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Abstract

We propose several novel criteria for the se-
lection of groups of jointly informative con-
tinuous features in the context of classifica-
tion. Our approach is based on combining a
Gaussian modeling of the feature responses,
with derived upper bounds on their mutual
information with the class label and their
joint entropy.

We further propose specific algorithmic im-
plementations of these criteria which reduce
the computational complexity of the algo-
rithms by up to two-orders of magnitude,
making these strategies tractable in practice.

Experiments on multiple computer-vision
data-bases, and using several types of clas-
sifiers, show that this class of methods out-
performs state-of-the-art baselines, both in
terms of speed and classification accuracy.

1 Introduction

It is often desirable, given a training set in RD – la-
beled or not – to reduce its dimensionality by either
extracting [13] or selecting [9] a number of features
d� D, which carry “as much information as possible”.
The motivation behind this dimensionality reduction
can be either to control over-fitting by reducing the
capacity of the classifier space, or to improve com-
putational requirements by reducing the optimization
domain. It can also be used alone as a tool to facili-
tate the understanding or the graphical representation
of high-dimension data.

In the present work we focus on the selection of fea-
tures, which can be divided into two large families
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of methods. The first group, filters, are predictor-
agnostic as they do not optimize the selection of fea-
tures for a specific prediction method. They are usu-
ally based on classical statistics or information theory
tools, and the methods we propose belongs to this cat-
egory. The second group, wrappers choose features to
optimize the performance of a certain predictor. They
usually require the retraining of the predictor at each
step of a greedy search, and hence are typically com-
putationally more expensive than filters; furthermore
the selected features are tailored to a specific predictor
and often do not work well with another type.

In the following we present a filter approach to feature
selection in the context of classification tasks based
on the maximization of the mutual information be-
tween the selected variables and the class. The use of
mutual information as a criterion for feature selection
has been extensively studied in the literature, and can
be easily motivated in the context of classification by
Fano’s inequality, which lower bounds the probability

of incorrect classification PE by PE ≥ H(C)−I(X;Y )−1
log |C| .

An important issue however that arises in this context,
is that of the joint “informativeness” of the selected
features. Though wrappers by their very nature tend
to select features which are jointly informative, in the
case of filters this issue is only partially addressed due
to its computational complexity. It is often assumed
[17, 8, 11, 15] that selecting features which are jointly
informative with the class is too expensive computa-
tionally and such methods typically compromise by
relying on the mutual information of individual fea-
tures and the class, as well as the mutual information
between pairs of selected features.

We argue however, that rather than compromising on
the joint behavior of the selected features, it is prefer-
able to accept a compromise on the density model,
which will allow to analyze this joint behavior in an
efficient manner.

In the case of continuous features for classification, and
if we aim at taking into account the joint behavior of
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features, a Gaussian model is a very natural choice.
This unfortunately leads to a technical difficulty: If
such a model is used for the conditional distributions
of the features given the class, the non-conditioned
distribution is a mixture of Gaussians, and its entropy
has no simple analytical form. There exists extensive
literature on this problem [12], but most of the exist-
ing approximations are too computationally intensive
in the context at hand, which requires the estimation
of the mutual information of a very large number of
subsets of features with the class to predict.

Instead we derive two upper-bounds on the Mutual
Information – and similarly two bounds on the joint
entropy – and maximize these bounds instead of the
true information estimate. Also, we propose several
algorithmic procedures to update covariance matrices
that drastically reduce the computational cost during
the optimization of the selected feature set.

2 Related works

It can be easily seen, when selecting d features from a
pool of D candidates, that it does not suffice to select
features independently informative with respect to the
class. It is also important that these features exhibit
low redundancy between them: joint informativeness
is at the core of feature selection.

As mentioned in the introduction, wrappers, due to
their very nature, address this issue by creating sub-
sets of features that perform well when combined with
a specific predictor. In [10], the authors propose to it-
eratively train a SVM, removing at each iteration the
features with the smallest weights. In [7] Adaboost is
employed in connection with decision stumps to per-
form feature selection.

Other wrapper methods impose sparsity on the result-
ing predictor, thus implicitly performing feature selec-
tion. Examples are [3] which uses a Laplacian prior
to perform sparse logistic regression, and [19] which
casts an l0 regularized SVM as a mixed integer pro-
gramming problem, while in [1] perform feature selec-
tion imposing sparsity via a l1-norm regularizer. Such
wrappers, that train predictors only once, tend to be
much faster, however like other wrappers they tend
not to generalize well across predictors.

