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Abstract

We study phase retrieval from rank-one magni-
tude and more general linear magnitude mea-
surements of an unknown signal as an alge-
braic estimation problem. It is verified that a
certain number of generic rank-one or generic
linear measurements are sufficient to enable
signal reconstruction for generic signals, and
slightly more generic measurements yield re-
constructability for all signals. Our results solve
few open problems stated in the recent litera-
ture. Furthermore, we show how the algebraic
estimation problem can be solved by a closed-
form algebraic estimation technique, termed
ideal regression, providing non-asymptotic suc-
cess guarantees.

1 INTRODUCTION

Intensity measurements in diffraction imaging, mi-
croscopy, and x-ray crystallography represent magni-
tudes of Fourier samples, and the recovery of their phases
is a difficult problem in optical physics. Within a fi-
nite model, phase retrieval is the task of reconstruct-
ing a vector in Kd from the magnitude of finitely many
rank-1 projections. Classical algorithms are due to Ger-
chberg/Saxton [14] and Fienup [13] involving alternate
projection schemes and fit into standard methods from
convex optimization [7], but signal reconstruction is not
guaranteed. Sparse nonconvex optimization is applied
in [2]. Semidefinite programming is used in [10], but
success guarantees are only obtained asymptotically with
growing dimension. Algebraic reconstruction formulas
were derived in [5], but require the number of measure-
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ments to scale quadratically with the dimension. Jointly,
algebraic reconstruction and semidefinite programs were
applied in [1] to treat rank-k projectors. For further ap-
proaches rooted in signal processing, we refer to [12, 20]
and references therein. To successfully reconstruct, mea-
surements must contain sufficient information about the
signal. If the number of rank-one magnitude measure-
ments is sufficiently large, then generic measurements
allow identifiability of all signals, and there is a range
of fewer measurements, in which at least generic signals
can still be identified, cf. [4]. Measurements using or-
thogonal projectors of arbitrary rank have been discussed
in [9], from where we cite the following open problems:

(1) What is the minimal number of orthogonal projec-
tors enabling phase retrieval for all signals in the real
case?

(2) Do sufficiently many generic orthogonal projectors
enable phase retrieval for all signals in the real case?

(3) Does the minimal number of required orthogonal
projectors for retrieving phases for all signals in the
complex case depend on the rank of the projectors?

In view of investigating the above mentioned transition
range from generic to identifiability of all signals, we de-
rive three additional questions

(4-6) by replacing “for all signals” in (1-3) with “generic
signals”.

The results in [3, 8] directly lead to one more question,
which is formulated as a conjecture in [6]:

(7) Do 4n − 4 generic rank-one measurements allow
phase retrieval for all signals in the complex case?

So besides the aim for a better understanding of the
structure of phase retrieval in general, we are also left
with 7 open problems that we intend to solve. In this
paper, we claim that phase retrieval is in its core an alge-
braic problem and emphasize the potential of algebraic
tools. This change of perspective enables us to not only
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answer all of the 7 above questions, but we can also ap-
ply symbolic computations and schemes from approxi-
mate algebra to design a reconstruction algorithm. In-
deed, we observe that phase retrieval can be tackled by
ideal regression as introduced in [18] leading to an alge-
braic signal reconstruction algorithm for few measure-
ments with nonasymptotic success guarantees.

Notes
An extended version of this manuscript is available
as [17]. After submission of this paper, question 7 has
independently been answered in [11] by different tech-
niques.
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2 THE ALGEBRA OF PHASE RETRIEVAL

2.1 Algebraization of Phase Retrieval

In this section, we will describe how phase retrieval can
be viewed as an algebraic problem. This will be cru-
cial in deriving algebraic solution techniques for phase
retrieval. In the usual formulation, the two variants of
phase retrieval pose two differently flavoured major ob-
stacles to amenability for algebraic tools: in the real for-
mulation, the mapping is algebraic, but the ground field,
the real numbers R, is not algebraically closed. In the
complex formulation, the ground field C is algebraically
closed, but the measurement mapping includes complex
conjugation, making it non-algebraic. The latter problem
can be overcome - as it has been demonstrated for exam-
ple in [4], by treating the real and imaginary part sep-
arately, making the mapping algebraic, but the ground
field real in its stead, and therefore reducing the second
problem to the first one. We overcome this obstacle by
again regarding the algebraic mapping over the complex
numbers as base field, and restricting back to the reals
when necessary. This procedure allows us to algebraize
the measurement process, derive theoretical bounds on
reconstructability, and develop accurate reconstruction
algorithms. First we recapitulate the measurement pro-
cess:

Problem 2.1 (Phase Retrieval, original version). LetK=
R or K = C. Let z ∈ Kn be an unknown vector. Let
P1, . . . , Pk ∈Kr×n be known matrices. Reconstruct z from
the measurements

bi = ‖Piz‖2 = Tr(zz∗ · P∗i Pi), 1≤ i ≤ k,

and the knowledge of the Pi .

