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Abstract

Spectral learning methods have recently been
proposed as alternatives to slow, non-convex
optimization algorithms like EM for a vari-
ety of probabilistic models in which hidden
information must be inferred by the learner.
These methods are typically controlled by a
rank hyperparameter that sets the complexity
of the model; when the model rank matches
the true rank of the process generating the
data, the resulting predictions are provably
consistent and admit finite sample conver-
gence bounds. However, in practice we usu-
ally do not know the true rank, and, in any
event, from a computational and statistical
standpoint it is likely to be prohibitively large.
It is therefore of great practical interest to
understand the behavior of low-rank spectral
learning, where the model rank is less than
the true rank. Counterintuitively, we show
that even when the singular values omitted
by lowering the rank are arbitrarily small, the
resulting prediction errors can in fact be arbi-
trarily large. We identify two distinct possible
causes for this bad behavior, and illustrate
them with simple examples. We then show
that these two causes are essentially complete:
assuming that they do not occur, we can prove
that the prediction error is bounded in terms
of the magnitudes of the omitted singular val-
ues. We argue that the assumptions necessary
for this result are relatively realistic, making
low-rank spectral learning a viable option for
many applications.
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1 INTRODUCTION

Traditionally, probabilistic models with hidden infor-
mation (such as latent variable models) have been
trained using iterative algorithms like expectation-
maximization (EM) that attempt to traverse the non-
convex likelihood landscape via local search [Dempster
et al., 1977, McLachlan and Krishnan, 2007]. Though
widely used, these algorithms are usually expensive
to run, require many iterations, and typically cannot
guarantee anything more than local improvement at
each step [Wu, 1983].

These limitations might be seen as natural consequences
of dealing with computationally hard learning prob-
lems; for instance, Terwijn [2002] showed that learning
hidden Markov models (HMMs) is NP-hard. However,
there has recently been significant interest in alter-
native learning methods [Cybenko and Crespi, 2011,
Kontorovich et al., 2013]; in particular, the develop-
ment of spectral learning techniques has suggested that
relatively mild assumptions may in fact be sufficient to
enable a class of computationally efficient and statis-
tically consistent learning algorithms. These methods
give closed-form parameter estimates, and so are usu-
ally simple to implement and fast to run. Spectral
algorithms have been proposed for learning HMMs
[Hsu et al., 2012] and other latent variable graphical
models [Cohen et al., 2012, Anandkumar et al., 2012a,b,
Parikh et al., 2011], as well as for predictive state rep-
resentations [Boots et al., 2010b, Boots and Gordon,
2011], automata [Luque et al., 2012, Balle et al., 2011,
2013], and a number of other formalisms.

Fundamentally, spectral methods forego the likelihood
optimization of EM and related methods1 in favor
of directly identifying hidden information in observed
quantities. This process generally involves a singular
value decomposition (SVD) on a moment matrix es-
timated from observed data; viewed as a canonical
correlation analysis (CCA), the goal of this decompo-
sition is to identify correlations between observations

1Balle et al. [2012] proposed some alternative optimiza-
tion objectives inspired by spectral learning.
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that must be explained by hidden information. For
instance, the graphical structure of an HMM tells us
that past observations are conditionally independent of
future observations given the current state; thus, any
correlations we observe between past and future ob-
servations must somehow reflect the hidden state. By
identifying these correlations through SVD and then
applying some clever algebraic manipulations, we can
recover the original model when certain conditions are
met.

On the other hand, one advantage of optimization-
based approaches like EM is their inherent reasonable-
ness; regardless of whether the assumptions of the
model hold exactly in the real world, we can still hope
to optimize for a good fit. An important practical
question, then, is whether similar reasonable results
hold for spectral learning.

We are particularly interested here in the question of
rank : spectral methods depend on a rank hyperpa-
rameter that determines how many of the correlations
estimated via SVD should be retained. As far as we
are aware, all existing analyses of spectral learning
assume that this model rank is chosen to exactly equal
the true rank of the process generating the data; in
other words, in the limit of infinite training data, all
of the correlations corresponding to non-zero singular
values will be kept. This assumption allows for proofs
of statistical consistency and finite-sample bounds [Hsu
et al., 2012, Boots et al., 2010a, Foster et al., 2012].