In an approach that share similarities with the algo-
rithm proposed here, forward regression [6] iteratively
augments a subset of features to build a linear re-
gressor which is near-optimal in a least-squared error
sense.

In the context of filters, the simplest methods are those
that calculate statistics on the individual features and
then rank these features based on these values, keep-

ing the d features of highest rank. Examples of such
statistics are Fisher score, mutual information between
the feature and the class (aka information gain), etc.
Though quick to compute, such approaches typically
result in large redundancy and sub-optimal perfor-
mance.

The RelieFF algorithm [18] looks at individual fea-
tures, assigning a score by randomly selecting samples
and calculating for that feature and for each sample
the difference in distance between the random sam-
ple and the nearest sample of the same class, dubbed
“nearest hit”, and the random sample and the nearest
sample of a different class, dubbed “nearest miss”. De-
spite looking at features in isolation, it has been shown
to perform well in practice.

In [17] the authors attempt to address the issue of re-
dundancy by adding features to their pool of maximum
relevance and minimum redundancy, i.e. features with
high mutual information with the class and low mu-
tual information with the features already in the pool
d, thus selecting features that are not pairwise redun-
dant.

The FCBF [15] algorithm uses symmetrical uncer-

tainty I(X;Y )
H(X)+X(Y ) as a quantitative criterion and adds

features to the pool based on a novel concept of pre-
dominant correlation, namely that the feature is more
highly correlated with the class than any of the fea-
tures already in the pool. CFS [11] similarly combines
symmetric uncertainty, with Pearson’s correlation to
add features exhibiting low correlation with the fea-
tures already in the pool.

Another approach to addressing redundancy uses the
concept of a Markov Blanket [16]. The Markov blan-
ket of a variable X is defined as the set of variables
S such that X is independent of the remaining vari-
ables D \ S ∪ X given the values of the variables in
S. Based on this concept, the authors in [8] select
features that have high mutual information with the
class when conditioned on one of the features already
in the pool. The resulting algorithm is suitable only
for binary data, here however we explicitly address the
problem of feature selection in a continuous domain.

Perhaps most closely related, at least conceptually, to
the work presented here is that of [20] which similarly
attempts to find features that are jointly informative
by resorting to a Gaussian modeling. In that work
however the aim is feature extraction and the mutual
information is used as an objective to guide a gradient
ascent algorithm.

Finally, we note a family of feature selection algo-
rithms, which have become very popular in recent
years, based on spectral clustering. For example [14]
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selects features based on their influence on the affinity
graph Laplacian, and [21] analyzes the spectrum of the
Laplacian matrix.

Table 1: Notation

F = {X1, X2, . . . , XD} the set of candidate features
Xj a single feature
Y the class label
S a subset of F
Sn−1 in Forward Feature Selection, the features se-
lected up until iteration n
ΣS the covariance matrix of the features in S
ΣjS the covariance vector of feature Xj and the fea-
tures in S
σ2
ij the covariance of features Xj and Xi

σ2
i the variance of feature i

Σy
S the variance of the features in S conditioned on

Y = y
σ2
j|S the variance of feature Xj conditioned on the

value of the features in S

3 Feature selection criteria

3.1 Mutual Information and Gaussian model

The mutual information between two variables is a
standard way of measuring the amount of informa-
tion they share, that is how much of their respective
randomness is common.

Given a continuous variable X and a finite variable Y ,
their mutual information is defined as

I(X;Y ) = H(X)−H(X|Y ) (1)

= H(X)−
∑
y

H(X|Y = y)P (Y = y). (2)

Using a Gaussian density model for continuous vari-
ables is a natural strategy, due in part to the simplic-
ity of its parametrization, and to its ability to cap-
ture the joint behavior of its components. Moreover,
the entropy of a n-dimensional multivariate Gaussian
X ∼ N (µ,Σ) has a simple and direct expression,
namely

H(X) =
1

2
log(|Σ|) +

n

2
(log 2π + 1) . (3)

3.2 Bounds on the Mutual Information and
the Entropy

Estimating the mutual information as defined in equa-
tion (2) requires to estimate the entropy of both the
conditional distributions X|Y = y for any y, and that
of X itself. If we model the former with Gaussian

distributions, the latter is a mixture of Gaussian dis-
tributions, the entropy of which has no simple analytic
form.

We propose to mitigate this problem by deriving upper
bounds with tractable forms.

Let fy, y = 1, . . . , C denote Gaussian densities on RD,
py a distribution on {1, . . . , C}, and f∗ the Gaussian
approximation of the joint law

f =
∑
y

fypy,

that is the Gaussian density of same expectation and
covariance matrix as the mixture. Let Y be a random
variable of distribution py and X a continuous random
variable of conditional distribution µX|Y=y = fy.