In the usual phase retrieval scenario, the Pi are projectors
of rank one. The slightly generalized setting above can

be treated with the same mathematical and algorithmical
tools, so it means no loss of generality or specificity. Also
note that if K = R, then z can be reconstructed only up
to sign, and if K = C, then only up to phase. We now
reformulate the problem, in order to make it amenable
to algebraic tools. First we note that phase retrieval is
known to be an inverse problem. That is, there is a so-
called forward mapping, which takes the (unknown to
the observer) signal z, and outputs the (observed) values
bi . The backward problem is then to obtain z from the
bi . Since z can be obtained only up to sign or phase, this
is equivalent to obtaining the matrix Z = zz∗. Writing
all of this explicitly, we obtain as a reformulation of the
original Problem 2.1 the following inverse problem:

Problem 2.2. LetK= R orK= C. Consider the forward
mapping

φ :
�
Kr×n

�k ×Kn×n→ �
Kr×n

�k ×Kk

(P1, . . . , Pk, Z) 7→ �
P1, . . . , Pk, Tr(Z · P∗1 P1), . . . , Tr(Z · P∗k Pk)

�
.

Reconstruct τ := (P1, . . . , Pk, Z), given φ(τ), and assum-
ing that Z is rank one and Hermitian.

Note that we have deliberately included the Pi in the
range and the image of φ, in order to mathematically
model the fact that the projectors Pi are known to the ob-
server; and for technical reasons - equivalent to the latter
- which will become apparent further on. Furthermore,
assuming that Z is rank one and Hermitian is equivalent
to assuming that Z = zz∗ for suitable z, since knowing
Z is equivalent to know z up to sign/phase. There are
two major difficulties in applying algebraic techniques to
Problem 2.2. The first is that (A) the base field is not
algebraically closed if K = R, the second being that (B)
the mapping φ is not algebraic ifK= C, since it includes
complex conjugation. The solution approach for problem
(A) is relatively straightforward: since the mappingφ in-
cludes only transposes, it is algebraic, therefore we con-
sider the same mapping over the complex numbers. Also,
we replace the matrices Pi ∈ Rr×n by matrices Ai := P>i Pi
for reason of convenience:

Problem 2.3. Let z ∈ Cn be an unknown vector. Consider
the forward mapping

φ :
�
Cn×n

�k ×Cn×n→ �
Cn×n

�k ×Ck

(A1, . . . , Ak, Z) 7→ (A1, . . . , Ak, Tr(Z · A1), . . . , Tr(Z · Ak))

Reconstruct τ := (A1, . . . , Ak, Z), given φ(τ), and assum-
ing that Z is symmetric rank one, and that the Ai are
symmetric of rank r.

There are now several things to note: first, the map φ
is algebraic, and range and image are now complex. In
particular, the measurements can be complex. Note that
we want both Z and Ai to be symmetric, not Hermitian,
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otherwise the problem would not be algebraic. Most im-
portantly, however, Problem 2.3 is a problem which is a-
priori different from Problem 2.2, since we have enlarged
image and range. When restricting to reals, we obtain
the original phase retrieval Problem 2.2, but there is no
a-priori reason to believe that the behavior of the com-
plex variant is fundamentally the same as for the origi-
nal problem. However, as will turn out, Problem 2.3 is
much easier amenable to tools from algebraic geometry,
both on the theoretical and the practical side. Results
and algorithms will give rise to solutions for questions
and tasks over the reals, as it will be explained in the fol-
lowing section. We proceed treating the variant of the
phase retrieval problem 2.2 where complex signals are
allowed. Recall that the problem was that (B) the map
φ is not algebraic. The solution for this is to “algebraize”
the map by considering real and imaginary part sepa-
rately. Namely, writing Pi =Q i + ι · Si with Q i , Si ∈ Rm×n

and z = x + ι y , where ι denotes the imaginary unit, we
obtain:

Problem 2.4. Let x , y ∈ Rn be unknown vectors, write
R := x x> + y y> and Φ := y x> − x y>. Also, write Bi :=
Q>i Q i + S>i Si and Ci := Q>i Si − S>i Q i for Q i , Si ∈ Rm×n.
Consider the forward mapping φ : (Rn×n)2k × Rn →
(Rn×n)2k ×Rk, (B1, C1, . . . , Bk, Ck, R,Φ) 7→
(B1, C1, . . . , Bk, Ck, Tr(R · B1+Φ · C1), . . . , Tr(R · Bn+Φ · Cn)) .

Reconstruct τ= (B1, C1, . . . , Bk, Ck, R,Φ), given φ(τ), as-
suming that Bi , Ci , R,Φ were of the above form.

