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A PROBABILITY THEORY

A.1 Coupling

The proof of Theorem 1 requires a theoretical con-
struction known as coupling. For random variables
ζ(1) and ζ(2), with respective distributions P and Q
over a sample space Ω, a coupling is any joint distri-
bution P̂ for (ζ(1), ζ(2)) such that the marginals P̂(ζ(1))

and P̂(ζ(2)) are equal to P and Q respectively.

Using a construction due to Fiebig (1993), one can
create a coupling of two sequences of random vari-
ables, such that the probability that any two corre-
sponding variables are different is upper-bounded by
the ϑ-mixing coefficients in Definition 7. The following
is an adaptation of this result (due to Samson, 2000)
for continuous domains.

Lemma 1. Let P and Q be probability measures on a
sample space Ω, with strictly positive densities with re-

spect to a reference measure on Ω. Let ζ(1) , (ζ
(1)
j )Nj=1

and ζ(2) , (ζ
(2)
j )Nj=1 be random variables with re-

spective distributions P and Q. Then there exists a
coupling P̂ of (ζ(1), ζ(2)), with marginal distributions

P̂(ζ(1)) = P(ζ(1)) and P̂(ζ(2)) = Q(ζ(2)), such that,
for any j ∈ [N ],

P̂
{
ζ

(1)
j 6= ζ

(2)
j

}
≤
∥∥∥P(ζ

(1)
j:N )−Q(ζ

(2)
j:N )

∥∥∥
tv
,

where P̂
{
ζ

(1)
j 6= ζ

(2)
j

}
is the marginal probability that

ζ
(1)
j 6= ζ

(2)
j , under P̂.

Note that the requirement of strictly positive densities
is not restrictive, since one can always construct a pos-
itive density from a simply nonnegative one. We defer
to Samson (2000) for details.

A.2 Proof of Theorem 1

Recall that B ⊆ Zn is the subset of “bad” inputs.
For every i ∈ [n], there exists a set of “bad starts”
for which the probability that Z is bad is higher than

some threshold λ ∈ [0, 1]. More formally, for z ∈ Zi,
let

νπi (z) , P
{
Z ∈ B |Zπi(1:i) = z

}
. (6)

and let
Ci ,

{
z ∈ Zi : νπi (z) > λ

}
(7)

denote the set of bad starts. Let Bi , Ci×Zn−i denote
the set of inputs that have bad starts, and note that
Z ∈ Bi if and only if Zπi(1:i) ∈ Ci. Using the chain
rule, we have that

ν ≥ P{Z ∈ B}
≥ P{{Z ∈ B} ∩ {Z ∈ Bi}}
= P{Z ∈ B |Z ∈ Bi}P{Z ∈ Bi}
≥ inf

z∈Ci
νπi (z)P{Z ∈ Bi}

≥ λP{Z ∈ Bi}; (8)

therefore, P{Z ∈ Bi} ≤ ν/λ. We then define a new
set of “bad” inputs, Bλ ,

⋃n
i=1 Bi. Note that Bn = B,

so B ⊆ Bλ. Via the union bound and Equation 8, we
obtain

P{Z ∈ Bλ} ≤
n∑
i=1

P{Z ∈ Bi} ≤
nν

λ
.

What remains is to upper-bound

E
[
eτ(ϕ(Z)−E[ϕ(Z)]) |Z 6∈ Bλ

]
. (9)

To do so, we use McDiarmid’s method of bounded dif-
ferences (McDiarmid, 1989). We define a Doob mar-
tingale difference sequence

V π
i , E[ϕ(Z) |Zπi(1:i)]− E[ϕ(Z) |Zπi(1:i−1)],

where V π
1 , E[ϕ(Z) |Zπi(1)] − E[ϕ(Z)]. Observe that

E[V π
i ] = 0 and

n∑
i=1

V π
i = ϕ(Z)− E[ϕ(Z)].

If V π
i is bounded, then the moment-generating func-

tion, E
[
eτV

π
i |Z 6∈ Bλ

]
, can be upper-bounded using

Hoeffding’s lemma (Hoeffding, 1963).
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Lemma 2. If ξ is a random variable, such that E[ξ] =
0 and a ≤ ξ ≤ b almost surely, then for any τ ∈ R,

E
[
eτξ
]
≤ exp

(
τ2(b− a)2

8

)
.

Thus, if we can show that

supV π
i − inf V π

i

= sup
z∈Zi−1

z,z′∈Z

(
E[ϕ(Z) |Zπi(1:i) = (z, z)]
−E[ϕ(Z) |Zπi(1:i) = (z, z′)]

)
≤ ci, (10)

then we have that

E
[
eτ(ϕ(Z)−E[ϕ(Z)]) |Z 6∈ Bλ

]
= E

[
eτ

∑n
i=1 V

π
i |Z 6∈ Bλ

]
= E

[
eτ

∑n−1
i=1 V π

i E
[
eV

π
n |Zπi(1:n−1)

]
|Z 6∈ Bλ

]
≤ E

[
eτ

∑n−1
i=1 V π

i |Z 6∈ Bλ
]
e
τ2c2n

8

≤ E
[
eτ

∑n−2
i=1 V π

i |Z 6∈ Bλ
]
e
τ2(c2n+c2n−1)

8

≤ . . .

≤ exp

(
τ2
∑n
i=1 c

2
i

8

)
, (11)

via the law of total expectation and Lemma 2. When
Z1, . . . , Zn are mutually independent, this is straight-
forward; it becomes complicated when we relax the
independence assumption.

To bound each V π
i , we use Lemma 1 to construct a

coupling that bounds the ci coefficient in Equation 10,
using the mixing coefficients and the smoothness of ϕ.
Fix any z ∈ Zi−1 and z, z′ ∈ Z, and let N , n − i.
(Recall that, by Equation 9, (z, z) 6∈ Ci and (z, z′) 6∈
Ci; this will be important later on.) Define random

variables ζ(1) , (ζ
(1)
j )Nj=1 and ζ(2) , (ζ

(2)
j )Nj=1, with

coupling distribution P̂ such that

P̂(ζ(1)) , P
(
Zπi(i+1:n) |Zπi(1:i) = (z, z)

)
and P̂(ζ(2)) , P

(
Zπi(i+1:n) |Zπi(1:i) = (z, z′)

)
. (12)

In other words, the marginal distributions of ζ(1)

and ζ(2) are equal to the conditional distributions of
Zπi(i+1:n) given Zπi(1:i) = (z, z) and Zπi(1:i) = (z, z′)
respectively. Note that we have renumbered the cou-
pled variables according to πi, but this does not affect
the distribution.

Denote by π−1
i the inverse of πi (i.e., π−1

i (πi(1 : n)) =
[n]), and let

ψ(z) = ϕ(zπ−1
i (1:n)).

In other words, ψ inverts the permutation applied to
its input, so as to ensure ψ(zπi(1:n)) = ϕ(z). For con-
venience, let

∆ψ , ψ(z, z, ζ(1))− ψ(z, z′, ζ(2))

denote the difference, and define events

B(1) , 1
{

(z, z, ζ(1)) ∈ B
}

and B(2) , 1
{

(z, z′, ζ(2)) ∈ B
}
.

Using these definitions, we have the following equiva-
lence:

E[ϕ(Z) |Zπi(1:i) = (z, z)]− E[ϕ(Z) |Zπi(1:i) = (z, z′)]

= Ê
[
ψ(z, z, ζ(1))− ψ(z, z′, ζ(2))

]
= Ê [∆ψ]

= P̂
{
¬B(1) ∩ ¬B(2)

}
Ê
[
∆ψ | ¬B(1) ∩ ¬B(2)

]
+ P̂

{
B(1) ∪B(2)

}
Ê
[
∆ψ |B(1) ∪B(2)

]
. (13)

Thus, to bound V π
i , we must upper-bound the right-

hand terms.