3.2.1 Gaussian compromise bound

As a first bound, we propose to use the entropy of
H (f∗) as an approximation of H(f). While combining
it with Gaussian models of the conditioned densities is
not consistent, estimating the mutual information with
it still has all the important properties one desires for
continuous feature selection:

• It normalizes with respect to any affine transfor-
mation of the features, since such a transformation
changes by the same amount all the densities in (2).

• It captures the information content of individual
features, since similarly adding a non-informative fea-
ture would change by the same amount all the terms
of (2).

• It accounts for redundancy, since linearly depen-
dent features would induce a small determinant of the
covariance matrix, and a small mutual information.

However, this approximation suffers from a core weak-
ness, namely that the entropy of f∗ can become ar-
bitrarily larger than the entropy of

∑
i pifi, which

leads to degenerated cases where families of features
looks “infinitely informative”. To mitigate this ef-
fect, we propose to upper-bound the approximation
of H(

∑
i pifi) with the maximum value it can reach,

which corresponds to having the distributions fi “far
apart”.

More precisely, we have by definition

I(X;Y ) = H

(∑
y

fypy

)
−
∑
y

H(fy)py. (4)

Since f∗ is a Gaussian density, it has the high-
est entropy for its variance, and we have H(f∗) ≥
H(
∑

y fypy), hence

I(X;Y ) ≤ H (f∗)−
∑
y

H(fy)py. (5)
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Figure 1: This graph shows several estimates of the
entropy of a mixture of two 1D Gaussian densities of
variance 1, as a function of the difference between their
means. The green curve is the real value of the entropy,
estimated numerically. The blue curve is the entropy
of the Gaussian fitted on the mixture. The black line
stands for the limit entropy when the two components
are far apart. The red curve finally is the Gaussian
compromise estimate described in § 3.2.1, which is the
minimum of the blue and black values.

We know that the mutual information between two
variables is upper-bounded by the entropy of each,
hence

I(X;Y ) ≤ H(Y ) = −
∑
y

py log py, (6)

from which we get

I(X;Y ) ≤
∑
y

(H(fy)− log py)py −
∑
y

H(fy)py (7)

Taking the min of inequalities (5) and (7), we get our
“Gaussian Compromise” bound

I(X;Y ) ≤
∑
y

min(H(f∗), H(fy)− log py)py

−
∑
y

H(fy)py. (8)

From this bound and Equation (2), we can derive an
upper bound on H(X) as well. Figure 1 illustrates the
behavior of this bound in the case of two 1D Gaussians.

3.2.2 KL-based bound

We derive here a more general bound in the case of a
distribution f which is a mixture of two distribution
f = p1f1 + p2f2. In this case we have:

H(f) =−
∫ ∞
−∞

p1f1(u) log (p1f1(u) + p2f2(u))

+ p2f2(u) log (p1f1(u) + p2f2(u))du

Working with the first term in the above integral we
have:

−
∫ ∞
−∞

p1f1(u) log (p1f1(u) + p2f2(u))du

= −
∫ ∞
−∞

p1f1(u) log

(
1 +

p2f2(u)

p1f1(u)

)
du

−
∫ ∞
−∞

p1f1(u)log(p1f1(u))du

= c−
∫ ∞
−∞

p1f1(u) log

(
1 +

p2f2(u)

p1f1(X)

)
du+ p1H(f1(u))

≤ c−
∫ ∞
−∞

p1f1(u) log

(
p2f2(u)

p1f1(X

)
du+ p1H(f1(u))

=p1DKL(f1(u) ‖ f2(u)) + p1H(f1(u)) + c′,

where c, c′ are constants related to the mixture coef-
ficients and the inequality comes from the fact that
log(1 + x) ≥ log(x). Similarly for the second term we
have:

−
∫ ∞
−∞

p2f2(u) log (p1f1(u) + p2f2(u))du

≤p2DKL(f2(u) ‖ f1(u)) + p2H(f2(u)) + c′′

Based on this we have:

H(f) ≤p2DKL(f2(u) ‖ f1(u)) + p2H(f2(u))

+p1DKL(f1(u) ‖ f2(u)) + p1H(f1(u)) + c′′′,

and by extension:

I(X;Y ) ≤p2DKL(f2(u) ‖ f1(u))

+p1DKL(f1(u) ‖ f2(u)) + c′′′.