An elementary computation shows that Problem 2.4 is
equivalent to the original complex phase retrieval prob-
lem 2.1: namely, zz∗ = R + ιΦ, so knowing R and Φ is
equivalent to knowing z up to phase. Observe that φ is
now an algebraic map, since the rule is algebraic, and so
is the possible set of Bi , Ci , X , Y . However, the mapping
φ is now over the reals, a field which is not algebraically
closed, entailing an analogue of complication (A) which
we have treated in the real case by allowing complex ma-
trices in the range. We will once more do the same and
allow a complex range. The set of matrices though have a
very specific structure, so we introduce notation for them
in our final formulation of the complex phase retrieval
problem:

Problem 2.5 (algebraized phase retrieval of complex sig-
nal). Define the following sets of matrices:

SC := {(x x> + y y>, y x> − x y>) : x , y ∈ Cn},
PC(r) := {(Q>Q+ S>S,Q>S − S>Q) : S,Q ∈ Cr×n}.

Consider the forward mapping

φ : PC(r)
k × SC→ PC(r)

k ×Ck, (B1, C1, . . . , Bk, Ck, R,Φ)
7→ (B1, C1, . . . , Bk, Ck, Tr(R · B1 +Φ · C1), . . . , Tr(R · Bn +Φ · Cn)) .

Given τ= φ(B1, C1, . . . , Bk, Ck, R,Φ), determine φ−1(τ).

The set SC parameterizes the possible signals, while
PC(r) parameterizes the possible projections (of rank r).
Note that SC = PC(1); nevertheless we make this nota-
tional distinction between SC and PC(.) for clarity. We
reformulate the phase retrieval problem for real signals
in analogy, by defining symbols for the space of matrices,
yielding in the final version:

Problem 2.6 (algebraized phase retrieval of real signal).
Define the following sets of matrices:

Sρ := {zz> : z ∈ Cn}, Pρ(r) := {P>i Pi : Pi ∈ Cr×n}.
Consider the forward mapping

φ :PR(r)
k × SR→ PR(r)

k ×Ck

(A1, . . . , Ak, Z) 7→ (A1, . . . , Ak, Tr(Z · A1), . . . , Tr(Z · An))

Given τ= φ(A1, . . . , Ak, Z), determine φ−1(τ).

Observe that Sρ models the possible signals, and is ex-
actly the set of symmetric complex matrices of rank 1
(or less), whereas Pρ(r) models the projections, and is
exactly the set of symmetric complex matrices of rank r
(or less). Note that we have formulated both the real
and the complex problem with almost the same forward
mapping, the difference lies in the different sets of pro-
jection matrices, where in the real case we have single
matrices, the complex case yields related pairs. Also, for
the complex variant of phase retrieval, we have related
pairs of matrices R and Φ instead of the single matrix Z .
To make the notation uniform for both the real and com-
plex cases, we introduce the following convention:

Notation 2.7. Let Z , A ∈ Cn×n × Cn×n, with Z = (X , Y )
and A= (B, C). Then, we will write, by convention,
Tr(Z · A) := Tr(X · B + Y · C).

2.2 Identifiability and Genericity

A signal z is called identifiable if it is uniquely determined
inKn by the measurements bi up to a global phase factor,
which is an ambiguity one cannot avoid. The choice of
k generic measurements by means of rank-1 projectors
yield identifiability of generic signals if and only if k ≥
n+ 1 in the real and k ≥ 2n in the complex case, cf. [4,
Theorems 2.9 and 3.4]. Generic rank-1 projectors yield
identifiability for all signals if and only if k ≥ 2n − 1 in
the real case. For the complex setting, examples with
k ≥ 4n− 4 are known, and this bound is conjectured to
be necessary [8].

We will generalize the statements to the scenario of gen-
eral linear projections. As described earlier, the strategy
is to consider first the corresponding algebraized prob-
lem over an algebraically closed field, namely C, instead
of R, and then descend the results back to the real num-
bers R. Again, it is important to note that this is subtly
different from considering the projection problem over

505



Algebraic Reconstruction Bounds and Explicit Inversion for Phase Retrieval at the Identifiability Threshold

the complex numbers, since instead of complex conju-
gation, we consider transposition in order to keep the
problem algebraic.

A Short Note on Technical Conditions

The following exposition will use some technical con-
ditions on varieties and maps, namely them being irre-
ducible, and (generically) unramified. These are stan-
dard notions in algebraic geometry and can be found
in most introductory books - we refrain from explaining
them here as this is beyond the scope of the paper; the
logic in the proofs can be understood without knowing
what these mean exactly - a glossary of definitions can be
found in Appendix A.1. Intuitively, an algebraic set being
irreducible means that there is only one prototypical be-
haviour for its elements. Unramifiedness is a point-wise
algebraic certificate for a mapping staying stable under
perturbation in a certain sense. In our case, unramified-
ness will certify for identifiability which is stable under
perturbation of signals or measurements.