By Equation 9, Z 6∈ Bλ, which implies Zπi(1:i) 6∈ Ci;
this means that the values we condition on in Equa-
tion 12, (z, z) and (z, z′), are not in the set of bad
starts, Ci. It therefore follows, via the union bound
and Equations 6 and 7, that

P̂
{
B(1) ∪B(2)

}
≤ P̂{B(1)}+ P̂{B(2)}

= νπi (z, z) + νπi (z, z′)

≤ λ+ λ = 2λ.

Further, since ϕ is α-uniformly range-bounded, ∆ψ ≤
α. Combining these inequalities, we have that

P̂
{
B(1) ∪B(2)

}
Ê
[
∆ψ |B(1) ∪B(2)

]
≤ 2λα. (14)

Now, conditioned on ¬B(1) ∩ ¬B(2), we have that
(z, z, ζ(1)) 6∈ B and (z, z′, ζ(2)) 6∈ B; in other words,
both assignments are “good.” We can therefore use
the difference-boundedness condition to show that

Ê
[
∆ψ | ¬B(1) ∩ ¬B(2)

]
≤ Ê

[
β Dh

(
(z, ζ(1)), (z′, ζ(2))

)
| ¬B(1) ∩ ¬B(2)

]
≤ β Ê

1 +

N∑
j=1

1
{
ζ

(1)
j 6= ζ

(2)
j

}
| ¬B(1) ∩ ¬B(2)


= β

1 +

N∑
j=1

P̂
{
ζ

(1)
j 6= ζ

(2)
j | ¬B

(1) ∩ ¬B(2)
} .
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Recall from Lemma 1 and Definition 7 that

1 +

N∑
j=1

P̂
{
ζ

(1)
j 6= ζ

(2)
j

}
≤ 1 +

n∑
j=i+1

∥∥∥∥ P
(
Zπi(j:n) |Zπi(1:i) = (z, z)

)
−P
(
Zπi(j:n) |Zπi(1:i) = (z, z′)

) ∥∥∥∥
tv

≤
n∑
j=i

θπi,j .

This holds uniformly for all z ∈ Zi−1 and z, z′ ∈ Z.
Thus,

P̂
{
¬B(1) ∩ ¬B(2)

}
Ê
[
∆ψ | ¬B(1) ∩ ¬B(2)

]
≤ β

P̂
{
¬B(1) ∩ ¬B(2)

}
+

N∑
j=1

P̂
{
ζ

(1)
j 6= ζ

(2)
j

}
≤ β

1 +

N∑
j=1

P̂
{
ζ

(1)
j 6= ζ

(2)
j

}
≤ β

n∑
j=i

θπi,j , (15)

In the second inequality, we used the fact that
P̂
{
¬B(1) ∩ ¬B(2)

}
≤ 1.

Substituting the upper-bounds from Equations 14
and 15 into Equation 13, we then have that

supV π
i − inf V π

i

= sup
z∈Zi−1

z,z′∈Z

Ê
[
ψ(z, z, ζ(1))− ψ(z, z′, ζ(2))

]

≤ 2λα+ β

n∑
j=i

θπi,j

≤ (2λα+ β)

n∑
j=i

θπi,j . (16)

The last inequality will help simplify the expression.
Then, since we have shown that each V π

i is uniformly
bounded, we can use Equation 16 to upper-bound ci
in Equation 11, and thus obtain

E
[
eτ(ϕ(Z)−E[ϕ(Z)]) |Z 6∈ Bλ

]
≤ exp

τ2
∑n
i=1

(
(2λα+ β)

∑n
j=i θ

π
i,j

)2

8


≤ exp

τ2 (2λα+ β)
2
nmaxi

(∑n
j=i θ

π
i,j

)2

8


= exp

(
τ2 (2λα+ β)

2
n ‖Θπ

n‖
2
∞

8

)
,

which completes the proof.

A.3 Implications of Theorem 1

In this section, we discuss some consequences of The-
orem 1. For the following, let Z , (Zi)

n
i=1 be random

variables with joint distribution P, and let ϕ : Zn → R
be a measurable function.

We first show that Theorem 1 trivially yields a
moment-generating function inequality for uniformly
difference-bounded functions.

Corollary 2. If ϕ is β-uniformly difference-bounded,
then, for any τ ∈ R and π ∈ Π(n),

E
[
eτ(ϕ(Z)−E[ϕ(Z)])

]
≤ exp

(
nτ2β2 ‖Θπ

n‖
2
∞

8

)
.

Proof Since ϕ is β-uniformly difference-bounded,
it is also (P, 0, β) difference-bounded; meaning, the
measure of the “bad” set is 0. We therefore take
λ = 0 and apply Theorem 1. (We interpret ν/λ = 0/0
as 0, so as to directly use Theorem 1 to upper-bound
P{Z ∈ Bλ}; though, one could trivially show that
P{Z ∈ Bλ} = 0.) Since Bλ = ∅, there is no need to
condition on Z 6∈ Bλ.

We can also use Theorem 1 to derive some novel con-
centration inequalities for functions of interdependent
random variables. While not used in this paper, these
results may be of use in other contexts.

Corollary 3. If ϕ is β-uniformly difference-bounded,
then, for any ε > 0 and π ∈ Π(n),

P {ϕ(Z)− E[ϕ(Z)] ≥ ε} ≤ exp

(
−2ε2

nβ2 ‖Θπ
n‖

2
∞

)
.

Proof First, note that, for any τ ∈ R,

P {ϕ(Z)− E[ϕ(Z)] ≥ ε} = P
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
,

due to the monotonicity of the exponent. Using
Markov’s inequality and Corollary 2, we then have that

P
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
≤ 1

eτε
E
[
eτ(ϕ(Z)−E[ϕ(Z)])

]
≤ 1

eτε
exp

(
nτ2β2 ‖Θπ

n‖
2
∞

8

)
.

Optimizing with respect to τ , we take τ , 4ε
nβ2‖Θπ

n‖2∞
to complete the proof.
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Corollary 4. If ϕ is (P, β, ν) difference-bounded, and
α-uniformly range-bounded, then, for any ε > 0 and
π ∈ Π(n),

P {ϕ(Z)− E[ϕ(Z)] ≥ ε}

≤ exp

(
−ε2

2nβ2 ‖Θπ
n‖

2
∞

)
+

2nνα

β
.

Proof Define the event

E , 1
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
,

and let Bλ be as defined in the proof of Theorem 1.
Using the law of total probability, we have that

P{E} = P{E ∩ {Z 6∈ Bλ}}+ P{E ∩ {Z ∈ Bλ}}
≤ P{E |Z 6∈ Bλ}+ P{E ∩ {Z ∈ Bλ}}
≤ P{E |Z 6∈ Bλ}+ P{Z ∈ Bλ}.

Via Markov’s inequality and Theorem 1,

P{E |Z 6∈ Bλ} ≤
1

eτε
E
[
eτ(ϕ(Z)−E[ϕ(Z)]) |Z 6∈ Bλ

]
≤ 1

eτε
exp

(
nτ2(2λα+ β)2 ‖Θπ

n‖
2
∞

8

)
,

and
P{Z ∈ Bλ} ≤

nν

λ
.

Combining these inequalities, we have that

P {ϕ(Z)− E[ϕ(Z)] ≥ ε}
= P{E}

≤ 1

eτε
exp

(
nτ2(2λα+ β)2 ‖Θπ

n‖
2
∞

8

)
+
nν

λ
.

Taking λ , β/(2α) (which is approximately optimal)
and τ , ε

nβ2‖Θπ
n‖2∞

completes the proof.