In the case where f1 = N(µ1,Σ1) and f2 = N(µ2,Σ2)
are both multivariate Gaussian distributions of dimen-
sionality D, we have that:

DKL(f1 ‖ f2) =
1

2

(
Tr
(
Σ2
−1Σ1

)
− ln

|Σ1|
|Σ2|

−D
)

+
1

2
(µ2 − µ1)

T
Σ2
−1(µ2 − µ1)

In the case of a binary classification problem, we can
directly work with the above quantity for our mixture
of two Gaussians. In the case where |Y | > 2, we con-
sider the resulting |Y | one-against-all binary classifi-
cation problems and attempt to maximize the average
of the upper bounds of the |Y | mutual information
values.

More specifically, for each class y we consider the fol-
lowing mixture model:

f = pyfy + (1− py)fY \y

where the fY \y is the conditional distribution of
X|Y 6= y. We then calculate the upper bound of the
mutual information for all the possible mixtures f , one
for each y.
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4 Computational Implementation

Computing the optimal set of features S of size N
under either of the derived upper bound criteria, is
computationally intractable as there are F !

N !(F−N)! can-

didate sets. Instead we settle for a greedy algorithm
which attempts to approximate the optimal set S by
adding one feature at a time.

Specifically, in order to find a good approximation of
the optimization of the upper bound criteria presented
in § 3, we make use of forward selection, a standard
greedy optimization method. It iteratively builds a
sequence of sets Sn with n = 1, . . . , N of increasing
size, each set Sn built by adding one feature Xj(n) to
the previous one Sn−1. Thus at a given iteration n,
the greedy forward selection algorithm calculates for
every candidate feature Xj ∈ F \ Sn−1, the mutual
information, or entropy accordingly, between the set
S′n = Sn−1 ∪ {Xj} and the label Y . It then creates
the set Sn by adding that feature which leads to the
largest value of the optimization criterion.

4.1 Complexity of the Gaussian Compromise

Though forward selection leads to a computation-
ally tractable feature selection algorithm, it remains
nonetheless very expensive.

In the case of the Gaussian compromise approach,
at each iteration n and for each feature Xj not in
Sn−1, forward selection requires the estimation of
I(Sn−1 ∪ {Xj};Y ), which in turn requires the estima-
tion of |Y |+1 determinants of size n×n . A naive ap-
proach would be to calculate these determinants from
scratch, incurring a cubic cost of O(n3) for the calcu-
lation of each determinant and O(|Y ||F \Sn−1|n3) per
iteration.

4.1.1 Quadratic in n

In order to speed up this process, we note that ΣS′n
differs from ΣSn−1

by the addition of a row and a col-
umn

ΣS′n
=

[
ΣSn−1

ΣjSn−1

ΣT
jSn−1

1

]
(9)

Where ΣjSn−1 is the vector of covariances between the
features in Sn−1 and Xj . Thus ΣS′n

is the result of
two rank-one updates to the augmented matrix[

ΣSn−1 0n−1
0Tn−1 σ2

j

]
, (10)

namely one rank-one update corresponding to chang-
ing the last row, and one rank-one update correspond-
ing to changing to last column.

Consequently we can efficiently calculate the determi-
nant |(ΣS′n

)| by applying, twice, the matrix determi-
nant lemma.

The cost of this calculation is obviously O(n2). Thus
we can efficiently add one feature to a pool of |S| =
n features previously selected, by incurring a cost of
O(|Y ||F \ Sn−1|n2).

4.1.2 Linear in n

We can further speed-up the proposed algorithm by
a factor of n, if we are willing to incur a slightly
higher memory load. We first note that I(X,Z;Y ) =
I(Z;Y ) + I(X;Y |Z), which in the context of our for-
ward selection algorithm translates to

I(S′n;Y ) = I(Sn−1;Y ) + I(Xj ;Y |Sn−1). (11)

Of course the first term in the above expression
is common for all candidate features Xj , meaning
that finding the feature Xj that maximizes I(S′n;Y )
is equivalent to finding the feature that maximizes
I(Xj ;Y |Sn−1). If σ2

j|Sn−1
denotes the variance of fea-

ture j given the features in Sn−1 and σy2

j|Sn−1
the vari-

ance conditioned on the features in Sn−1 and the class
Y = y, we have

argmax
X∈F\Sn−1

I(Xj ;Y |Sn−1) = argmax
X∈F\Sn−1

log(σ2
j|Sn−1

)

−
∑
y

P (Y = y) log(σy2

j|Sn−1
)

where we have exploited the fact that the conditional
variance σj|Sn−1

is independent of the specific values
of the features in Sn−1 and thus the integrations of
the entropies over the conditioned values is straight-
forward. That is∫