2.2.1 Identifiability of Signals

In this paragraph, we translate identifiability of a sig-
nal into an algebraic statement. The main concepts will
be identifiability, and identifiability which is stable un-
der perturbation, both corresponding to certain algebraic
properties of the signal.

Notation 2.8. We fix some notation and technical as-
sumptions that will be valid in the relevant cases of real
and complex phase recognition:

(i) The signals will be modelled by an irreducible variety
S ⊆ (Cn×n)γ , with γ= 1 in the real and γ= 2 in the
complex case. For example, S = Sρ or S = SC, as in
Section 2.1.

(ii) A measurement scheme will be modelled by the tu-

ple A = (A1, . . . , Ak) ∈
�
(Cn×n)γ

�k
with k ∈ N being

the number of measurements.
(iii) The measurement process is the formal mapping

φA : S→ Ck, Z 7→ (Tr(Z · A1), . . . , Tr(Z · Ak)) .

The condition that S is irreducible is fulfilled in the cases
discussed in the introductory Section 2.1. Namely, both
Sρ and SC are irreducible varieties, as it is proved in
Proposition B.3. The following statement is crucial in
obtaining our local-to-global principle for identifiability.
It characterizes signals which are identifiable and sta-
bly so under perturbation just in terms of the signal it-
self, therefore allowing to remove any reference to open
neighbourhoods.

Proposition 2.9. Assume that φA is generically unrami-
fied. Let Z ∈ S. Then, the following three statements are
equivalent:

(i) Z is identifiable from φA(Z), and remains identifiable
under infinitesimal perturbation1.

(ii) Z is identifiable from φA(Z), and φA is unramified
over Z.

(iii) A generic2 Y ∈ S is identifiable from φA(Z).

Intuitively, Proposition 2.9 means that an identifiable sig-
nal which remains so under perturbation certifies for the
whole signal space. It is also important to note that con-
dition (ii) in Proposition 2.9 is essentially independent
from the choice of S while (i) and (iii) are a-priori not.
We introduce terminology for the condition described
in (i):

Definition 2.10. For brevity, we will call a signal Z ∈ S

that is identifiable from φA(Z), and remains identifiable
under infinitesimal perturbation, a perturbation-stably
identifiable signal.

We can reformulate Proposition 2.9 as a principle of ex-
cluded middle, stating that either almost all signals are
perturbation-stably identifiable, or none:

Corollary 2.11. (i) If there exists a signal Z ∈ S which
is perturbation-stably identifiable from φA(Z), then a
random signal Y ∈ S is perturbation-stably identifi-
able with probability one under any Hausdorff contin-
uous probability density on S.

(ii) It cannot happen that there are sets A,B ⊆ S, both
with positive Hausdorff measure, such that all signals
Z ∈A are perturbation-stably identifiable, and all sig-
nals Z ∈A are not perturbation-stably identifiable.

2.2.2 Identifyingness as a Measurement Property

In Corollary 2.11, it has been shown that if one signal is
perturbation-stably identifiable, then almost all signals
are. Therefore the fact whether almost all signals are
identifiable can be regarded as a property of the measure-
ment regime. The following theorem makes this state-
ment exact and states that measurement regimes fall into
exactly one of three classes:

Theorem 1. For a fixed measurement regime (A1, . . . , Ak),
consider the three cases

(a) A generic signal Z ∈ S is not identifiable from φA(Z).
(b) A generic, but not all signals Z ∈ S, are identifiable

from φA(Z).
(c) All signals Z ∈ S are identifiable from φA(Z).

The three cases above are mutually exclusive and exhaus-
tive, and equivalent to

1That is, there is a relatively Borel-open neighborhood U ⊆ S
with Z ∈ U such that for all Y ∈ U , it holds that #φ−1

A φA(Z) =
1.

2That is, the set of non-identifiable Y ∈ S is a proper Zariski
closed subset and therefore Hausdorff measure zero subset of
S.
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(a) No signal Z ∈ S is perturbation-stably identifiable
from φA(Z).

(b) A generic, but not all signals Z ∈ S, are perturbation-
stably identifiable from φA(Z).

(c) All signals Z ∈ S are perturbation-stably identifiable
from φA(Z).

A proof is provided in Appendix B.3. Theorem 1 allows to
regard the different grades of identifiability (a), (b), (c)
as properties of the measurement regime. We therefore
introduce the following abbreviating notation:

Definition 2.12. We call a measurement tuple A =
(A1, . . . , Ak):

(a) non-identifying for signals in S, if no signal Z ∈ S is
perturbation-stably identifiable from φA(Z).