These tail bounds extend some current state-of-the-
art results. In particular, Corollary 3 extends Kon-
torovich and Ramanan (2008, Theorem 1.1) by sup-
porting filtrations of the mixing coefficients. Fur-
ther, when Z1, . . . , Zn are mutually independent (i.e.,
‖Θπ

n‖∞ = 1), we recover McDiarmid’s inequality.
Corollary 4 extends (Kutin, 2002, Theorem 3.6) to in-
terdependent random variables.

A.4 Bounded ‖Θπ
n‖∞ Conditions for Markov

Random Fields

In this section, we describe some general settings under
which the dependency matrix Θπ

n has bounded infinity
norm. Fix a graph G = (V, E). For any node i ∈ V,

and subsets A,B ⊆ V, define the distance function
δi(A |B) as the length of the shortest path from i to
any node in A, in the induced subgraph over V \ B.
Let Σi(k) denote the set of all subset pairs (A,B) :
A,B ⊆ V such that δi(A |B) ≥ k.

Definition 13. For an MRF Z on a graph G = (V, E),
with distribution P, define the distance-based ϑ-mixing
coefficients as

ϑ(k) , sup
i∈V

(A,B)∈Σi(k)
z,z′∈Z
z∈Z|B|

∥∥∥∥ P (ZA |ZB = z, Zi = z)
−P (ZA |ZB = z, Zi = z′)

∥∥∥∥
tv

.

The sequence ϑ(1), ϑ(2), . . . roughly measures how de-
pendence decays with graph distance.

Proposition 1. Let Z be an MRF on a graph G, with
maximum degree ∆G. For any positive constant ε > 0,
if Z has a distance-based ϑ-mixing sequence such that,
for all k ≥ 1, ϑ(k) < (∆G + ε)−k, then there exists a
filtration π such that

‖Θπ
n‖∞ ≤ 1 + ∆G/ε.

Proof Since ϑ(k) uniformly upper-bounds the ϑ-
mixing coefficients, each upper-triangular entry of Θπ

n

is upper-bounded by

θπi,j ≤ ϑ
(
δπi(i) (πi(j : n) |πi(1 : i− 1))

)
.

We construct the filtration π recursively, starting from
any initial permutation π1. Then, for i = 2, . . . , n,
we determine each successive permutation using a
breadth-first search over the variables not conditioned
on in the previous permutation. More precisely, we set
πi(1 : i− 1) = πi−1(1 : i− 1); then, we set πi(i : n) us-
ing the trace of a breadth-first search over the induced
subgraph of nodes πi−1(i : n), starting at any node.

The degree of any node in this induced subgraph is at
most the maximum degree of the full graph, ∆G, so
the number of nodes at distance k from node πi(i) is
at most ∆k

G. Therefore,

n∑
j=i

θπi,j ≤
∞∑
k=0

∆k
G ϑ(k) ≤

∞∑
k=0

(
∆G

∆G + ε

)k
.

This geometric series converges to

1

1−∆G/(∆G + ε)
= 1 + ∆G/ε,

which completes the proof.

Uniformly geometric distance-based ϑ-mixing may
seem like a restrictive condition. However, our analy-
sis is overly pessimistic, in that it ignores the structure



London, Huang, Taskar, Getoor

of the MRF beyond simply the maximum degree of the
graph. Further, it does not take advantage of the ac-
tual conditional independencies present in the distri-
bution. Nevertheless, there is a natural interpretation
to the above preconditions that follows from consider-
ing the mixing coefficients at distance 1. For the imme-
diate neighbors of a node—i.e., its Markov blanket—
its ϑ-mixing coefficient must be less than 1/∆G. This
loosely means that the combination of all incoming
influence must be less than 1, implying that there is
sufficiently strong influence from local features.

A.5 Gaussian Tail Bounds

The proof of Theorem 6 will require tail bounds for
certain operations on Gaussian random vectors. To
prove these, we begin with some basic properties of
the normal distribution.

Lemma 3. If X is a Gaussian random variable, with
mean µ and variance σ2, then, for any τ ∈ R,

E
[
eτY

]
= exp

(
τ2σ2

2

)
; (17)

and for any ε > 0,

Pr {|X − µ| ≥ ε} ≤ 2 exp

(
− ε2

2σ2

)
. (18)

Equation 18 follows from Equation 17. Lemma 3 can
now be used to derive the following tail bounds.

Lemma 4. Let X , (Xi)
d
i=1 be independent Gaussian

random variables, with mean vector µ , (µ1, . . . , µd)
and variance σ2. Then, for any a ≥ 1 and ε > 0,

Pr {‖X− µ‖a ≥ ε} ≤ 2d exp

(
− ε2

2σ2d2/a

)
.

Proof Observe that, if ‖X− µ‖a ≥ ε, then there
must exist at least one coordinate i ∈ [d] such that
|Xi − µi| ≥ ε/d1/a; otherwise, we would have

‖X− µ‖a =

(
d∑
i=1

|Xi − µi|a
)1/a

<
(
d
( ε

d1/a

)a)1/a

= ε.

Accordingly, we apply the union bound and obtain

Pr {‖X− µ‖a ≥ ε} ≤ Pr
{
∃i : |Xi − µi| ≥

ε

d1/a

}
≤

d∑
i=1

Pr
{
|Xi − µi| ≥

ε

d1/a

}
≤

d∑
i=1

2 exp

(
− ε2

2σ2d2/a

)
.

The last inequality follows from Equation 18. Sum-
ming over i = 1, . . . , d completes the proof.

Lemma 5. Let X , (Xi)
d
i=1 be independent Gaussian

random variables, with mean vector µ , (µ1, . . . , µd)
and variance σ2. Let z ∈ Rd be a vector with ‖z‖2 ≤ 1.
Then, for any ε > 0,

Pr {〈X− µ, z〉 ≥ ε} ≤ exp

(
− ε2

2σ2

)
.

Proof Let Y , X − µ. For i = 1, . . . , d, let τi ,
τ |zi|. Since each Yi is independent and zero-mean, by
symmetry and Equation 17,

E
[
eτ〈Y,z〉

]
= E

[
d∏
i=1

eτziYi

]

=

d∏
i=1

E
[
eτziYi

]
=

d∏
i=1

E
[
eτi sgn(zi)Yi

]
=

d∏
i=1

E
[
eτiYi

]
=

d∏
i=1

exp

(
τ2
i σ

2

2

)

= exp

(
τ2σ2

2

d∑
i=1

|zi|2
)
.

Observe that
∑d
i=1 |zi|

2
= ‖z‖22 ≤ 1, since ‖z‖2 ≤ 1.

Therefore, using Markov’s inequality, we have that

Pr {〈X− µ, z〉 ≥ ε} = Pr
{
eτ〈X−µ,z〉 ≥ eτε

}
≤ 1

eτε
E
[
eτ〈Y,z〉

]
≤ exp

(
τ2σ2 ‖z‖22

2
− τε

)

≤ exp

(
τ2σ2

2
− τε

)
.

Taking τ , ε/σ2 completes the proof.

B PAC-BAYES PROOFS

B.1 Change of Measure

The following lemma, often called the change of mea-
sure inequality, is due to Donsker and Varadhan
(1975).
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Lemma 6. For any measurable function ϕ : H → R,
and any two distributions H,Q on H,

E
h∼Q

[ϕ(h)] ≤ DKL(Q‖H) + ln E
h∼H

[
eϕ(h)

]
.

A straightforward proof appears in McAllester (2003).

B.2 Stability of the Loss

The following technical lemmas are used in the proofs
of Theorems 2 and 3.

Lemma 7. Let ` be (M,Λ)-admissible.