R|Sn−1|
H(Xj |Sn−1 = s)µSn−1

(s)ds =

1

2
log((σ2

j|Sn−1
)) +

1

2
(log 2π + 1)

Under the Gaussian assumption, we have

σXj |Sn−1
= σXj

− ΣT
jSn−1

Σ−1Sn−1
ΣjSn−1

. (12)

Calculating the above value for a candidate feature
Xj incurs a cost of O(n2) resulting in an algorithm of
similar complexity as the one presented in the previ-
ous section. However, as mentioned, we can improve
on this complexity with an increase in memory require-
ments. To be specific, we consider the case of calcu-
lating σ2

j|Sn−1
where Sn−1 = Sn−2 ∪Xi. We have

ΣT
jSn−1

Σ−1Sn−1
ΣjSn−1

=
[
ΣT

jSn−2
σ2
ji

]
Σ−1Sn−1

[
ΣjSn−2

σ2
ij

]
(13)
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By applying the Sherman-Morrison formulas twice to
update Σ−1Sn−2

to Σ−1Sn−1
, we obtain an update formula

of the form

Σ−1Sn−1
=

[
Σ−1Sn−2

w

zT c

]
+ uvT (14)

where the vectors u, v, w, z, and the scalar c are com-
puted prior to each iteration n with a cost of O(n2).
From 14 and 13 we have

σ2
j|Sn−1

= σ2
j − ΣT

jSn−1

([
Σ−1Sn−2

w

zT c

]
+ uvT

)
ΣjSn−1

= σ2
j −

(
ΣT

jSn−2
Σ−1Sn−2

+ σ2
jiz

T
)

ΣjSn−2

−ΣT
jSn−1

[
w
c

]
σ2
ji

−
(

ΣT
jSn−1

u
) (
vT ΣjSn−1

)
(15)

In equation (15), the third term is simply an in-
ner product and can be calculated in O(n), while
the fourth term can be also calculated using in-
ner products, similarly in O(n). The main com-
putational cost is incurred in calculating the term
ΣT

jSn−2
Σ−1Sn−2

ΣjSn−2
, that is in computing the vector

ΣT
jSn−2

Σ−1Sn−2
. Given this vector, the second term is

simply an inner product and can also be calculated in
O(n). The size n− 2 vector ΣT

jSn−2
Σ−1Sn−2

however has

already been calculated ∀Xj ∈ F \ Sn−2 when calcu-
lating their scores during the previous iteration n− 1.
Thus if are willing to accept memory requirements by
O((F−n)n) we can store this vector for each candidate
feature and simply incur a cost of O(|Y ||F \ Sn−1|n)
per iteration.

4.2 Complexity of the KL-based Algorithms

In the case of the KL-based algorithms, similarly with
above, a naive implementation would incur a cost of
O(|Y ||F \ Sn−1|n3).

Working with the upper bound value:

p2DKL(f2(u) ‖ f1(u)) + p2H(f2(u))

+p1DKL(f1(u) ‖ f2(u)) + p1H(f1(u)) + c′′′

we see that the entropy values H(fy(u)) can be com-
puted efficiently as in the previous subsection. What
remains is to efficiently compute the Kullback-Leibler
divergences for each of the |Y | binary classification
problems. That is to say ∀y, Y \ y the value:

1

2

(
Tr
(
Σ2
−1Σ1

)
− ln

|Σ1|
|Σ2|

+ (µ2 − µ1)
T

Σ2
−1(µ2 − µ1)

)
(16)

where Σ1 = Σy

S′n
,Σ2 = Σ

Y \y
S′n

and µ1 = µy

S′n
, µ2 =

µ
Y \y
S′n

.

From equation 11, it can be seen that |ΣS′n
| =

σ2
j|Sn−1

|ΣSn−1
| and thus the second term above can

be computed efficiently in time O(n). For the first
and third terms however we need to calculate the
matrix Σ2

−1 which incurs a cost of O(n2) (using
Sherman-Morrison). We note that it is possible,
by storing values, to efficiently compute the term
(µ2 − µ1)

T
Σ2
−1(µ2 − µ1) in O(n) once Σ2

−1 is calcu-
lated. Finally the first term, i.e. the trace, also incurs
a cost of O(n2) as we only need to compute the values
of the product matrix along the main diagonal. Thus
the overall complexity of the KL-based approaches is
O(|Y ||F \ Sn−1|n2), i.e. quadratic in n.

Unfortunately in this case it is not possible to exploit
equation 11 to obtain a O(n) algorithms as this re-
quires integrating over the conditional mean µj|Sn−1

whose value, unlike the conditional variance, depends
on the value of the conditioned variables in Sn−1.