(b) generically identifying for signals in S, if generic sig-
nals Z ∈ S are (perturbation-stably) identifiable
from φA(Z), and incompletely identifying, if generic,
but not all signals Z ∈ S are (perturbation-stably)
identifiable from φA(Z).

(c) completely identifying for signals in S, if all signals
Z ∈ S are (perturbation-stably) identifiable from
φA(Z).

Theorem 1 then can be rephrased that a measure-
ment regime A1, . . . , Ak is either non-identifying, incom-
pletely identifying, or completely identifying - note that
due to the theorem, it does not matter whether the
“perturbation-stably” in the brackets is there or not. We
now show that these are properties of the space of pos-
sible measurements, just as identifiability is not only a
property of the signal, but of signal space.

Notation 2.13. We introduce some notation modelling
the space of measurements:

(iv) The space of measurements of type (A1, . . . , Ak) will
be modelled by irreducible varieties P1, . . . ,Pk ⊆
(Cn×n)γ , with γ= 1 in the real and γ= 2 in the com-
plex case. We will write P(k) = P1 × · · · ×Pk for the
space of measurement tuples of size k. For example,
P(k) = PC(r)k for complex signals, or P(k) = Pρ(r)k

for real ones.
(v) The extended measurement process will be mod-

elled by the formal forward mapping

φ : Pk × S→ Pk ×Ck

(A1, . . . , Ak, Z) 7→ (A1, . . . , Ak, Tr(Z · A1), . . . , Tr(Z · An)) .

The condition that the Pi is irreducible is fulfilled in the
cases discussed in the introductory Section 2.1: both
Pρ(r) and PC(r) are irreducible varieties, see Proposi-
tion B.3. Our main result is an analogue to the charac-
terization in Proposition 2.9, now for the measurement
matrices:

Proposition 2.14. Assume that φ is generically unrami-
fied. Then, the following three statements are equivalent:

(i) Z ∈ S is identifiable from φ(A, Z), and remains iden-
tifiable under infinitesimal perturbation3 of A and Z.

(ii) (A, Z) is identifiable from φ(A, Z), and φ is unrami-
fied over (A, Z).

(iii) For generic B ∈ Pk, a generic Y ∈ S is identifiable4

from φ(A, Y ).

In particular, condition (i) is a Zariski open property
on the measurement-signal-pair (A, Z); that is, the set
of measurement-signal-pairs (A, Z) with property (i) is a
Zariski open subset of Pk × S.

The main obstacle in generalizing Theorem 1 to an alge-
braic characterization, or a local-global-property of mea-
surements lies in the fact that the perturbation can occur
in both the signal Z and the measurement regime A. We
therefore need to provide an intermediate result which
removes the dependence on the measurement:

Proposition 2.15. Assume that φ is generically unrami-
fied. Then, the following two conditions on measurement
regimes A∈ Pk are (Zariski) open conditions:

(i) A is generically identifying and remains generically
identifying under perturbation. That is, there is a (rel-
atively Borel-) open neighborhood U ⊆ Pk with A∈ U
such that all B ∈ U are generically identifying.

(ii) A is completely identifying and remains completely
identifying under perturbation. That is, there is a (rel-
atively Borel-) open neighborhood U ⊆ Pk with A∈ U
such that all B ∈ U are completely identifying.

A proof is given in Appendix B.3.

Definition 2.16. We call a measurement regime A∈ P(k):

(a) stably non-identifying in P(k), if A is non-identifying
and remains non-identifying under perturbation, as
in Proposition 2.15 (i).

(b) stably generically identifying in P(k), if A is generically
identifying and remains generically identifying un-
der perturbation, as in condition (i). stably incom-
pletely identifying in P(k), if A is incompletely iden-
tifying and remains incompletely identifying under
perturbation, as in Proposition 2.15 (i).

(c) stably completely identifying in P(k), if A is completely
identifying and remains completely identifying un-
der perturbation, as in Proposition 2.15 (ii).

3 That is, there is a relatively Borel-open neighborhood U ⊆
Pk × S with (A, Z) ∈ U such that for all Y ∈ U , it holds that
#φ−1φ(Y ) = 1.

4That is, the set of (B, Y ) ∈ Pk × S where Y ∈ S is non-
identifiable from φ(B, Y ) is a proper Zariski closed subset and
therefore Hausdorff measure zero subset of Pk × S.
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If P(k) is obvious from the context, we will omit the qual-
ifier “in P(k)”, always keeping in mind that the terminol-
ogy depends on P(k).

Proposition 2.15 allows to prove an analogue of Theo-
rem 1, now for classes of measurements instead of a sin-
gle measurement regime:

Theorem 2. Assume that φ is generically unramified.
Consider the three cases

(a) A generic measurement regime A ∈ Pk is non-
identifying.

