2

∫ ∣∣∣β̂J(x)− h(x) + h(x)− βJ(x)
∣∣∣2 dG(x)

≤
∫ ∣∣∣β̂J(x)− h(x)

∣∣∣2 dG(x) +

∫
|h(x)− βJ(x)|2 dG(x).

The conclusion follows from Lemmas 9 and 10.

We now bound the bias term.

Lemma 11.
∑

j≥J β
2
j = cKxO(λJ).

Proof. Note that cKx = ||β(x)||2H =
∑

j≥1

β2
j

λj
(Minh, 2010). Using Assumption 3 and that the

eigenvalues are decreasing it follows that

∑
j≥J

β2
j =

∑
j≥J

β2
j

λj
λj
≤ λJ ||β(x)||2H,

and therefore
∑

j≥J β
2
j ≤ λJcKx = cKxO(λJ).

Theorem 2. Under the stated assumptions, the bias is bounded by

B(βJ(x), β(x)) = cKxO(λJ).

Proof. By using orthogonality, we have that

B(βJ(x), β(x))
def
=

∫
(β(x)− βJ(x))2 dG(x) =

∑
j>J

β2
j .

The Theorem follows from Lemma 11.
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4 Spectral Series Likelihood Estimator

We now present similar bounds to those from shown for the Density Ratio estimator. To avoid

confusions with the last section, from now on we denote by λxj the eigenvalue λj relative to the

eigenfunction ψj , and by δxj its eigengap previously denoted by δj .

In this section, we assume Assumption 1 and 2 from the last section, and, additionally:

Assumption 4. For all θ ∈ Θ, let gθ : X −→ <; gθ(x) = L(x; θ). gθ ∈ HKx(cθ) ≡ {g ∈ HKx :

||g||2HKx
≤ c2

θ} where cθ’s are such that cKx ≡
∫

Θ c
2
θdF (θ) <∞.

Assumption 4 requires that for every θ ∈ Θ fixed, L(x; θ) is a smooth function of x, where we

again measure smoothness in a RKHS through its norm, and is analogous to Assumption 3. The

last assumption we need is analogous to 4, and requires that for every x ∈ X fixed, L(x; θ) is a

smooth function of θ:

Assumption 5. For all x ∈ X , let hx : Θ −→ <; hx(θ) = L(x; θ). hx ∈ HKθ(cx) ≡ {h ∈ HKθ :

||h||2HKθ ≤ c
2
x} where cx’s are such that cKθ ≡

∫
X c

2
xdG(x) <∞.

First we note that an analogous decomposition of the loss

L
(
L̂,L

)
=

∫ (
L̂(x; θ)− L(x; θ)

)2
dG(x)dF (θ)

in terms of bias and variance holds. The proof that the bound on the variance term is analogous

to the one of the variance bound of the density ratio estimator. The main difference is in Lemmas

2 and 8. We state and prove the new version of these in Lemmas 12 and 13. Notice that analogous

Lemmas to 2 and 8 hold for basis φi.

Lemma 12. For all 1 ≤ i ≤ I and for all 1 ≤ j ≤ J ,

∫∫ (
Ψ̂i,j(θ,x)−Ψi,j(θ,x)

)2
dG(x)dF (θ) = OP

(
max

{
1

λxj δ
2
x,jnG

,
1

λθi δ
2
θ,inF

})
,

Proof. We have that

1

2

∫∫ (
Ψ̂i,j(θ,x)−Ψi,j(θ,x)

)2
dG(x)dF (θ) ≤∫∫ (

(φ̂i(θ)− φi(θ))ψ̂j(x) + φi(θ)(ψ̂j(x)− ψj(x))
)2
dG(x)dF (θ) ≤∫

ψ̂2
j (x)dG(x)

∫
(φ̂i(θ)− φi(θ))2dF (θ) +

∫
φ2
i (θ)dF (θ)

∫
(ψ̂j(x)− ψj(x))2dG(x)

