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Supplementary Materials

1 The LSHR1 Algorithm

In this appendix, we give pseudo-code for our LSHR1 level-set hit-and-run
sampler described in our manuscript. We must pre-specify a minimum value
K of the probability density f(·) as our stopping threshold. The first threshold
t1 must be pre-specified, and we arbitrarily use t1 = 0.95 ∗ f(xxxmax). Finally, the
number of hit-and-run iterations per level set, m, must be chosen. The value
of m influences the accuracy of our volume ratio estimates. In Section 4, we
explore appropriate choices for the number of hit-and-run iterationsm. We find
that a value of m = 1000 is a reasonable trade-off between accurate estimation
of our volume ratios and the computational cost of more hit-and-run steps.

When considering the proposal for level set k + 1, the initial tprop is set to tk −
(tk−1 − tk), so that our proposal moves the same distance in t as the previous
successful move. If this initial tprop is rejected for not being warm enough, we
choose a new proposal tprop as the midpoint of the old proposal and tk, and so
on.
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Algorithm 1 LSHR1: Level-set Hit-and-run Sampler
1: initialize xxx = xxxmax and Σ1 = I
2: initialize t1 and set k = 1
3: define current level set C1 as {xxx : f(xxx) > t1}
4: for m iterations do
5: sample random direction ddd
6: calculate boundaries aaa and bbb of C1 along direction ddd
7: sample new xxx uniformly between aaa and bbb
8: store all samples xxx in {xxx}1
9: while tk > K do

10: propose new tprop < tk
11: define proposed level set Cprop as {xxx : f(xxx) > tprop}
12: for m iterations do
13: sample random direction ddd? and set ddd = Σ1/2

k ddd?

14: calculate boundaries aaa and bbb of C1 along direction ddd
15: sample new xxx uniformly between aaa and bbb
16: if f(xxx) > tk then R̂k:prop = R̂k:prop + 1

17: R̂k:prop = R̂k:prop/m

18: if 0.55 ≤ R̂1:prop ≤ 0.8 then
19: k = k + 1
20: tk = tprop; Ck = Cprop; R̂k:k+1 = R̂k:prop; Σk+1 = Cov(xxx)
21: store all samples xxx in {xxx}k
22: define n = number of level sets
23: for i = 1, . . . , n do
24: qi = (ti−1 − ti)×

∏n
k=i R̂k:k+1

25: where t0 is the maximum of f(·) and R̂n:n+1 = 1
26: for l = 1, . . . , L do
27: Sample level set s w.p. ps = qs/

∑
qs

28: Sample point xxxl randomly from level set collection {xxx}s

2 The LSHR2 Algorithm

In this appendix, we give pseudo-code for LSHR2, our exponentially-weighted
level-set hit-and-run sampler procedure described in our manuscript. We must
pre-specify a minimum value K of the probability density f(·) as our stopping
threshold. The first threshold t1 must be pre-specified, and we arbitrarily use
t1 = 0.95 ∗ f(θθθmax) where θθθmax is the mode of f(θθθ). We set the number of hit-
and-run iterations per level set to m = 1000.

When considering the proposal for level set k + 1, the initial tprop is set to tk −
(tk−1 − tk), so that our proposal moves the same distance in t as the previous
successful move. If this initial tprop is rejected for not being warm enough, we
choose a new proposal tprop as the midpoint of the old proposal and tk, and so
on.
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Algorithm 2 LSHR2: Exponentially-tilted Level-set Hit-and-run Sampler
1: initialize θθθ = θθθmax and Σ1 = I
2: initialize p = log g(θθθmax) and θθθ? = (θθθ, p)
3: initialize t1 and set k = 1
4: define current level set D1 as {θθθ? : f(θθθ) ≥ t1 , p < log g(yyy|θθθ)}
5: for m iterations do
6: sample random direction ddd in (d+ 1) dimensions
7: calculate boundaries aaa and bbb of D1 along direction ddd
8: sample new θθθ? proportional to exp(p) from line segment between aaa and bbb
9: store all samples θθθ? in {θθθ?}1

10: while tk > K do
11: propose new tprop < tk
12: define proposed level set Dprop as {θθθ? : f(θθθ) ≥ tprop , p < log g(yyy|θθθ)}
13: for m iterations do
14: sample random direction ddd? in (d+ 1) dimensions and set ddd = Σ1/2

k ddd?

15: calculate boundaries aaa and bbb of Dprop along direction ddd
16: sample new θθθ? proportional to exp(p) from line segment between aaa and bbb
17: if new θθθ? ∈ Dk then R̂k:prop = R̂k:prop + 1

18: R̂k:prop = R̂k:prop/m

19: if 0.55 ≤ R̂1:prop ≤ 0.8 then
20: k = k + 1
21: tk = tprop; Dk = Dprop; R̂k:k+1 = R̂k:prop; Σk+1 = Cov(xxx)
22: store all samples θθθ? in {θθθ?}k
23: define n = number of level sets
24: for i = 1, . . . , n do
25: qi = (ti−1 − ti)×

∏n
k=i R̂k:k+1

26: where t0 is the maximum of f(·) and R̂n:n+1 = 1
27: for l = 1, . . . , L do
28: Sample level set s w.p. ps = qs/

∑
qs

29: Sample point θθθ?l randomly from level set collection {θθθ?}s

3 Gibbs Switching Calculation

For a variable in the zero component, with norm ||x||22 ≈ dσ2
0 , the probability of

a switch is
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since σ0 � σ1. Now, as d increases, (σ0/σ1)
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4 Exploration of Ratio of Level Set Volumes

The estimation of the ratio of level set volumes Ri:i+1 for each level set i is a
necessary step in either of our LSHR1 or LSHR2 sampling procedures. For this
section, we use the more compact notation Ri = Vi/Vi+1 for the volume ratio of
level sets i and i+ 1. These ratios Ri are crucial in two senses.