(b) A generic measurement regime A∈ Pk is incompletely
identifying.

(c) A generic measurement regime A ∈ Pk is completely
identifying.

The three cases above are mutually exclusive and exhaus-
tive, and equivalent to

(a) A generic measurement regime A ∈ Pk is stably non-
identifying. No measurement regime A ∈ Pk is stably
generically identifying.

(b) A generic measurement regime A∈ Pk is stably incom-
pletely identifying.

(c) A generic measurement regime A ∈ Pk is stably com-
pletely identifying.

We can therefore define terminology that describe cases
(a) to (c) shortly:

Definition 2.17. Keep the notations of Theorem 2. We
will call a the set of measurements Pk generically unram-
ified if φ is generically unramified. We will call a generi-
cally unramified Pk:

(a) non-identifying if a generic measurement A ∈ Pk is
non-identifying.

(b) generically identifying if a generic measurement A ∈
Pk is generically identifying. incompletely identify-
ing if a generic measurement A∈ Pk is incompletely
identifying.

(c) completely identifying if a generic measurement A ∈
Pk is completely identifying.

2.3 Transfer Results for Identifyingness

In this section we will collect different results that allow
to transfer identifiyingness properties from one set of po-
tential measurements to another. Proofs can be found in
Appendix B.3.

Notation 2.18. We will consider irreducible varieties
P(k) = P1 × · · · ×Pk and Q(k) = Q1 × · · · ×Qk, with corre-
sponding forward maps φ,ϕ.

Lemma 2.19. Assume Pi ⊆ Qi for all i, that is, P(k) ⊆
Q(k). Then: if P(k) is generically unramified/generically
identifying/completely identifying, then so is Q(k).

Lemma 2.20. Assume the Pi ⊆ (Cn×n)γ are all spaces of
rank at most ri matrices, that is, of the form Pρ(ri) or
PC(ri). Assume that the Qi are the corresponding variety
of orthogonal/unitary projection matrices of rank exactly
ri . Then, P(k) is generically/completely identifying if and
only if Q(k) is.

In our terminology, Proposition 2.15 also implies that the
behavior of random projectors is completely determined
by their number, and no other properties. This motivates
the following:

Definition 2.21. Consider a family of irreducible vari-
eties P = {Pi}i∈N. We will denote the smallest number
k such that

(i) (P1, . . . ,Pk) is generically identifying by
λ(P1,P2, . . . ) = λ(P) and call it the generic
identifiability threshold.

(ii) (P1, . . . ,Pk) is completely identifying by
κ(P1,P2, . . . ) = κ(P) and call it the complete
identifiability threshold.

If Pi = X for all i, for some variety X, we also write λ(X)
and κ(X) instead of λ(P1,P2, . . . ) and κ(P1,P2, . . . ).

2.4 Identifiability of Real Signals

We derive bound on the identifiability thresholds for real
signals. Proofs can be found in Appendix B.3.

Proposition 2.22. Consider identifiability from real sig-
nals S = {zz>, z ∈ Cn}. For any family of irreducible
varieties Pi ⊆ Cn×n, i ∈ N, with n ≥ 2, it holds that
κ(P)≥ λ(P), and λ(P)≥ n+ 1.

Some bounds for real signals can be readily inferred from
literature:

Theorem 3. Consider identifiability from real signals, cor-
responding to the complex signal variety Sρ = {zz>, z ∈
Cn}, and projectors P= S. Then:
λ(P) = n+ 1, and κ(P) = 2n− 1.

By virtue of Lemma 2.19, these results can immedi-
ately be broadened to include general linear projections,
while Lemma 2.20 yields the case of orthogonal measure-
ments:

Theorem 4. Consider identifiability from real signals, cor-
responding to the complex signal variety S = {zz>, z ∈
Cn}, and the family Pi = {P> · P : P ∈ Cri×n}, i ∈ N
of projectors of potentially different ranks ri ≥ 1. Then:
λ(P) = n+ 1, and κ(P) = 2n− 1. The result remains
unaltered if the projectors P are restricted to be orthogonal.
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Using the tools introduced in Section B.2, we obtain from
this statement about the complexified problem one about
the original phase retrieval problem for the reals:

Theorem 5. Let Pi ∈ Rri×n, 1 ≤ i ≤ k be generic. Then, a
generic signal z ∈ Rn is identifiable from bi = ‖Piz‖2, 1 ≤
i ≤ k up to sign if and only if k ≥ n+1. All signals z ∈ Rn

are identifiable from bi = ‖Piz‖2, 1 ≤ i ≤ k up to sign if
and only if k ≥ 2n−1. The result remains unaltered if the
projectors Pi are restricted to be orthogonal.

This solves the open problems (1-6).