1. If h has β-uniform collective stability, then ` ◦ h
has (M + Λβ)-uniform collective stability.

2. If h has (P, ν, β) collective stability, then ` ◦h has
(P, ν,M + Λβ) collective stability.

Proof For any assignments z, z′ ∈ Zn, let I , {i ∈
[n] : zi 6= z′i} denote the set of coordinates at which
their values differ. By definition,

n∑
j=1

∣∣`(yj , hj(x))− `(y′j , hj(x′))
∣∣

=
∑
i∈I
|`(yi, hi(x))− `(y′i, hi(x′))|

+
∑
j 6∈I

|`(yj , hj(x))− `(yj , hj(x′))| .

Focusing on the first sum, for any i ∈ I, we have via
the first admissibility condition that

|`(yi, hi(x))− `(y′i, hi(x′))|
≤ |`(yi, hi(x))− `(yi, hi(x′))|
+ |`(yi, hi(x′))− `(y′i, hi(x′))|
≤ |`(yi, hi(x))− `(yi, hi(x′))|+M.

Therefore,∑
i∈I
|`(yi, hi(x))− `(y′i, hi(x′))|

≤M |I|+
∑
i∈I
|`(yi, hi(x))− `(yi, hi(x′))| .

Combining this with the second sum, we have that

n∑
j=1

∣∣`(yj , hj(x))− `(y′j , hj(x′))
∣∣

≤M |I|+
n∑
j=1

|`(yj , hj(x))− `(yj , hj(x′))|

≤M |I|+ Λ

n∑
j=1

‖hj(x)− hj(x′)‖1

= M |I|+ Λ ‖h(x)− h(x′)‖1 ,

where we have used the second admissibility condi-
tion. Observe that |I| = Dh(z, z′). Upper-bounding
‖h(x)− h(x′)‖1 by the uniform or probabilistic collec-
tive stability conditions completes the proof.

Note that Lemma 7 still holds when the cardinality of
X does not equal that of Y.

The following lemmas follow trivially from the defini-
tion of L (Equation 1).

Lemma 8. For any loss ` and hypothesis h:

1. If ` ◦ h has β-uniform collective stability, then
L(h, ·) is (β/(mn))-uniformly difference-bounded.

2. If `◦h has (P, ν, β) collective stability, then L(h, ·)
is (P, ν, β/(mn)) difference-bounded.

Lemma 9. If ` is (M,Λ)-admissible, then L is M -
uniformly range-bounded.

B.3 Proof of Theorem 2

Let
Φ(h,Z) , L(h)− L(h, Ẑ),

and note that

E
h∼Q

[
Φ(h, Ẑ)

]
= L(Q)− L(Q, Ẑ).

Recall that the “bad” set BH is the set of hypotheses
that do not have β-uniform collective stability. By
assumption, this set has measure Q{h ∈ BH} ≤ η for
all applicable posteriors. Further, by Lemma 9, L is
M -uniformly range-bounded, so

E
h∼Q

[
Φ(h, Ẑ) |h ∈ BH

]
≤ sup
h∈BH

L(h)− L(h, Ẑ)

≤ sup
h∈BH
z∈Zn

L(h, z)− L(h, Ẑ)

≤M.

For Φ′ as defined in Equation 4, and a free parameter
u ∈ R, we have that

E
h∼Q

[
Φ(h, Ẑ)

]
= Q{h ∈ BH} E

h∼Q

[
Φ(h, Ẑ) |h ∈ BH

]
+ E
h∼Q

[
Φ′(h, Ẑ)

]
≤ ηM +

1

u
E
h∼Q

[
uΦ′(h, Ẑ)

]
≤ ηM +

1

u

(
DKL(Q‖H) + ln E

h∼H

[
euΦ′(h,Ẑ)

])
, (19)

where the last inequality follows from Lemma 6.

What remains is to bound Eh∼H
[
euΦ′(h,Ẑ)

]
and opti-

mize u. Since the KL divergence term is a function
of the (learned) posterior, we cannot optimize u for
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all posteriors simultaneously. We therefore use dis-
cretization to cover the range of optimal parameter
values for all possible posteriors, thereby ensuring that
Equation 19 is bounded with high probability for all
discrete values.

Let β`◦H , M + Λβ. By Lemma 7, β`◦H is a uniform
upper bound on the uniform collective stability of ` ◦
h for any “good” hypothesis h 6∈ BH. Further, by
Lemma 8, L(h, ·) is (β`◦h/(mn))-uniformly difference-
bounded. Therefore, since Φ′ outputs 0 for any h ∈
BH, we have that Φ′(h, ·) is (β`◦H/(mn))-uniformly
difference-bounded for all h ∈ H.

For j = 0, 1, 2, . . ., define a parameter

uj , 2j

√
8mn ln 2

δ

β2
`◦H ‖Θ

π
n‖

2
∞
,

let δj , δ2−(j+1), and define an event

Ej ,

1

{
E
h∼H

[
eujΦ

′(h,Ẑ)
]
≥ 1

δj
exp

(
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)}
.

By the union bound, the probability that any Ej oc-
curs is

P
{⋃∞

j=0
Ej

}
≤
∞∑
j=0

P{Ej}.

Further, by Markov’s inequality and the law of total
expectation,

P{Ej}

≤ δj exp

(
−
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)
E

Ẑ∼Pm
E
h∼H

[
eujΦ

′(h,Ẑ)
]

= δj exp

(
−
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)
E
h∼H

E
Ẑ∼Pm

[
eujΦ

′(h,Ẑ)
]
.

Since Φ′(h, ·) is (β`◦H/(mn))-uniformly difference-

bounded, and EẐ∼Pm [Φ′(h, Ẑ)] = 0, we apply Corol-
lary 2 to the above inequality and obtain

P
{⋃∞

j=0
Ej

}
≤
∞∑
j=0

δj exp

(
−
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)

× E
h∼H

[
exp

(
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)]

=

∞∑
j=0

δj = δ.

Therefore, with probability at least 1− δ over realiza-
tions of Ẑ, every uj satisfies

E
h∼H

[
eujΦ

′(h,Ẑ)
]
≤ 1

δj
exp

(
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)
. (20)

Note that we have applied Corollary 2 to a function
of mn interdependent variables. However, since there
is independence between examples, the dependency
matrix of Ẑ (denoted Θπ

mn) is in fact block diago-
nal, with each sub-matrix equal to Θπ

n . Therefore,
‖Θπ

mn‖∞ = ‖Θπ
n‖∞.

For any particular posterior Q, there exists an
approximately-optimal uj? by taking

j? ,

⌊
1

2 ln 2
ln

(
DKL(Q‖H)

ln(2/δ)
+ 1

)⌋
. (21)

Since, for all v ∈ R, v − 1 ≤ bvc ≤ v, we can use
Equation 21 to show that

1

2

√
DKL(Q‖H)

ln(2/δ)
+ 1 ≤ 2j

?

≤

√
DKL(Q‖H)

ln(2/δ)
+ 1;

therefore,

uj? ≥

√
2mn

(
DKL(Q‖H) + ln 2

δ

)
β2
`◦H ‖Θ

π
n‖

2
∞

and uj? ≤

√
8mn

(
DKL(Q‖H) + ln 2

δ

)
β2
`◦H ‖Θ

π
n‖

2
∞

. (22)

Further, by definition of δj? ,

ln
1

δj?
= ln

2

δ
+ j ln 2

≤ ln
2

δ
+

ln 2

2 ln 2
ln

(
DKL(Q‖H)

ln(2/δ)
+ 1

)
= ln

2

δ
+

1

2
ln

(
DKL(Q‖H) + ln

2

δ

)
− 1

2
ln ln

2

δ

≤ ln
2

δ
+

1

2

(
DKL(Q‖H) + ln

2

δ

)
for all δ ∈ (0, 1); therefore,

DKL(Q‖H) + ln
1

δj?
≤ 3

2

(
DKL(Q‖H) + ln

2

δ

)
. (23)

Putting it all together, we now have that, with proba-
bility at least 1− δ, the approximately-optimal uj? for
any posterior Q satisfies

1

uj?