The results follows from orthonormality of φi wrt to F (θ), Lemmas 2 and 8.
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Lemma 13. Under the stated assumptions,
∫∫

Ψ̂i,j(θ,x)Ψ̂k,l(θ,x)dG(x)dF (θ) =

=



1 +OP

(
max

{
1

λxj δ
2
x,jnG

, 1
λθi δ

2
θ,inF

})
, if i = k and j = l

OP

((
1√
λxl

+ 1√
λxj

)
1

∆x
J

√
nG

)
if i = k and j 6= l

OP

((
1√
λθi

+ 1√
λθk

)
1

∆θ
I

√
nF

)
if i 6= k and j = l

OP

(
max

{(
1√
λxl

+ 1√
λxj

)
1

∆x
J

√
nG
,

(
1√
λθi

+ 1√
λθk

)
1

∆θ
I

√
nF

})
if i 6= k and j 6= l

Proof. The proof of these facts follow from noticing that
∫∫

Ψ̂i,j(θ,x)Ψ̂k,l(θ,x)dG(x)dF (θ) =∫
ψ̂j(x)ψ̂l(x)dG(x)

∫
φi(θ)φk(θ)dF (θ) and using Lemma 8 and its analogous for the basis φi.

The bound on the bias presents some additional differences to the proof of the bias bound from

the ratio estimator, we therefore show it in details in the sequence.

Lemma 14. For each θ ∈ Θ, expand gθ(x) into the basis ψ : gθ(x) =
∑

j≥1 α
z
jψj(x), where

αθj =
∫
gθ(x)ψj(x)dG(x). We have

αθj =
∑
i≥1

βi,jφi(θ) and

∫ (
αθj

)2
dF (θ) =

∑
i≥1

β2
i,j .

Proof. It follows from projecting αθj into the basis φ.

Similarly, we have the following.

Lemma 15. For each x ∈ X , expand hx(θ) into the basis φ : hx(θ) =
∑

i≥1 α
x
i φi(θ), where

αx
i =

∫
hx(θ)φi(θ)dF (θ). We have

αx
i =

∑
j≥1

βi,jψi(x) and

∫
(αx

i )2 dG(x) =
∑
j≥1

β2
i,j .

Lemma 16. Using the same notation as Lemmas 14 and 15, we have

βi,j =

∫
αx
i ψj(x)dG(x) =

∫
αθjφi(θ)dF (θ).

Proof. Follows from plugging the definitions of αx
i and αθj into the expressions above and recalling

the definition of βi,j .
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Lemma 17.
∑

j≥J
∫ (

αθj

)2
dF (θ) = cKxO(λxJ) and

∑
i≥I
∫

(αx
i )2 dG(x) = cKθO(λθI).

Proof. Note that ||hθ(.)||2HKx
=
∑

j≥1
(αθj)

2

λxj
. Using Assumption 4 and that the eigenvalues are

decreasing it follows that

∑
j≥J

(
αθj

)2
=
∑
j≥J

(
αθj

)2 λxj
λxj
≤ λxJ ||hθ(.)||2HKx

≤ λxJc2
θ,

and therefore
∑

j≥J
∫ (

αθj

)2
dF (θ) ≤ λxJ

∫
z c

2
θdF (θ) = cKxO(λxJ). The proof of the second statement

is analogous to this.

Theorem 3. Under the stated assumptions, the bias is bounded by

B(LI,J ,L) = cKxO (λxJ) + cKθO(λθI).

Proof. By using orthogonality, we have that

B(LI,J ,L)
def
=

∫∫
(L(x; θ)− LI,J(x, θ))2 dG(x)dF (θ) ≤

∑
j>J

∑
i≥1

β2
i,j +

∑
i>I

∑
j≥1

β2
i,j

=
∑
j≥J

∫ (
αθj

)2
dF (θ) +

∑
i≥I

∫
(αx

i )2 dG(x),

where the last equality follows from Lemmas 14 and 15. The Theorem follows from Lemma 17 .
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