5 Experiments and discussion

5.1 Data-sets

In order to experimentally demonstrate the merits of
the various proposed information theoretic feature se-
lection algorithms, we conducted experiments on three
popular computer vision datasets.

CIFAR-10 contains images of size 32× 32, of 10 dis-
tinct classes depicting vehicles and animals. The train-
ing data consists of 5,000 images of each class. We
pre-process the data as in [4] using code provided by
the authors. The original pool F of features consists
of 2,048 candidates.

INRIA is a pedestrian detection dataset. There are
12,180 training images of size 64 × 128 of pedestrians
and background images. We use 3,780 HoG features
that have been shown to perform well in practice [5].

STL-10 consists of images of size 96×96 belonging to
10 classes, each represented by 500 training images. As
for CIFAR we pre-process the data as in [4], resulting
in a pool F of 4,096 features.

5.2 Baselines

We compare the proposed feature selection method
against a number of baselines. The Fisher, T-test,χ2,
and InfoGain methods all compute statistics on indi-
vidual features. In particular InfoGain calculates the
mutual information of the individual features to the
class, without taking into account there joint informa-
tiveness. As such, its comparison with our approaches
is a very good indicator of the merit of joint informa-
tiveness and its effect on classification performance.
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FCBF MRMR SBMLR Spec. Clus. CFS CMTF Relieff GC.E GC.MI GKL.E GKL.MI
CIFAR 621 901 1449 1379 4262 394 1652 79 20 486 483

STL 68 207 1002 367 409 208 2089 23 5 887 856
INRIA 247 579 88 1072 2516 459 2413 43 43 135 131

Table 2: Cost in cputime of running the more sophisticated feature selection algorithms in order to select 100
features on the three datasets. We highlight in bold the fastest algorithm for each dataset.

As noted in section 2, the FCBF [15] and CFS [11]
baselines employ symmetric uncertainty criterion and
check for pairwise redundancy of features. Similarly
MRMR [17], uses mutual information to select fea-
tures that have high relevance to the class while hav-
ing low mutual information with the other selected
features, thus checking for pairwise informativeness.
Again comparison with the proposed methods proves
the importance of going beyond pairwise redundancy.

The RelieFF [18] baseline looks at the nearest neigh-
bors of random samples along the individual fea-
tures. In order to compare with spectral clustering
approaches we show results for [21], marked as Spec.
Clus. in the tables, which we found to outperform
[22] in practice. Finally, we also show results for two
wrapper method, namely SBMLR [3], which employs
a logistic regression predictor, and CMTF [1] which
uses a sparsity inducing l1-norm.

We compare against the four methods proposed here,
namely maximizing the entropy (GC.E) or the mu-
tual information (GC.MI) under the Gaussian com-
promise bound, and maximizing the KL-based entropy
(GKL.E) and mutual information (GKL.MI). In the
case of the GC methods, when an iteration is reached
where all candidate features attain the upper bound,
we halt feature selection and randomly select the re-
maining features.

5.3 Results

In tables 3, 4, and 5, we show experimental results for
the three datasets. In order to show the general appli-
cability of the proposed methods, we combined the se-
lected features with four different classifiers: AdaBoost
with classification stumps, linear SVM, RBF kernel
SVM, and quadratic discriminant analysis (QDA). We
show results for several numbers of selected features
{10, 25, 50, 100}.

In each of these tables, for each dataset and classi-
fier we highlight the best three performing methods in
bold, while underlining the best performing method.
As can be seen from these tables, GC.MI and GKL.E
consistently rank amongst the top three methods, with
GC.MI ranking in the top three 35 out of 48 times
and first 10 times, and GKL.E 33 out of 48 times and
first 8 times. The only other comparable method is

the wrapper method SBMLR ranks in the top three
22 out of 48 times and first 14 times.

Furthermore as can be seen in table 2, the running
time of the proposed methods is very competitive with
respect to the more complex of the remaining feature
selection algorithms. The Gaussian Compromise al-
gorithms are especially fast as they are two orders of
magnitude faster then practically all other methods.
We especially note that the SBMLR method which
performs comparably in terms of accuracy is very slow
when compared to GC.MI.

The computation times provided were obtained with
C++ implementations of the proposed methods. The
MRMR is also implemented in C++, while the
Spect. Clust. and CMTF baselines are imple-
mented in Matlab, as both these algorithms mainly
use matrix algebra we believe these timings to be in-
dicative. The remaining algorithms were implemented
in Java, as noted in [2] these implementations are com-
petitive in speed with C++ implementations.