(
DKL(Q‖H) + ln E

h∼H

[
euj?Φ′(h,Ẑ)

])
≤ 1

uj?

(
DKL(Q‖H) + ln

1

δj?
+
u2
j?β

2
`◦H ‖Θ

π
n‖

2
∞

8mn

)

≤
3
(
DKL(Q‖H) + ln 2

δ

)
2uj?

+
uj?β

2
`◦H ‖Θ

π
n‖

2
∞

8mn

≤
2β`◦H ‖Θπ

n‖∞√
2mn

√
DKL(Q‖H) + ln

2

δ
.
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The first inequality is due to Equation 20; the second
inequality is from Equation 23; the last inequality uses
the lower and upper bounds from Equation 22. Com-
bining this with Equation 19, and replacing β`◦H with
its definition, completes the proof.

B.4 Proof of Theorem 3

The proof of Theorem 3 proceeds similarly to that of
Theorem 2. Let BH denote the set of “bad” hypothe-
ses. In Equation 19, we isolate BH in the first term,
then focus on the concentration of Φ′ for the “good”
set. In Definition 5, the measure of the “bad” assign-
ments B depends on whether h is in BH; conditioned
on h 6∈ BH, B has measure at most ν, under P. Fur-
ther, every h 6∈ BH satisfies Equation 3 with stability
β for every pair of “good” inputs z, z′ 6∈ B. Therefore,
every good hypothesis h 6∈ BH has (P, ν, β) collective
stability.

We again let β`◦H , M + Λβ. By Lemma 7, ` ◦ h
has (P, ν, β`◦H) collective stability for any h 6∈ BH. It
therefore follows from Lemma 8 and Equation 4 that
Φ′(h, ·) is (P, ν, β`◦H/(mn)) difference-bounded for all
h ∈ H. Finally, by Lemma 9, L—hence, Φ′—is M -
uniformly range-bounded.

Let

δ′ , δ − 2νM(mn)2

β`◦H
.

By assumption in the theorem statement,

δ > 2ν(mn)2 ≥ 2νM(mn)2

M + Λβ
=

2νM(mn)2

β`◦H
,

so δ′ > 0. For j = 0, 1, 2, . . ., define a parameter

uj , 2j

√
2mn ln 2

δ′

β2
`◦H ‖Θ

π
n‖

2
∞
,

let δj , δ′2−(j+1), and define an event

Ej ,

1

{
E
h∼H

[
eujΦ

′(h,Ẑ)
]
≥ 1

δj
exp

(
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

2mn

)}
.

Let Bλ be as defined in Theorem 1. Using the law of
total probability and the union bound, we have that
the probability that any Ej occurs is

P
{⋃∞

j=0
Ej

}
≤ P{Ẑ ∈ Bλ}+ P

{⋃∞
j=0

Ej | Ẑ 6∈ Bλ
}

≤ P{Ẑ ∈ Bλ}+

∞∑
j=0

P{Ej | Ẑ 6∈ Bλ}.

By applying Markov’s inequality and rearranging the
expectations, we obtain

P{Ej |Z 6∈ Bλ}

≤ δj exp

(
−
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

2mn

)
× E
h∼H

E
Ẑ∼Pm

[
eujΦ

′(h,Ẑ) | Ẑ 6∈ Bλ
]
.

We then apply Theorem 1, with λ , β`◦H/(2Mmn).
Since Φ′(h, ·) is (P, ν, β`◦H/(mn)) difference-bounded
and M -uniformly range-bounded, we have that

E
Ẑ∼Pm

[
eujΦ

′(h,Ẑ) | Ẑ 6∈ Bλ
]
≤ exp

(
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

2mn

)
,

and

P{Ẑ ∈ Bλ} ≤
2νM(mn)2

β`◦H
.

Combining these inequalities, we then have that

P
{⋃∞

j=0
Ej

}
≤ 2νM(mn)2

β`◦H
+

∞∑
j=0

δj

=
2νM(mn)2

β`◦H
+ δ′

= δ.

Therefore, with probability at least 1− δ over realiza-
tions of Ẑ, every uj satisfies

E
h∼H

[
eujΦ

′(h,Ẑ)
]
≤ 1

δj
exp

(
u2
jβ

2
`◦H ‖Θ

π
n‖

2
∞

2mn

)
. (24)

Now, using Equation 21 (with δ′ instead of δ) to select
j? for a given posterior Q, we have that

uj? ≥

√
mn

(
DKL(Q‖H) + ln 2

δ′

)
2β2

`◦H ‖Θ
π
n‖

2
∞

and uj? ≤

√
2mn

(
DKL(Q‖H) + ln 2

δ′

)
β2
`◦H ‖Θ

π
n‖

2
∞

. (25)

Therefore, with probability at least 1 − δ, the
approximately-optimal uj? satisfies

1

uj?

(
DKL(Q‖H) + ln E

h∼H

[
euj?Φ′(h,Ẑ)

])
≤ 1

uj?

(
DKL(Q‖H) + ln

1

δj?
+
u2
j?β

2
`◦H ‖Θ

π
n‖

2
∞

2mn

)

≤
3
(
DKL(Q‖H) + ln 2

δ′

)
2uj?

+
uj?β

2
`◦H ‖Θ

π
n‖

2
∞

2mn

≤
4β`◦H ‖Θπ

n‖∞√
2mn

√
DKL(Q‖H) + ln

2

δ′
.
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The first inequality is due to Equation 24; the second
inequality is from Equation 23 (with δ′ instead of δ);
the last inequality uses the lower and upper bounds
from Equation 25. To complete the proof, we combine
this with Equation 19 and substitute β`◦H and δ′ with
their respective definitions, noting that

ln
2

δ′
= ln

2

δ − 2νM(mn)2

M+Λβ

≤ ln
2

δ − 2ν(mn)2
.

C STRONG CONVEXITY AND
COLLECTIVE STABILITY

C.1 Strong Convexity

The following definition is a specialization of a more
general definition involving an arbitrary norm.

Definition 14. A function ϕ : S → R is κ-strongly
convex (with respect to the 1-norm) if S is a convex
set and, for any s, s′ ∈ S and τ ∈ [0, 1],

κ

2
τ(1− τ) ‖s− s′‖21 + ϕ(τs+ (1− τ)s′)

≤ τϕ(s) + (1− τ)ϕ(s′).

Strongly convex functions have the following useful
properties.

Lemma 10. Let ϕ : S → R be κ-strongly convex, and
let ṡ , arg mins∈S ϕ(s). Then, for any s ∈ S

‖s− ṡ‖21 ≤
2

κ
(ϕ(s)− ϕ(ṡ)) .

Proof Let ∆s , s − ṡ. By Definition 14, for any
τ ∈ [0, 1],

κ

2
τ(1−τ) ‖∆s‖21+ϕ(ṡ+τ∆s)−ϕ(ṡ) ≤ τ (ϕ(s)− ϕ(ṡ)) .

Since ṡ is, by definition, the unique minimizer of ϕ, it
follows that ϕ(ṡ + τ∆s) − ϕ(ṡ) ≥ 0; so the above in-
equality is preserved when this term is dropped. Thus,
dividing both sides by τκ/2, we have that

‖∆s‖21 ≤ (1− τ) ‖∆s‖21 ≤
2

κ
(ϕ(s)− ϕ(ṡ)) ,

where the left inequality follows from the fact that
(1− τ) is maximized at τ = 0.