However, in practice we rarely know the correct rank;
moreover, for any real-world process the rank is likely
to be unbounded, or at least too large to be both
computationally feasible (in terms of performing the
SVD and other calculations) and statistically feasible
(in terms of acquiring enough training data to reliably
estimate the full set of correlations). Thus in reality
we must usually resort to what we will call low-rank
spectral learning, where the model rank is less than
the true rank, and we merely take the correlations
with the largest associated singular values. Indeed, this
method has been previously suggested as a means of
regularizing the complexity of spectral models [Boots
et al., 2010b].

The low-rank approach makes intuitive sense, since we
are used to treating the magnitudes of singular val-
ues as measures of “importance” for their associated
singular vectors. However, we will show that this rea-
sonable property does not generally hold for spectral
learning. In particular, it is possible for the omission of
arbitrarily small singular values to lead to arbitrarily
large prediction errors. Moreover, in contrast to the
statistical consistency of standard full-rank spectral
learning, low-rank spectral learning can produce poor

results even with an infinitely large training set, and
even in cases where accurate low-rank models exist.

Concretely, we focus here on the simple and founda-
tional HMM setup described by Hsu et al. [2012]. In
this setting we identify two distinct possible sources of
problematic behavior. The first is an incompatibility
between the initial distribution over hidden states (from
which training samples are drawn) and the long-term
state dynamics; intuitively, a bad initial distribution
can bias the learner in the wrong way. The second is a
mapping from states to observations in which states do
not look sufficiently distinct; this can dilute important
information that would be apparent if the states were
observed directly. We illustrate these scenarios with
simple examples, each of which leads to large prediction
errors despite omitting only small singular values.

We then complete the picture by showing that, in fact,
these two cases fully characterize the settings in which
low-rank spectral learning can fail. We prove that the
prediction error of the low-rank model is bounded in
terms of the largest omitted singular value whenever the
initial state distribution is the stationary distribution
and the observation model is well-conditioned. We
argue that these assumptions are relatively realistic, in
the sense that they can be observed or influenced by
the practitioner in many cases.

2 BACKGROUND

In our setting, the world generates sequences of discrete
observations x1, x2, x3, . . . from the set {1, 2, . . . , n}.
The process generating these sequences is assumed
to be a hidden Markov model (HMM) with states
{1, 2, . . . ,m}. (Note that if m is allowed to be arbitrar-
ily large then this is not actually a restriction at all.)
We denote by yt the hidden state at time t.

The parameters of the HMM include an initial state
distribution π ∈ Rm, Pr(y1 = i) = πi, a transition
matrix T ∈ Rm×m, Pr(yt+1 = i|yt = j) = Tij , and an
observation matrix O ∈ Rn×m, Pr(xt = i|yt = j) =
Oij . We will make extensive use of the observable
operators Ax = TDx, where Dx = diag(Ox·) is the
diagonal matrix whose ith diagonal entry is Oxi. Using
these operators we can compute the joint probability
of an observation sequence as

Pr(x1, x2, . . . , xt) = 1>Axt:1π , (1)

where Axt:1 is a shorthand denoting the product
AxtAxt−1 · · ·Ax2Ax1 .

The goal of learning (for our purposes) will be to predict,
from a training set of sampled observation sequences,
the joint probabilities of all sequences of t observations
for some finite constant t. In particular, we will consider
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the L1 variational distance∑
x1,...,xt

∣∣∣P̂r(x1, . . . , xt)− Pr(x1, . . . , xt)
∣∣∣ , (2)

where P̂r denotes the predicted probability.

One possible approach to learning is to try and discover
the original parameters π, T , and O; the standard
expectation-maximization (EM) algorithm attempts
this non-convex problem via alternating local optimiza-
tion [Dempster et al., 1977]. However, EM can be slow
in practice, and provides no guarantees regarding the
quality of the final solution. Another approach would
be to simply tally the observed counts for all sequences
of length t, but this would require time, space, and
training data exponential in t.