2.5 Identifiability of Complex Signals

The case of complex phase recognition is somewhat anal-
ogous to the real one, while more technical due to the
special structure of the matrices involved. The proof
logic is analogous to the case of real signals, we combine
results from literature with our own bounds and transfer
statements to obtain theorems. The complete proofs and
theorems are in Appendix B.4.

Theorem 6. Let Pi ∈ Cri×n, 1 ≤ i ≤ k be generic. Then, a
generic signal z ∈ Cn is identifiable from bi = ‖Piz‖2, 1 ≤
i ≤ k up to phase if and only if k ≥ 2n. All signals z ∈ Cn

are identifiable from bi = ‖Piz‖2, 1 ≤ i ≤ k up to phase if
k ≥ 4n− 4. The result remains unaltered if the projectors
Pi are restricted to be unitary.

This solves problem (7), and problems (1-6) for unitary
projection matrices.

3 ALGEBRAIC INVERSION

3.1 Phase Retrieval as Ideal Regression

We will show that the phase retrieval problem is a special
case of an algebraic estimation problem, called ideal re-
gression. This means that not only is the solvability and
identifiability of the problem determined by algebraic in-
variants, such as n, k, or the kind of projectors, but that
it is - in principle - also accessible to algorithmical es-
timation tools from approximate algebra, such as those
presented in [18], yielding explicit and deterministic in-
version formulae not only for k = Ω(n2), but directly at
the identifiability threshold k ≥ n+1. The reformulation
of the phase retrieval as an algebraic estimation prob-
lem bears similarities to the algebraization in Section 2.1.
The major idea consist of converting the observation into
polynomials, which are then manipulated to obtain the
solution. Assume we are in the case of the real phase
recognition problem, wanting to identify a signal z ∈ Rn.
Then, let X = (X1, . . . , Xn) be a vector of formal variables.
The k projection matrices Pi give rise to k polynomials

pi(X1, . . . , Xn) = X>AiX − bi

in the variables X j , with Ai = P>i Pi , such that, after sub-
stitution, we have pi(z) = 0. By definition the polynomi-
als pi are contained in the ideal I := I(z) ⊆ C[X1, . . . , Xn].
Thus, the estimation problem becomes, for the real phase
recognition problem:

Problem 3.1. Let z ∈ Rn be unknown, let
s = 〈X1 − z1, . . . , Xn − zn〉 ∈ C[X1, . . . , Xn]. Let
p1, . . . , pk ∈ I be known polynomials, of the form
pi(X1, . . . , Xn) = X>AiX − bi , where bi = z>Aiz − bi .
Then, reconstruct s, or equivalently, z, from the polyno-
mials p1, . . . , pk, 1≤ i ≤ k.

What at first seems like a mere reformulation, contains
the gist of the algebraic ideal regression method: instead
of fitting a loss function or performing optimization on
z, or taking the bi , Pi as an input, we try to obtain the
solution from manipulating the polynomials pi as sym-
bolic objects in their own right. Again, we note that we
are working over the complex numbers in the polyno-
mial ring C[X1, . . . , Xn], similarly to the algebraization;
we will again show that this is no major problem, from an
algorithmic aspect. The complex case is slightly different
but can be treated similarly. Here, let X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yn) be vectors of formal variables, and
let Pi =Q i+ι ·Si with Q i , Si ∈ Rm×n. The projections give
rise to k polynomials

pi = (X , Y )>
�

Q>i Q i + S>i Si S>i Q i −Q>i Si

Q>i Si − S>i Q i Q>i Q i + S>i Si

��
X
Y

�
,

and those are, similar to the real case, contained in the
ideal I := s((X , Y )− z̃) ⊆ C[X1, . . . , Xn, Y1, . . . , Yn], where
z̃ = (ℜz,ℑz) ∈ R2n. So the estimation problem is, in the
complex case:

Problem 3.2. Let z̃ ∈ R2n be an unknown point,
let s = 〈X1 −ℜz1, Y1 −ℑz1, . . . , Xn −ℜzn, Yn −ℑzn〉 ⊆
C[X1, . . . , Xn, Y1, . . . , Yn]. Let p1, . . . , pk ∈ s be known
polynomials, of the form as above. Reconstruct s, or
equivalently z̃, from the p1, . . . , pk, 1≤ i ≤ k.

Note that the ideal regression formulation of phase re-
trieval Problem 3.2 differs fundamentally from the alge-
braized inverse problem version given in Problem 2.5,
since in ideal regression, we split real and complex parts
of the formal variables, whereas in the algebraization,
we split real and complex parts of the matrices involved.
Still, both problems are intrinsically related, and can be
considered, in a certain sense, as each other’s duals.