6 Conclusion

We have presented a family of novel information theo-
retic algorithms for the selection of continuous features
in the context of classification. They rely on modeling
the conditional joint distributions of the features given
the class to predict and maximizing upper bounds on
the information theoretic measures we seek to maxi-
mize. These models exhibit the main properties we
expect for characterizing “good” groups of continuous
features, and are shown experimentally to be compet-
itive with current state-of-the-art methods.

To reduce the computational cost of a forward-
selection implementation of these criteria, we have pro-
posed efficient implementations for both approaches,
so that they are competitive with other state-of-the-
art methods. We have shown that with the appropri-
ate modeling and with careful implementation, it is in
fact possible to develop algorithms, which are able to
exploit joint feature informativeness in practice.
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AdaBoost SVMLinear SVMRBF QDA
Method 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100
Fisher 86.90 89.83 90.38 91.45 92.55 93.73 94.03 94.68 92.44 93.55 93.38 92.97 87.41 88.63 89.17 91.31
FCBF 90.87 94.02 95.44 94.67 94.14 96.03 96.03 96.03 88.29 93.91 92.60 95.66 89.95 94.00 94.00 94.00

MRMR 87.42 87.30 87.57 87.50 86.03 86.08 86.77 86.72 82.32 80.01 80.01 80.01 79.23 80.02 81.10 81.47
χ2 92.81 93.11 93.94 94.91 92.94 93.27 93.50 94.61 92.78 93.16 93.02 93.25 87.85 88.20 89.30 91.75

SBMLR 86.40 87.50 88.04 88.06 85.92 87.95 88.57 88.64 82.82 86.05 87.39 87.14 76.30 80.36 81.00 81.49
tTest 85.01 88.41 88.84 91.70 80.01 87.21 87.64 89.23 80.01 87.00 87.11 87.32 76.16 82.50 82.85 85.23

InfoGain 92.58 93.29 93.96 94.93 92.35 93.08 93.75 94.68 92.28 92.71 93.01 93.38 87.99 88.08 89.49 91.77
Spec. Clus. 92.78 93.69 93.92 94.83 92.67 93.57 93.64 94.44 92.67 93.09 92.85 93.29 87.99 88.26 89.07 91.26

RelieFF 91.79 95.44 95.83 96.43 90.99 95.04 95.97 96.36 90.62 94.56 95.05 95.20 83.38 92.14 93.16 94.24
CFS 89.69 92.60 96.41 97.69 88.64 91.68 96.11 97.53 88.34 91.31 95.44 97.14 83.79 88.31 94.00 96.66

CMTF 80.01 83.72 92.55 95.58 79.09 80.29 89.49 93.01 80.01 83.72 92.55 93.68 61.04 72.31 89.23 92.67
GC.E 89.54 90.09 94.30 95.81 87.73 87.67 91.96 93.13 87.73 87.67 91.96 93.13 85.06 86.31 91.22 94.10

GC.MI 95.04 95.87 96.68 97.30 89.76 93.09 95.71 96.45 94.26 94.17 94.44 95.76 92.14 94.08 95.07 96.31
GKL.E 89.92 91.84 94.14 96.63 85.31 89.46 92.05 96.36 86.01 88.94 92.79 95.43 79.30 86.21 90.83 95.74

GKL.MI 92.18 93.09 95.21 96.15 85.66 90.99 92.14 95.16 91.03 91.91 93.36 93.98 85.09 88.03 91.72 94.84

Table 3: Test accuracy on the INRIA dataset for a different number of selected features {10, 25, 50, 100} when
combined with the four different classifiers

AdaBoost SVMLinear SVMRBF QDA
Method 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100
Fisher 29.23 36.96 42.07 49.06 25.19 33.53 39.47 48.12 29.11 39.22 46.05 54.68 25.41 33.31 39.67 47.53
FCBF 37.77 44.42 51.15 54.83 33.65 42.02 47.77 54.97 40.48 51.15 57.73 64.26 35.02 43.97 52.32 58.99

MRMR 30.86 35.42 37.56 40.85 27.94 33.79 37.78 43.63 32.75 38.77 40.63 46.75 29.13 34.07 36.36 42.39
χ2 28.13 35.54 43.68 49.46 21.77 32.06 40.65 48.58 27.16 38.23 47.60 54.70 21.81 31.85 39.39 47.75

SBMLR 34.87 45.08 52.17 56.70 30.43 42.60 51.41 56.81 36.06 49.83 60.32 64.97 31.71 43.46 53.31 58.86
tTest 25.74 31.30 36.57 43.16 25.69 32.56 40.17 45.12 28.68 35.75 41.89 49.13 26.34 33.39 39.16 45.33