Instead, Hsu et al. [2012] showed that, assuming π
is strictly positive and T and O are of rank m (full
rank), a transformed parameterization of the HMM—
sufficient to predict the desired joint probabilities, and
more—is recoverable from quantities that depend only
on observations:

P1 ∈ Rn [P1]i = Pr(x1 = i)

P21 ∈ Rn×n [P21]ij = Pr(x2 = i, x1 = j) (3)

P3x1 ∈ Rn×n [P3x1]ij = Pr(x3 = i, x2 = x, x1 = j) ,

where a P3x1 matrix is computed for each observation
symbol x. Note that these statistics depend only on
the distribution of the first three observations. They
can also be written in terms of the HMM parameters:

P1 = Oπ

P21 = OTDπO
> (4)

P3x1 = OAxTDπO
> ,

where Dπ = diag(π).

The spectral model parameters are given in closed
form in terms of the above P -statistics, as well as a
matrix U ∈ Rn×m with the property that (U>O) is
invertible. Typically, U is chosen to contain the m
principal singular vectors of P21, which always results
in the desired property. The parameters are defined as

b1 = U>P1

b>∞ = P>1 (U>P21)+ (5)

Bx = U>P3x1(U>P21)+ ,

where again we have one matrix Bx for each possible
observation x, and A+ denotes the pseudoinverse of the
matrix A. Equation (5) can be seen as the solution to
a set of linear regression equations; for instance, Bx lin-
early transforms U>P21 to U>P3x1. Joint probability
predictions are then computed from these parameters:

P̂r(x1, x2, . . . , xt) = b>∞Bxt:1
b1 . (6)

Equation (6) parallels Equation (1); we can think of b1
as a transformed initial state vector, Bx as an ob-
servable update operator, and b>∞ as a normalizer.
Moreover, Hsu et al. [2012] showed that, when the

P -statistics are exact, P̂r = Pr.

In practice, when the exact P -statistics are not avail-
able, they are estimated by simply counting observa-
tions in the training set, and the model parameters
are computed from these estimates using Equation (5).
Hsu et al. [2012] showed that the resulting joint proba-
bility predictions are consistent in the limit of infinite
data, and moreover that the size of the training set
required to achieve a fixed level of accuracy is only
polynomial in t.

3 CHALLENGES FOR LOW-RANK
SPECTRAL LEARNING

Note that in order to compute the spectral parameters
in Equation (5) we must first obtain U , which in turn
requires knowing the number of HMM states m. As
we have argued, in practice this number is likely to be
unknown, and in any case impractically large. Instead,
we will concern ourselves with low-rank spectral learn-
ing for HMMs, where the spectral projection U ∈ Rn×k
contains the k principal left singular vectors of P21 for
some k < m. We refer to the singular values of P21

whose corresponding singular vectors are not included
in U—that is, singular values that are not among the
k largest—as the omitted singular values. The model
parameters are computed from the low-rank U using
Equation (5) as usual.

In order to simplify our discussion going forward, we
will ignore errors that arise from having a limited train-
ing set and instead assume that we have perfect esti-
mates of the P -statistics. This means that we can use
the closed-form expressions in Equation (4). Though
unrealistic, assuming an unbounded training set al-
lows us to isolate the effects of learning a low-rank
model from finite-sample convergence issues. (Whether
finite-sample issues would compound the challenges of
low-rank spectral learning in an interesting way—or,
perhaps, alleviate them—remains an interesting and
open question.)

Of course, in practice, having a finite training set is
an important motivation for the use of low-rank learn-
ing: accurately estimating the singular vectors of P21

with small corresponding singular values is problem-
atic precisely because very large quantities of data are
needed to do so [Benaych-Georges and Nadakuditi,
2012]. Indeed, existing finite sample bounds typically
have a term that grows like O(1/σ4

min), where σmin is
the smallest nonzero singular value of P21 (or equiva-
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π =

[
0.5

0.5

]
O = I

T : 1 2

1

1

Figure 1: A simple two-state HMM.

π =

[
1− ε
ε

]
O = I

T : 1 2

1

1

Figure 2: A modified two-state HMM.

lent) [Hsu et al., 2012, Boots et al., 2010a, Foster et al.,
2012].

3.1 Restricting π

We might assume, intuitively, that a choice of k where
the omitted singular values are small enough cannot
cause large errors. This turns out not to be true. We
present a series of three examples illustrating the depth
of the problem.