3.2 An Inversion Formula with Ideal Regression

We describe how the ideal regression formulation of the
phase retrieval problem 3.1 can be solved by an approx-
imate algebraic algorithm; we focus on the real case. If
k ≥ �n+1

2

�
, there exist explicit inversion formulae in which
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Figure 1: Recovery rates averaged over 100 repeats without
any noise for ideal regression and for a first order solver in
PhaseLift.

one computes an approximation for Tr(Aizz>) = bi ,
which is now considered as a linear system of k equations
in the

�n+1
2

�
unknowns zz>; this can be written as pseudo-

inverting a matrix which has one row per Ai , and noise
stability can be achieved by regularization. If k � �n+1

2

�
,

such a direct approach will not work. However, it is
nevertheless possible to construct an explicit determin-
istic inversion formula, readily providing answers at the
identifiability threshold k ≥ n+ 1, and which is numer-
ically stable. The main idea is to use an ideal regres-
sion algorithm, namely Algorithms 1 and 2 in [18]; the
ideal s we wish to estimate in our case is linear, namely
s = 〈X1 − z1, . . . , Xn − zn〉, and the input polynomials
are of degree two, contained in s. Since s is inhomoge-
nous, Algorithm 1 in [18] will output the homogenous
part of s, namely sh = s ∩ 〈X1, . . . , Xn〉 which is also lin-
ear, and can be used to estimate z. Instantiating Algo-
rithm 1 in [18] with D = n, d = 1, and polynomials
fi := pi/bi − p, 1 ≤ i ≤ k − 1, where p =

∑k
i=1 pi/bi ,

yields an estimate for generators `1,`n−1 of sh. The sig-
nal z fulfills `i(z) = 0, therefore z is orthogonal to the
coefficient vectors of the `i and can be determined up to
a scalar multiple z′ = αz from the `i . Thus, z can be de-
termined by setting z := z′/α where α can be estimated
as α := exp

�∑k
i=1 log

�
(z′)>Aiz

�− log bi

�
. We will refer

to this strategy as the “explicit inversion” in the experi-
ments section. We refrain from actually explaining in de-
tail how Algorithm 1 in [18] works, or from stating the
algorithm itself, due to the amount of notational over-
head which would be needed, and refer the reader to
the original paper instead. We want to stress that Algo-
rithm 1 is deterministic and numerically stable, therefore
it yields a potentially explicit and regularizable inversion
formula for the phase recognition problem.

4 EXPERIMENTS

In this section we provide few numerical experiments il-
lustrating that generic real signals can be identified from
few generic magnitude measurements by using the inver-
sion formula obtained from ideal regression as outlined
in section 3.2. We also include a few comparisons to an
alternative method. Classical phase retrieval algorithms
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10−2.
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(b) Noise level σ =
10−4.

Figure 2: Mean squared error for n = 6 and quartiles for 100
repeats.

such as Gerchberg/Saxton [14] and Fienup’s alternatives
[13] are customized to Fourier measurements, hence are
also limited to this setting. An approach that can deal
with generic measurements is PhaseLift [10], which is
based on finding the feasible point of a semidefinite pro-
gram and is proposed to be solved using first order meth-
ods. The theoretical results in [10] are asymptotic in the
ambient dimension n and no success guarantees are de-
rived for fixed n. Nonetheless, PhaseLift is known to be
quite successful and very robust against noise in practise.
The complexity of ideal regression causes limits in the
number of measurements that can be dealt with in prac-
tise, while it yields an explicit reconstruction formula.
We shall study the performance of ideal regression and
PhaseLift for few measurements. In the numerical ex-
periments, we choose the signal x uniformly distributed
on the sphere. Measurements are performed by orthogo-
nal rank-1 projectors, also uniformly distributed (accord-
ing to the standard Haar measure on this set), and we
deal with corrupted measurements b̃ = b + η, where η
is Gaussian white noise of variance σ. The outcome of
performance comparisons between ideal regression and
PhaseLift very much depend on the noise level. If mea-
surements are exact, then ideal regression yields signal
recovery for generic n + 1 ≤ k ≤ 3n measurements,
a range, in which PhaseLift performs rather poorly, see
Fig. 1 for n = 6, 8,10. For inexact yet still very accu-
rate measurements, in other words very low noise levels
(σ ≈ 10−4), ideal regression still outperforms PhaseLift
when the number of measurements is close to the thresh-
old n+ 1, see Fig. 2(b), with a comparable accuracy for
higher noise levels (σ ≈ 10−2), cf. Fig. 2(a). Nonethe-
less, it must be mentioned that with slightly larger and
hence more common noise levels, especially when the
number of measurements increases, then PhaseLift is
eventually to be favored since error rates are then signif-
icantly smaller than within ideal regression. It is inter-
esting to note that ideal regression performs well close to
the identifiability threshold k = n+1, whereas PhaseLift
yields more accurate estimates as the number of samples
increases.
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