Lemma 11. Let ϕ : Ω× S → R be κ-strongly convex
in S. If, for all s ∈ S and ω, ω′ ∈ Ω : Dh(ω, ω′) = 1,
|ϕ(ω, s)− ϕ(ω′, s)| ≤ Λ, then∥∥∥∥arg min

s∈S
ϕ(ω, s)− arg min

s′∈S
ϕ(ω′, s′)

∥∥∥∥
1

≤
√

2Λ

κ
.

Proof Let ṡ , arg mins∈S ϕ(ω, s) and ṡ′ ,
arg mins′∈S ϕ(ω′, s′). Without loss of generality, as-
sume that ϕ(ω, ṡ) ≥ ϕ(ω′, ṡ′). (If ϕ(ω′, ṡ′) ≥ ϕ(ω, ṡ),
we could state this in terms of ω′.) Using Lemma 10,
we have that

‖ṡ′ − ṡ‖21 ≤
2

κ
(ϕ(ω, ṡ′)− ϕ(ω, ṡ))

≤ 2

κ
(ϕ(ω, ṡ′)− ϕ(ω′, ṡ′)) ≤ 2

κ
Λ.

Taking the square root completes the proof.

C.2 Proof of Theorem 4

Lemma 11 implies that the maximum of the energy
function has uniform collective stability if the negative
energy is strongly convex and uniformly difference-
bounded. We prove the latter property in the following
lemma.

Lemma 12. For any h ∈ Hsc
T , with weights w,

and any s ∈ S, the energy function Ew(·, s) is
(2 ‖w‖a CG)-uniformly difference-bounded.

Proof Without loss of generality, assume that assign-
ments x,x′ ∈ Xn differ at a single coordinate i. Using
Hölder’s inequality, we have that

|Ew(x, s)− Ew(x′, s)|
= |〈w, f(x, s)〉 −Ψ(s)− 〈w, f(x′, s)〉+ Ψ(s)|
= |〈w, f(x, s)− f(x′, s)〉|
≤ ‖w‖a ‖f(x, s)− f(x′, s)‖b .

Note that the features of (x, s) and (x′, s) only differ at
any grounding involving node i. The number of such
groundings is uniformly upper-bounded by CG, so at
most CG features will change. Further, the b-norm of
any feature function is, by Definition 9, upper-bounded
by 1. Therefore, using the triangle inequality, we have
that

‖f(x, s)− f(x′, s)‖b

=

∑
t∈T

∥∥∥∥∥∥
∑
c∈t(G)

1{i ∈ c} (ft(xc, sc)− ft(x′c, sc))

∥∥∥∥∥∥
b

b


1/b

≤
∑
t∈T

∑
c∈t(G)

1{i ∈ c} ‖ft(xc, sc)− ft(x′c, sc)‖b

≤ 2CG.

Since this holds for any single coordinate perturbation,
for any x,x′ ∈ Xn with Dh(x,x′) ≥ 1, we have that

|Ew(x, s)− Ew(x′, s)| ≤ (2 ‖w‖a CG)Dh(x,x′),
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which completes the proof.

We are now equipped to prove Theorem 4. Fix any
h ∈ Hsc

T , with weights w. By Definition 9, φ is convex
and Ψ is κ-strongly convex, for some κ > 0. This
implies that −E is at least κ-strongly convex in S.
Now, fix any x,x′ ∈ Xn, and let s, s′ ∈ S denote
their respective maximizers of Ew. Using the additive
property of linear transformations, and the property
‖Γ‖1 ≤ 1, we have that

‖h(x)− h(x′)‖1 = ‖Γ(s)− Γ(s′)‖1
= ‖Γ(s− s′)‖1
≤ ‖Γ‖1 ‖s− s′‖1
≤ ‖s− s′‖1 .

Thus, telescoping (s− s′) into a sum of single-site dif-
ferences, and applying Lemmas 11 and 12, we have
that

‖s− s′‖1 ≤ 2

√
‖w‖a CG

κ
Dh(x,x′).

Corollary 1 follows directly by using R as a uniform
upper bound for ‖w‖a.

C.3 Strong Convexity and p-Norms

The requirement of strong convexity with respect to
the 1-norm may at first seem restrictive. However,
observe that strong convexity with respect to any p-
norm suffices for collective stability.

Claim 1. Let S ⊆ Rn be a convex set, for n ∈ [1,∞),
and suppose ϕ : S → R is a differentiable function
that is κ-strongly convex with respect to the p-norm,
for p ≥ 1. Then, for K ≥ n2−2/p, Kϕ is κ-strongly
convex with respect to the 1-norm.

Proof Since ϕ is differentiable and strongly convex,
using an alternate definition of strong convexity, one
can shown that

κ ‖s− s′‖2p ≤ 〈∇ϕ(s)−∇ϕ(s′), s− s′〉 ,

for any s, s ∈ S. To lower-bound the left-hand side,
we use the following p-norm identity: for any v ∈ Rn
and p ≥ 1,

‖v‖1 ≤ n
1−1/p ‖v‖p .

Since all p-norms are nonnegative, this inequality holds
when we square both sides. Now, let ϕ̃(s) , Kϕ(s),
and note that ∇ϕ̃(s) = K∇ϕ(s). We therefore have
that

κ ‖s− s′‖21 ≤ κn
2−2/p ‖s− s′‖2p

≤ Kκ ‖s− s′‖2p
≤ K 〈∇ϕ(s)−∇ϕ(s′), s− s′〉
= 〈∇ϕ̃(s)−∇ϕ̃(s′), s− s′〉

which completes the proof.

It is common that p = 2, in which case K ≥ n suf-
fices. One should also note that Theorem 4 does not
depend on the magnitude of Ψ; thus, we can replace
Ψ with any suitably scaled, strongly convex surrogate,
without penalty. That said, scaling Ψ may affect the
inference algorithm, and therefore also affect the em-
pirical risk.

D PROOFS OF EXAMPLES

D.1 Modified Margin Loss

In collective classification, one often wishes to bound
the expected 0-1 loss, `0. Unfortunately, this loss is not
admissible, so one cannot directly apply our general-
ization bounds. A common workaround is to upper-
bound `0 using a surrogate loss that satisfies admissi-
bility. For this, we use a modified margin loss,

`γ,ρ(y, ŷ) , rγ,ρ

(
〈y, ŷ〉 − max

y′∈Y:y 6=y′
〈y′, ŷ〉

)
,

where γ ≥ 0, ρ ≥ 0 and rγ,ρ is the thresholded ramp
function,

rγ,ρ(α) ,


1 for α ≤ γ,
1− (α− γ)/ρ for γ < α < γ + ρ,

0 for α ≥ γ + ρ.

Note that `0,0 ≡ `0 and `γ,0 ≡ `γ .

Lemma 13. The modified margin loss, `γ,ρ, is
(1, 1/ρ)-admissible for any γ ≥ 0 and ρ > 0, and 1-
uniformly range-bounded over all γ ≥ 0 and ρ ≥ 0.

Proof By definition, `γ,ρ is bounded in the interval
[0, 1], independent of γ and ρ. Thus, it is 1-uniformly
range-bounded over all values of γ and ρ, which also
establishes the first admissibility condition for a given
γ and ρ.