First example. Consider the simple two-state, two-
observation HMM in Figure 1. (T is depicted as an
automaton, with states drawn as circles and probabili-
ties on the transition arrows.) O is the identity matrix,
so in effect this is a (non-hidden) Markov model. It
is clear by inspection that this HMM produces only
the alternating observation sequences 1, 2, 1, 2, . . . and
2, 1, 2, 1, . . . , and each occurs with probability 50%. We
can easily compute

P21 =

[
0 0.5

0.5 0

]
, (7)

which has singular values (0.5, 0.5). The top singular
vector can be any unit vector, but if a small amount of
noise is added it will be an elementary basis vector such
as [0 1]>. It is easy to compute that rank-one spectral
learning in this case yields B1 = B2 = 0; therefore the
model predicts zero probability for every sequence, and
the L1 variational distance is 1 for all t.

This is not terribly surprising: the large singular values
of P21 are a clear suggestion that lowering the rank
might result in a poor approximation. But does this
implication hold in reverse? That is, do small singular
values imply that a low-rank model will be a good fit?
The next example shows that the answer, in general,
is negative.

Second example. Figure 2 depicts a slight modifi-
cation to the HMM in Figure 1. The only change is

to π; here ε is some small positive number. Whereas
before the two feasible sequences had equal probability,
the sequence 1, 2, 1, 2, . . . is now observed almost all of
the time. We have

P21 =

[
0 ε

1− ε 0

]
, (8)

with singular values (1 − ε, ε). This time we might
reasonably suppose that the second singular vector is
unimportant, given its small associated singular value.
And yet, again, simple computations show that a rank-
one spectral model yields B1 = B2 = 0 and gives trivial
predictions. This means that there can in general be
no “safe” threshold for pruning the singular values of
P21; an arbitrarily small singular value might still be
crucially important. In this case, a rank-two model
recovers the process perfectly, while a rank-one model
is totally uninformative.

One way to view this result is that, though we have
technically met the spectral learning condition that
π > 0, we have “barely” met it by setting π2 = ε. In the
same way that spectral learning fails when an element
of π is equal to 0, we should somehow expect increasing
difficulty as an element of π approaches zero. This is
true, in the sense that if the conditions from Section 2
are met with margin then the singular values of P21

cannot get too small. (It is not, however, sufficient to
simply ensure that the entries of π are not too small.)
Nonetheless, this is not a satisfying resolution, since
assuming that the singular values of P21 do not get
too small is equivalent to assuming that its rank, m,
is easily obtained from a finite sample, which we have
argued is not feasible in the first place.

We can, however, provide at least one sound reason for
the poor performance of the rank-one spectral model
here: we have designed an HMM that cannot be ef-
fectively approximated by any rank-one model, since
the alternating pattern of observations is fundamen-
tally stateful. Perhaps, even if singular values fail to
convey the value of increasing model rank, low-rank
spectral learning will still recover a model that is near-
optimal (with respect to some reasonable objective)
within the class of low-rank models. Unfortunately, the
next example shows that this cannot be true either.

Third example. Compared to Figure 2, the HMM
in Figure 3 adds a “dummy” state that always tran-
sitions to itself and allocates to it a small positive
amount δ of the initial probability mass. This HMM
generally behaves the same as its predecessor, but with
probability δ it produces only 3s. We now have

P21 =

 0 ε 0
1− ε− δ 0 0

0 0 δ

 , (9)
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π =

 1− ε− δ
ε
δ


O = I

T : 1 2

3

1

1

1

Figure 3: A problematic three-state HMM.

π =
[

1
3

1
3

1
3

]>
O =

 1 0 0
0 1 1− ε
0 0 ε


T : 1 2

3

1

11

Figure 4: An HMM with Tπ = π.

with singular values (1− ε− δ, ε, δ). By construction,
there exists a rank-two model that gives arbitrarily
good predictions as δ → 0, obtained by simply ignoring
the third state. Indeed, when ε > δ rank-two spec-
tral learning recovers this result, giving nearly perfect
predictions for all lengths t. When δ > ε, however,
the alternating pattern is “masked” by the dummy
state. The learner chooses to allocate its representa-
tional power poorly, and the result is an L1 variational
distance approaching 1.

The last two examples have something in common:
they both rely on an initial distribution π that is biased
toward the first state, while in the long run states 1
and 2 are equally likely. Another way to say this is
that the first few time steps, from which the learner
computes all of its parameters, do not accurately reflect
the long-term dynamics of the process. We might hope
to ameliorate this problem by averaging the P -statistics
across all time steps in a very long observation sequence;
equivalently, we can require that the initial distribution
π is also the stationary distribution, Tπ = π. Indeed,
the examples shown so far are well-behaved under this
modification.