First, in order to ensure that each move to a new level set is “warm”, we would
like a ratio of volumes Ri that is greater than 0.5 (as suggested by Vempala
(2005)). Second, we need the cumulative ratio of all level set volumes in order
to calculate the probability of each level set, so that we can subsample from that
level set with the appropriate weight.

In this section, we explore two aspects of the volume ratios Ri: (1) the accuracy
of the cumulative ratio of all level set volumes, and (2) the number of hit-and-
run iterations to run within each proposed level set in order to estimate each
Ri.

The cumulative ratio of all level set volumes, R, is the product of each ratio of
volumes,

R =
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We estimateRwith individual ratios of level set volumes

R̂ =
n−1∏
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where R̂i is estimated as the proportion of samples taken from level set i + 1
which are also contained in level set i. Consider the log ratio of the estimated
R̂ to the trueR,
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Now if we assume that R̂i − Ri = o(1/n) then we have no significant bias in
the above expression. If we further assume that each ratio of level set volumes
calculation is independent, then the variance can be calculated as
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where the last approximation in (1) comes from setting the Ri’s to be approxi-
mately equal, Ri = R? = R1/n which is a characteristic of our level-set hit-and-
run sampler. Now, let T be the total number of samples taken by our sampler,
and T/n be the number of samples dedicated to level set i, then

Var(R̂?) = k(d)
nR? (1−R?)

T

where k(d) is a function that specifies how the dependance between samples
scales with dimension d. This means that
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since logR? = n−1 logR. We can try to minimize (2) as a function of R?. In
Figure 1, we plot g(R?) = (1−R?)/R?(logR?)

2 as a function of R?. The function
g(R?) is minimized at R? ≈ 0.204.

However, as outlined in our manuscript, we choose the more conservative re-
striction of R? ≥ 0.5 to ensure that each level set is a warm start for the next
level set. Fortunately, the function g(R?) appears quite flat for a wide range
0.1 ≤ R? ≤ 0.6, so we can be reassured that our conservative restriction of
R? ≥ 0.5 does not sacrifice much efficiency relative to the optimal value in
terms of minimizing the variance of our estimated cumulative ratio of level set
volumes R̂.

Another important factor in the estimation of each level set volume ratio is
the number of iterations m that the hit-and-run algorithm is run within each
level set. We explore this issue by picking an arbitrary pair of level sets from
our spike-and-slab mixture example (Section 3 of paper), and running a small
simulation study of our estimation of level set volumes for different numbers
of iterations m.

Specifically, the hit-and-run algorithm was run for m iterations and the ratio
of volumes R was estimated using the hit-and-run samples for the chosen pair
of level sets. This process was repeated 100 times, giving us a distribution of
estimated level set volumes R̂ for that value of m.

In Figure 2, we give the distributions of the estimated ratio of level set volumes
for a different values of m, in the case where d = 20. We see that for small
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Figure 1: The function g(R?) = (1 − R?)/R?(logR?)2 plotted as a function of R?. The red line
indicates the minimizing point R? ≈ 0.204.
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Figure 2: Estimated ratio of volumes for different numbers of iterations of the level-set hit-and-
run sampler. Red line indicates the true ratio of volumes based on the spike-and-slab density.
This plot is for dimension d = 20 though the same trend is seen for other dimensions.
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values of m, the estimated ratio of level set volumes are highly variable around
the true value (given by the red line). We see in Figure 2 that the estimated ratio
of volumes are quite variable for a small number of iterations, and it seems that
at leastm = 1000 iterations is needed to get a reasonably low-variance estimate.
In Figure 3, we see that this same trend occurs for a variety of dimensions d:
the main reduction in variance (across simulations) occurs within the first 1000
iterations of the hit-and-run algorithm. These simulation results motivated our
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choice of m = 1000 in our empirical studies.

Figure 3: Standard deviation of the estimates (across simulations) of the ratio of volumes be-
tween two chosen level sets for different numbers of iterations of the level-set hit-and-run sam-
pler.
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5 Rotation Procedure for True Cauchy-Normal Pos-
terior Density

The true posterior density h(θθθ|yyy) for our Cauchy-normal model is difficult to
directly evaluate in dimensions higher than d = 2 (for d = 1 or d = 2, we can
just evaluate the posterior density on a fine grid of values).

The Gibbs sampler does a very poor job of estimating this posterior density
when we set yyy = (10, 10, . . . , 10). However, the Gibbs sampler is able to ac-
curately estimate the posterior density in a single dimension (when y = 10).
If we project our higher-dimensional yyy = (10, 10, . . . , 10) onto a single axis
www = (10

√
d, 0, . . . , 0), then the Gibbs sampler is able to accurately estimate the

posterior density for projected datawww.

Our true data location yyy is a rotation yyy = Rwww of the single axis www. Letting
θθθ = Rµµµ, where R is a rotation matrix, we observe that

h(θθθ|yyy) = h(µµµ|www)

We use Gibbs sampling to accurately estimate h(µµµ|www), and then undo the rota-
tion yyy = Rwww to get an accurate estimate of h(θθθ|yyy).
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Note that this procedure is not a general “fix” for the poor performance of
Gibbs sampling in high-dimensional models, since we take advantage of the ro-
tational symmetry in this simple Cauchy-normal model that may not be present
in more complicated situations.
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