For any ŷ, ŷ′ ∈ Ŷ, let u , arg maxy′∈Y:y 6=y′ 〈y′, ŷ〉 and

u′ , arg maxy′∈Y:y 6=y′ 〈y′, ŷ′〉. Without loss of gener-
ality, assume that 〈y, ŷ〉−〈u, ŷ〉 ≥ 〈y, ŷ′〉−〈u′, ŷ′〉. For
any y ∈ Y, we have that

|(〈y, ŷ〉 − 〈u, ŷ〉)− (〈y, ŷ′〉 − 〈u′, ŷ′〉)|
= |〈y, ŷ − ŷ′〉+ 〈u′, ŷ′〉 − 〈u, ŷ〉|
≤ |〈y, ŷ − ŷ′〉+ 〈u′, ŷ′〉 − 〈u′, ŷ〉|
= |〈y − u′, ŷ − ŷ′〉|
≤ ‖y − u′‖∞ ‖ŷ − ŷ

′‖1
≤ ‖ŷ − ŷ′‖1 .

Further, for any a, a′ ∈ R,

|rγ,ρ(a)− rγ,ρ(a′)| ≤
∣∣∣∣a− γρ − a′ − γ

ρ

∣∣∣∣ =
1

ρ
|a− a′| .
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Combining these inequalities, we have that
|`γ,ρ(y, ŷ)− `γ,ρ(y, ŷ′)| ≤ (1/ρ) ‖ŷ − ŷ′‖1, which
establishes the second admissibility condition.

D.2 Properties of Pairwise TSMs

The class of pairwise TSMs have some useful structural
properties.

Lemma 14. Let G be a graph on n nodes, with max-
imum degree ∆G. Let T contain only the unary and
pairwise clique templates. Then, the following hold:

1. The maximum number of groundings involving
any single variable is at most ∆G + 1.

2. The total number of groundings is at most

n(∆G + 2)

2
.

Proof Any single node may only participate in one
unary grounding and up to ∆G pairwise groundings.
By the handshaking lemma, the number of edges in
the graph is equal to the sum of the degrees, divided
by two; this is at most n∆G/2. Since there are n
nodes, this makes the total number of groundings at
most n+ n∆G/2.

D.3 Proof of Theorem 5

For the proof, we will use a modified margin loss de-
scribed in Appendix D.1. The benefit of this loss is
that it is admissible, per Lemma 13.

Define the prior H as the uniform distribution on
(±R)d. Given a (learned) hypothesis h ∈ Hpam

R,κ, with

parameters w ∈ (±R)d, define the posterior Qh as
the uniform distribution on the hypercube (w± ε)d ∩
(±R)d, where

ε ,
κγ2

9n(∆G + 2)
.

The proof requires two intermediate lemmas: first, we
show that the loss of h is always “close” to that of any
hypothesis drawn from the posterior; then, we bound
the KL divergence of the constructed prior and poste-
rior.

Lemma 15. For any h ∈ Hpam
R,κ and z ∈ Zn,

L0(h, z) ≤ L
γ
3 ,
γ
3 (Qh, z) ≤ Lγ(h, z).

Proof Fix any h′ ∼ Qh, and let w and w′ denote the
respective weights of h and h′. Recall that z = (x,y).
Let s and s′ be the respective maximizers of Ew(x, ·)
and Ew′(x, ·). Since Γ is a projection with ‖Γ‖1 ≤ 1,

‖h(x)− h′(x)‖1 = ‖Γ(s− s′)‖1 ≤ ‖s− s′‖1 .

Further, since −E is κ-strongly convex in S, using
Lemma 10, we have that

‖s− s′‖21 =
1

2

(
‖s′ − s‖21 + ‖s− s′‖21

)
≤ 1

κ
(Ew(x, s)− Ew(x, s′)

+ Ew′(x, s
′)− Ew′(x, s))

=
1

κ
(〈w, f(x, s)− f(x, s′)〉 −Ψ(s) + Ψ(s′)

+ 〈w′, f(x, s′)− f(x, s)〉 −Ψ(s′) + Ψ(s))

=
1

κ
〈w −w′, f(x, s)− f(x, s′)〉 . (26)

Now, using Hölder’s inequality,

1

κ
〈w −w′, f(x, s)− f(x, s′)〉

≤ 1

κ
‖w −w′‖∞ ‖f(x, s)− f(x, s′)‖1 .

Due to the construction of Qh,

‖w −w′‖∞ ≤ ε =
κγ2

9n(∆G + 2)
.

Moreover, since the features of Hpam
R,κ obey the simplex

constraint,

‖f(x, s)− f(x, s′)‖1

=
∑
t∈T

∥∥∥∥∥∥
∑
c∈t(G)

(ft(xc, sc)− ft(xc, s′c))

∥∥∥∥∥∥
1

≤
∑
t∈T

∑
c∈t(G)

‖ft(xc, sc)− ft(xc, s′c)‖1

≤
∑
t∈T

∑
c∈t(G)

2

≤ n(∆G + 2), (27)

where the last inequality follows from Lemma 14.
Combining these inequalities, we have that

‖h(x)− h′(x)‖∞
≤ ‖h(x)− h′(x)‖1
≤ ‖s− s′‖1

≤
√

1

κ
‖w −w′‖∞ ‖f(x, s)− f(x, s′)‖1

≤

√
1

κ
· κγ2

9n(∆G + 2)
· n(∆G + 2)

=
γ

3
.

This means that each coordinate of the output vectors
differs by at most γ/3. As a result,

`0(yi, hi(x)) = 1 =⇒ ` γ
3 ,
γ
3
(yi, h

′
i(x)) = 1;

` γ
3 ,
γ
3
(yi, h

′
i(x)) < 1 =⇒ `0(yi, hi(x)) = 0.
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Similarly,

0 < ` γ
3 ,
γ
3
(yi, h

′
i(x)) ≤ 1 =⇒ `γ(yi, hi(x)) = 1;

`γ(yi, hi(x)) = 0 =⇒ ` γ
3 ,
γ
3
(yi, h

′
i(x)) = 0.

Therefore, for any h ∈ Hpam
R,κ, h′ ∼ Qh, z ∈ Zn and

i ∈ [n],

`0(yi, hi(x)) ≤ ` γ
3 ,
γ
3
(yi, h

′
i(x)) ≤ `γ(yi, hi(x)),

which means that

L0(h, z) ≤ L
γ
3 ,
γ
3 (h′, z) ≤ Lγ(h, z). (28)

Taking the expectation over h′ ∼ Qh completes the
proof.

Lemma 16. For any h ∈ Hpam
R,κ,

DKL(Qh‖H) ≤ d ln

(
18Rn(∆G + 2)

κγ2

)
.

Proof For a uniform distribution U, denote by
dom(U) its domain, and define its volume as

vol(U) ,
∫
1{x ∈ dom(U)}dx.

Recall that Hpam
R,κ is essentially just the hypercube

(±R)d; therefore, vol(H) = (2R)d. Similarly,

vol(Qh) ≥ εd =

(
κγ2

9n(∆G + 2)

)d
.

(The lower-bound, εd, is because Qh is truncated if w
is at a corner of the hypercube (±R)d.) Denote by p
and qh the respective density functions of H and Qh.
By definition,

DKL(Qh‖H) =

∫
qh(h′) ln

qh(h′)

p(h′)
dh′

=

∫
1{h′ ∈ dom(Qh)}

vol(Qh)
ln

vol(H)

vol(Qh)
dh′

= ln
vol(H)

vol(Qh)

≤ ln

(
2R · 9n(∆G + 2)

κγ2

)d
,

which completes the proof.

We are now ready to prove Theorem 5. Via Corollary 1
and Lemma 14, the classHpam

R,κ has β-uniform collective
stability with

β , 2

√
RCG
κ
≤ 2

√
R(∆G + 1)

κ
.

It therefore has (Q, 0, β) collective stability with re-
spect to any posterior Q. We apply Theorem 2 to
the prior H and posterior Qh, using Lemma 13 for the
admissibility of ` γ

3 ,
γ
3

and Lemma 16 to upper-bound
DKL(Qh‖H), which yields

L
γ
3 ,
γ
3 (Qh)− L

γ
3 ,
γ
3 (Qh, Ẑ)

≤ 0×M +
2 ‖Θπ

n‖∞√
2mn

(
1 +

6

γ

√
R(∆G + 1)

κ

)

×

√
d ln

(
18Rn(∆G + 2)

κγ2

)
+ ln

2

δ
.