3.2 Restricting O

Does fixing π to the stationary distribution solve all of
our problems? Unfortunately, no. Consider the HMM
in Figure 4. This process generates a repeating se-
quence 1, 2, 2, . . . or 2, 2, 1, . . . or 2, 1, 2, . . . with equal
probability; very rarely, a second consecutive 2 will be
replaced with a 3. In this case,

P21 =

 0 1−ε
3

ε
3

1
3

1−ε
3 0

0 ε
3 0

 , (10)

and from the third column we can see that as ε → 0
the smallest singular value of P21 will approach zero as
well. At the same time, it is not possible to implement
repeating patterns of length three with only two states,
and the rank-two spectral model always gives large
errors for t ≥ 4. While this is another case where no
good low-rank model exists, it is straightforward to
add a dummy state as in the third example; then a
good rank-three model exists, but will not be found.

As this example demonstrates, merely assuming Tπ =
π is not sufficient to guarantee successful low-rank
learning; an observation matrix O with small singular
values can make dissimilar states appear similar. This
is a second possible source of poor performance.

As we will prove in the next section, it turns out that
no special requirements on T are needed for low-rank
spectral learning (other than its compatibility with π).
Intuitively, this is because T controls the long-term
dynamics of the HMM; if T has a small singular value,
it is because there is at least one state that can be
well-approximated by a combination of other states. In
contrast, small singular values in O may cause states to
appear redundant at the current time step, when in fact
they have significantly different long-term dynamics.

4 ERROR BOUND

We have seen that low-rank spectral learning can fail
when the initial distribution π is not matched to the
transition matrix T , or when the observation matrix
O is poorly conditioned. In this section we show that,
essentially, these are the only ways in which low-rank
spectral learning can fail. We will prove the following
theorem.

Theorem 1. Let O, T , and π define a hidden Markov
model with m ≥ 4 states and n observations satisfying
rank(O) = m, π > 0, and Tπ = π. (That is, the initial
distribution is also the stationary distribution.) Let P1,
P21, P3x1, b1, b>∞, and Bx be defined as in Sections 2
and 3, and let U be the n × k matrix containing the
top k left singular vectors of P21. Let σk+1 denote the
(k + 1)th largest singular value of P21; i.e., σk+1 is the
largest omitted singular value. We have the following
bound for any t:∑

x1,...,xt

∣∣∣P̂r(x1, . . . , xt)− Pr(x1, . . . , xt)
∣∣∣

≤
√
m
(
σ−1min(O)

√
m
)t+3

σk+1 , (11)

where σmin(O) is the smallest singular value of O.

Theorem 1 says that, when Tπ = π and σmin(O) is not
too small, the L1 variational distance between the true
and estimated distributions for a given t is controlled
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primarily by σk+1. The result is independent of n,
making it attractive for applications where the set of
possible observations might be very large.

In prior work, Siddiqi et al. [2010] observed that when
T is low-rank, the resulting zeros in the spectrum of
P21 can be omitted without affecting the recovery of
the true model. Theorem 1 takes this idea further,
showing that under the right conditions even non-zero
singular values can be omitted with only a bounded
effect on the resulting predictions.

Note that the bound in Theorem 1 is exponential in t,
in contrast the the bounds of Hsu et al. [2012], which
depend on t only polynomially. However, these bounds
characterize fundamentally different sources of error:
Hsu et al. [2012] consider the effects of finite-sample
estimation, whereas we are interested in low-rank ap-
proximation when the P -statistics are exact. Moreover,
when σmin(O) >

√
m/n, the exponential term in Theo-

rem 1 at least grows more slowly than the number of
possible observation sequences, so the expected error
of a single t-length prediction goes to zero.

We state and prove three important lemmas before
proceeding to the proof of Theorem 1. Our first lemma
characterizes the model’s predictions in terms of a low-
rank operator that is repeatedly applied at each time
step. This perspective is intuitive, and motivates the
rest of our analysis.

Lemma 1. Define the low-rank operator M =
O+UU>O, and let Âx = MAx and π̂ = Mπ. For
the low-rank spectral learning parameters b1, b>∞, and
Bx defined in Section 2, we have, for all t and all
observation sequences x1, . . . , xt:

b>∞Bxt:1
b1 = 1>Âxt:1

π̂ .