InfoGain 29.01 35.90 40.20 48.34 24.79 32.32 37.98 47.37 29.21 38.68 43.92 53.94 22.38 31.61 37.65 46.47
Spec. Clus. 19.90 25.13 33.18 40.44 17.19 23.14 32.78 42.62 22.89 30.92 40.41 49.75 17.97 24.80 34.99 44.25

RelieFF 28.13 34.64 40.85 47.70 24.56 30.60 38.17 46.51 29.49 37.08 45.39 53.96 24.61 29.67 38.20 47.18
CFS 33.50 38.96 44.58 54.22 31.49 36.46 42.17 51.70 35.50 43.74 50.98 61.01 31.50 36.18 42.93 52.92

CMTF 21.79 31.98 39.43 45.23 21.10 31.64 40.39 47.71 23.9 36.74 45.51 52.86 20.61 31.98 41.04 48.60
GC.E 32.45 42.54 50.15 55.06 28.76 41.14 48.70 55.16 35.29 51.12 60.34 65.76 31.01 44.10 53.21 58.41

GC. MI 36.47 44.55 51.44 55.39 34.02 42.14 49.16 55.07 39.57 49.91 57.79 64.32 33.68 43.02 51.84 58.43
GKL.E 37.51 46.41 52.11 56.41 32.39 43.26 50.12 55.02 39.84 52.80 60.94 65.64 34.06 44.21 53.29 57.98

GKL. MI 33.71 40.04 47.17 51.12 28.67 34.65 43.30 48.69 34.49 43.09 51.48 56.54 29.06 35.10 42.50 46.24

Table 4: Test accuracy on the CIFAR dataset for a different number of selected features {10, 25, 50, 100} when
combined with the four different classifiers

AdaBoost SVMLinear SVMRBF QDA
Method 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100
Fisher 31.86 35.78 39.72 41.81 26.09 30.79 34.63 38.02 34.71 40.13 43.87 45.77 34.73 39.91 44.24 48.35
FCBF 33.25 38.05 39.87 42.81 31.74 34.85 38.11 40.66 38.86 43.35 46.06 47.20 37.44 41.89 45.70 48.89

MRMR 31.57 34.34 36.55 37.49 28.26 29.73 31.16 33.12 34.20 37.28 38.32 38.87 33.94 37.30 41.35 43.33
χ2 29.61 36.88 39.39 41.89 22.61 31.82 34.29 37.96 32.53 41.27 43.22 44.88 32.71 40.45 43.64 47.25

SBMLR 34.22 41.26 44.65 47.15 32.29 38.26 43.29 47.15 39.97 47.21 51.05 53.58 36.89 45.26 49.58 51.65
tTest 31.74 34.75 39.31 42.34 26.72 29.95 36.23 39.14 34.30 38.73 44.30 45.90 33.92 40.09 45.05 47.63

InfoGain 31.13 36.60 38.62 42.03 27.17 31.82 33.70 37.84 35.57 41.23 42.92 45.12 34.17 40.94 44.51 47.81
Spec. Clus. 19.06 26.30 33.52 38.51 18.91 26.55 32.65 38.24 24.80 32.91 40.11 43.70 25.39 35.45 44.39 49.68

RelieFF 33.91 37.46 42.79 45.22 29.16 32.40 38.05 42.94 38.22 42.36 47.27 50.35 37.57 42.59 47.60 50.92
CFS 30.75 38.40 41.85 44.39 28.63 34.45 38.54 41.88 35.32 42.72 47.46 49.82 34.06 42.29 48.45 51.09

CMTF 28.70 33.55 34.71 36.86 27.61 34.81 38.99 42.32 31.80 36.94 38.06 39.65 29.39 36.26 40.32 43.44
GC.E 31.86 37.41 42.19 46.99 31.20 37.60 43.31 49.75 36.16 42.64 45.37 47.79 33.76 43.04 47.51 51.02

GC.MI 36.50 40.79 43.82 44.39 32.50 39.75 44.15 48.88 37.25 45.51 49.58 52.36 35.31 42.24 47.21 49.88
GKL.E 34.76 39.71 43.49 46.46 33.44 38.62 44.27 50.54 39.67 46.31 50.06 52.89 37.39 43.30 47.39 51.82

GKL.MI 33.00 38.80 42.13 43.58 32.16 39.35 44.87 47.96 35.95 41.65 45.27 45.86 33.56 40.02 45.07 46.44

Table 5: Test accuracy on the STL dataset for a different number of selected features {10, 25, 50, 100} when
combined with the four different classifiers
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