Proof. We first show by induction that

Bxt:1
b1 = U>OAxt

Âxt−1:1
π̂ . (12)

When t = 1, we have

Bx1
b1 = U>P3x11(U>P21)+U>P1 (13)

= U>OAx1TDπO
>(U>P21)+U>Oπ (14)

= U>OAx1O
+OTDπO

>(U>P21)+U>Oπ
(15)

= U>OAx1
O+P21(U>P21)+U>Oπ , (16)

where we use the fact that O+O = I (since rank(O) =
m, by assumption). Since U consists of left singular
vectors of P21, P21(U>P21)+ = U . So the above is
equal to

U>OAx1
O+UU>Oπ = U>OAx1

π̂ . (17)

The inductive step follows from the same argument.

Finally, we have

b>∞U
>OAxt = P>1 (U>P21)+U>OAxt (18)

= π>O>(U>P21)+U>OAxt (19)

= 1>DπO
>(U>P21)+U>OAxt

(20)

= 1>TDπO
>(U>P21)+U>OAxt

(21)

= 1>O+P21(U>P21)+U>OAxt
(22)

= 1>O+UU>OAxt
(23)

= 1>Âxt , (24)

since T is left stochastic.

Our next lemma concerns the approximation error
introduced by the low-rank operator M if it is applied
only at the very last time step. Intuitively, this error
might be large because U is derived from P21 and
therefore biased by the initial distribution π. However,
when Tπ = π, the long-term state distribution mirrors
the initial distribution, and we can show that the error
does not get too large.

Lemma 2. Under the conditions of Theorem 1, for
any t,∑
x1,...,xt

∥∥∥Âxt
Axt−1:1

π −Axt:1
π
∥∥∥
2
≤ σ−2min(O)mσk+1 .

Proof. We begin by expanding Âxt
and Axt

, and then
introduce π as a “reference” distribution:∑
x1,...,xt

∥∥∥Âxt
Axt−1:1

π −Axt:1
π
∥∥∥
2

(25)

=
∑

x1,...,xt

∥∥MTDxtAxt−1:1π − TDxtAxt−1:1π
∥∥
2

(26)

=
∑

x1,...,xt

∥∥(MTDπ − TDπ)D−1π Dxt
Axt−1:1

π
∥∥
2
.

Note that the inverse D−1π exists since π > 0. We next
use the fact that ‖Ax‖2 ≤ ‖A‖2 ‖x‖2 for any matrix
A and vector x. (Here ‖A‖2 denotes the matrix norm
induced by the L2 vector norm, which is equal to the
maximum singular value of A.) This bounds the above
by

‖MTDπ − TDπ‖2
∑

x1,...,xt

∥∥D−1π Dxt
Axt−1:1

π
∥∥
2

(27)

≤ ‖MTDπ − TDπ‖2
∑

x1,...,xt

∥∥D−1π Dxt
Axt−1:1

π
∥∥
1
,

since ‖x‖2 ≤ ‖x‖1 for any vector x.

We first address the sum. Note that D−1π Dxt
Axt−1:1

π
has only non-negative entries, so we can replace the
norm by a simple sum:∑

x1,...,xt

∥∥D−1π Dxt
Axt−1:1

π
∥∥
1

(28)
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=
∑

x1,...,xt

1>D−1π Dxt
Axt−1:1

π (29)

=

m∑
i=1

1

πi

∑
x1,...,xt

[
DxtAxt−1:1π

]
i
. (30)

Recall that
[
Axt−1:1

π
]
i

is the (true) joint probability
of observing x1, . . . , xt−1 and ending up in state i at
time t, thus

[
Dxt

Axt−1:1
π
]
i

is the joint probability of
observing x1, . . . , xt−1, ending up in state i at time
t, and then observing xt. Summed over all sequences
x1, . . . , xt, this is just the probability of being in state
i at time t, which, by definition, is the stationary
probability πi. Thus the above is equal to

m∑
i=1

1

πi
πi = m . (31)

Now consider the term outside the sum; we have

‖MTDπ − TDπ‖2 (32)

=
∥∥O+UU>OTDπ − TDπ

∥∥
2

(33)

≤
∥∥O+

∥∥
2

∥∥UU>OTDπO
> −OTDπO

>∥∥
2

∥∥(O>)+
∥∥
2

(34)

= σ−2min(O)
∥∥UU>P21 − P21

∥∥
2
, (35)

since ‖O+‖2 = σ−1min(O). Because UU> is a pro-
jection onto the top k singular vectors of P21,∥∥UU>P21 − P21

∥∥
2

is exactly σk+1. Combining, we
have the desired result.

The final lemma uses Lemma 2 and an inductive argu-
ment to establish a bound on the summed L2 distances
between the true and approximated belief states after t
time steps. With this in hand, the proof of Theorem 1
will be straightforward.

Lemma 3. Under the conditions of Theorem 1, for
any t,∑

x1,...,xt

∥∥∥Âxt:1
π̂ −Axt:1

π
∥∥∥
2

≤ σk+1

t+2∑
r=2

(
σ−1min(O)

√
m
)r

.

Proof. We will prove the claim by induction. As a base
case, let t = 0. Note that

π = Tπ (36)

= TDπ1 (37)

= TDπO
>1 , (38)

since Tπ = π by assumption and O> is right stochastic;
thus

‖π̂ − π‖2 =
∥∥O+UU>OTDπO

>1− TDπO
>1
∥∥
2
.

(39)

Proceeding similarly to Lemma 2, this is bounded by∥∥O+
∥∥
2

∥∥UU>OTDπO
>1−OTDπO

>1
∥∥
2

(40)

≤ σ−1min(O)
√
m
∥∥UU>P21 − P21

∥∥
2

(41)

= σ−1min(O)
√
mσk+1 , (42)

since ‖1‖2 =
√
m when 1 is m-dimensional. Since O is

stochastic, σmin(O) ≤ 1 and the above is bounded by

σ−2min(O)mσk+1 . (43)

Thus the claim holds for t = 0.

Now suppose, inductively, that the claim holds for t−1.
To prove the claim for t, we first apply the triangle
inequality to split the sum into more manageable pieces:∑

x1,...,xt

∥∥∥Âxt:1 π̂ −Axt:1π
∥∥∥
2

(44)

≤
∑

x1,...,xt

∥∥∥Âxt:1
π̂ − Âxt

Axt−1:1
π
∥∥∥
2

+
∑

x1,...,xt

∥∥∥ÂxtAxt−1:1π −Axt:1π
∥∥∥
2
. (45)

Consider the first sum:∑
x1,...,xt

∥∥∥Âxt
Âxt−1:1

π̂ − Âxt
Axt−1:1

π
∥∥∥
2

(46)

≤
∑

x1,...,xt

∥∥O+UU>
∥∥
2

∥∥∥OAxt

(
Âxt−1:1

π̂ −Axt−1:1
π
)∥∥∥

2

≤ σ−1min(O)
∑

x1,...,xt

∥∥∥OAxt

(
Âxt−1:1 π̂ −Axt−1:1π

)∥∥∥
1
,

since
∥∥UU>∥∥

2
= 1. Note that in the last step we

replaced the L2 norm with the larger L1 norm. Now,
since OAxt

has non-negative entries,∥∥∥OAxt

(
Âxt−1:1

π̂ −Axt−1:1
π
)∥∥∥

1
(47)

=

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

[OAxt ]ij

[
Âxt−1:1 π̂ −Axt−1:1π

]
j

∣∣∣∣∣∣ (48)

≤
m∑
i=1

m∑
j=1

[OAxt
]ij

∣∣∣∣[Âxt−1:1
π̂ −Axt−1:1

π
]
j

∣∣∣∣ (49)

= 1>OAxt

∣∣∣Âxt−1:1
π̂ −Axt−1:1

π
∣∣∣ (50)

= 1>Axt

∣∣∣Âxt−1:1
π̂ −Axt−1:1

π
∣∣∣ , (51)

where the absolute value of a vector is interpreted
element-wise. Thus Equation (46) is bounded above
by

σ−1min(O)
∑

x1,...,xt

1>Axt

∣∣∣Âxt−1:1
π̂ −Axt−1:1

π
∣∣∣ (52)
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= σ−1min(O)
∑

x1,...,xt−1

1>T
∣∣∣Âxt−1:1

π̂ −Axt−1:1
π
∣∣∣ (53)

= σ−1min(O)
∑

x1,...,xt−1

∥∥∥Âxt−1:1
π̂ −Axt−1:1

π
∥∥∥
1

(54)

≤ σ−1min(O)
√
m

∑
x1,...,xt−1

∥∥∥Âxt−1:1
π̂ −Axt−1:1

π
∥∥∥
2
,

since
∑
xAx = T , T is left stochastic, and ‖x‖1 ≤√

m ‖x‖2 for any vector x ∈ Rm.

The second sum in Equation (45) is directly bounded
by Lemma 2. Combining and using the shorthand
c = σ−1min(O)

√
m, we have∑

x1,...,xt

∥∥∥Âxt:1
π̂ −Axt:1

π
∥∥∥
2

(55)

≤ c
∑

x1,...,xt−1

∥∥∥Âxt−1:1 π̂ −Axt−1:1π
∥∥∥
2

+ c2σk+1

(56)

≤ cσk+1

t+1∑
r=2

cr + c2σk+1 (57)

= σk+1

t+2∑
r=3

cr + c2σk+1 (58)

= σk+1

t+2∑
r=2

cr , (59)

where we apply the inductive hypothesis and simplify.

We are now ready to prove the main theorem.

Proof of Theorem 1. Expanding the definition of Pr(·)
and applying Lemma 1, we have∑

x1,...,xt

∣∣∣P̂r(x1, . . . , xt)− Pr(x1, . . . , xt)
∣∣∣

=
∑

x1,...,xt

∣∣∣1>Âxt:1
π̂ − 1>Axt:1

π
∣∣∣ . (60)

Since |1>x| ≤ ‖x‖1 ≤
√
m ‖x‖2 for x ∈ Rm, this is

bounded above by
√
m

∑
x1,...,xt

∥∥∥Âxt:1
π̂ −Axt:1

π
∥∥∥
2

(61)

≤
√
mσk+1

t+2∑
r=2

(
σ−1min(O)

√
m
)r

, (62)

applying Lemma 3. All that remains is some simplifica-
tion. Since

√
m ≥ 2 by assumption and σ−1min(O) ≥ 1,

we can bound the sum by (σ−1min(O)
√
m)t+3. This gives

the bound
√
m
(
σ−1min(O)

√
m
)t+3

σk+1 . (63)

5 DISCUSSION

The spectral learning result of Hsu et al. [2012] relies
on three basic assumptions: π > 0, rank(O) = m, and
rank(T ) = m. Theorem 1 adds to these the stationarity
condition Tπ = π (and drops the rank condition on T ,
as discussed in Section 4). Is the stationarity condition
realistic? While in practice we usually have no control
over the initial distribution from which our training
data are generated, applications where training and
test data take the form of long observation sequences
generated from continuous runs of the process allow
us to satisfy the condition by computing P -statistics
from the entire data stream and not just the first three
time steps, assuming that the mixing rate is sufficiently
high.2 For instance, suppose we wish to model weather
patterns using a set of daily weather reports from the
past fifty years. The first few days in the training set
might have had unusual weather merely by chance, but
for all practical purposes a day sampled at random
reflects the stationary state of the world. On the other
hand, in natural language applications training exam-
ples are often individual sentences whose first words
may behave in ways that do not reflect the long-term
dynamics of the underlying model. For such applica-
tions the limitations of low-rank spectral learning are
likely to be of greater concern.

Although not stated as an explicit assumption, to give
useful bounds Theorem 1 also requires a second prop-
erty: O must be well-conditioned. For some applica-
tions this may be achievable, particularly if the practi-
tioner can influence the observation space, for instance,
by adding sensors; if each state has a unique observa-
tion profile then O will tend not to have small singular
values. Alternatively, the conditioning of O can po-
tentially be improved by treating several consecutive
observations as a single multi-observation. In Figure 4,
for example, the distribution over the next two obser-
vations distinguishes all three states. This technique is
widely used in the literature on predictive state repre-
sentations [Wolfe et al., 2005, Boots et al., 2010b] and
spectral learning of automata [Balle et al., 2013]. It
seems plausible that such a procedure might provably
address the problem of a poorly conditioned O, but
this remains an open question for future work.
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2Note that, while a fast mixing rate may play a role in
getting accurate estimates of the P -statistics, Theorem 1
shows it is not otherwise required for learning.
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