To complete the proof, we use Lemma 15 to lower-

bound L
γ
3 ,
γ
3 (Qh) and upper-bound L

γ
3 ,
γ
3 (Qh, Ẑ).

Since L
γ
3 ,
γ
3 (Qh,Z) dominates L0(h,Z), taking the ex-

pectation over Z yields L
0
(h) ≤ L

γ
3 ,
γ
3 (Qh). Similarly,

since Lγ(h,Z) dominates L
γ
3 ,
γ
3 (Qh,Z), it follows for

m examples that L
γ
3 ,
γ
3 (Qh, Ẑ) ≤ Lγ(h, Ẑ).

D.4 Proof of Theorem 6

As in the proof of Theorem 5, we will use the modi-
fied margin loss from Appendix D.1. Throughout this
section, it will be convenient to use the shorthand

ω ,
w

κ
(29)

for parameters (w, κ) of a hypothesis h ∈ Hpvc. We
define the prior H as an isotropic, unit-variance Gaus-
sian, with density

p(h) ,
1

(2π)d/2
exp

(
−1

2
‖ω‖22

)
.

Let

ς ,

(
9n(∆G + 2)

γ2

)2

ln(mn). (30)

(Note that ς ≥ 1, due to our assumptions that n ≥ 2
and γ ≤

√
n.) Given a (learned) hypothesis h ∈ Hpvc,

we define the posterior Qh as an isotropic Gaussian,
with mean ω = w/κ and variance 1/ς, whose density
is

qh(h′) ,
( ς

2π

)d/2
exp

(
− ς

2
‖ω′ − ω‖22

)
.

The proof proceeds similarly to that of Theorem 5, via
a sequence of intermediate lemmas. We first show that
the loss of the deterministic predictor, h, is almost al-
ways “close” to the loss of a hypothesis drawn from the
posterior (i.e., the Gibbs classifier). We then bound
the KL divergence of the constructed prior and poste-
rior. Finally, we show that, with high probability, the
collective stability of a random predictor from Hpvc is
within a constant additive factor of the stability of h.
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Lemma 17. For any h ∈ Hpvc and z ∈ Zn,

L0(h, z) ≤ L
γ
3 ,
γ
3 (Qh, z) +

1√
mn

and Lγ(h, z) ≥ L
γ
3 ,
γ
3 (Qh, z)− 1√

mn
.

Proof The proof is similar to that of Lemma 15. Fix
any h′ ∼ Qh, and let (w, κ) and (w′, κ′) denote the
respective parameters of h and h′. Let s and s′ be the
respective maximizers of Ew,κ(x, ·) and Ew′,κ′(x, ·).
Adapting Equation 26, we have that

‖s− s′‖21

=
1

2

(
‖s− s′‖21 + ‖s′ − s‖21

)
≤ 1

κ′
(Ew′,κ′(x, s

′)− Ew′,κ′(x, s))

+
1

κ
(Ew,κ(x, s)− Ew,κ(x, s′))

=
1

κ′
(〈w′, f(x, s′)− f(x, s)〉 − κ′Ψ(s′) + κ′Ψ(s))

+
1

κ
(〈w, f(x, s)− f(x, s′)〉 − κΨ(s) + κΨ(s′))

=
1

κ′
〈w′, f(x, s′)− f(x, s)〉

+
1

κ
〈w, f(x, s)− f(x, s′)〉

= 〈ω′, f(x, s′)− f(x, s)〉+ 〈ω, f(x, s)− f(x, s′)〉
= 〈ω′ − ω, f(x, s′)− f(x, s)〉 .

We also have that

f(x, s′)− f(x, s)

=
f(x, s′)− f(x, s)

‖f(x, s′)− f(x, s)‖1
· ‖f(x, s′)− f(x, s)‖1

≤ f(x, s′)− f(x, s)

‖f(x, s′)− f(x, s)‖1
· n(∆G + 2),

via Equation 27, since the features of Hpvc obey the
simplex constraint and the templates are unary and
pairwise. For notational convenience, let

∆f ,
f(x, s′)− f(x, s)

‖f(x, s′)− f(x, s)‖1
.

Note that ∆f has ‖∆f‖2 ≤ 1.

Define the event

E , 1

{
〈ω′ − ω,∆f〉 ≥ γ2

9n(∆G + 2)

}
.

Since Qh is Gaussian, with mean ω and variance 1/ς,

using Lemma 5 and Equation 30, we have that

Qh{E} ≤ exp

(
− ς

2

(
γ2

9n(∆G + 2)

)2
)

= exp

(
− ln(mn)

2

)
=

1√
mn

. (31)

This means that, with probability at least 1−(mn)−1/2

over draws of h′ ∼ Qh, 〈ω′ − ω,∆f〉 ≤ γ2

9n(∆G+2) , and

‖h(x)− h′(x)‖1 = ‖Γ(s− s′)‖1
≤ ‖s− s′‖1
≤
√
〈ω′ − ω, f(x, s′)− f(x, s)〉

≤
√
〈ω′ − ω,∆f〉n(∆G + 2)

≤

√
γ2

9n(∆G + 2)
· n(∆G + 2)

=
γ

3
.

Now, for any z ∈ Zn,

L0(h, z)− L
γ
3 ,
γ
3 (Qh, z)

= L0(h, z)− E
h′∼Qh

[
L
γ
3 ,
γ
3 (h′, z)

]
= E
h′∼Qh

[
L0(h, z)− L

γ
3 ,
γ
3 (h′, z)

]
≤ Qh{E} E

h′∼Qh

[
L0(h, z)− L

γ
3 ,
γ
3 (h′, z) |E

]
+ E
h′∼Qh

[
L0(h, z)− L

γ
3 ,
γ
3 (h′, z) | ¬E

]
.

Recall from Lemma 13 that `γ,ρ—hence, Lγ,ρ—is 1-
uniformly range-bounded over all inputs and values of
γ and ρ. Therefore, using Equation 31 to upper-bound
the measure of E, we have that

Qh{E} E
h′∼Qh

[
L0(h, z)− L

γ
3 ,
γ
3 (h′, z) |E

]
≤ 1√

mn
.

Further, conditioned on ¬E, we have that each co-
ordinate of the output vectors differs by at most γ/3.
Using the same reasoning as in the proof of Lemma 15,
we would then have that Equation 28 holds, so

E
h′∼Qh

[
L0(h, z)− L

γ
3 ,
γ
3 (h′, z) | ¬E

]
≤ 0.

Therefore, combining the inequalities, we have that

L0(h, z)− L
γ
3 ,
γ
3 (Qh, z) ≤ 1√

mn
.

By the same reasoning, it is straightforward to show
that

L
γ
3 ,
γ
3 (Qh, z)− Lγ(h, z) ≤ 1√

mn
.
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The lemma follows directly from these inequalities.

Lemma 18. For any h ∈ Hpvc,

DKL(Qh‖H) ≤ d ln

(
9n(∆G + 2)

γ2

√
ln(mn)

)
+
‖w‖22
2κ2

.

Proof By definition,

DKL(Qh‖H)

=

∫
h′
qh(h′) ln

qh(h′)

p(h′)
dh′

=

∫
h′
qh(h′) ln

(
ς

2π

)d/2
e−

ς
2‖ω′−ω‖22(

1
2π

)d/2
e−

1
2‖ω′‖

2
2

dh′

=

∫
h′
qh(h′)

(
d

2
ln ς +

1

2
‖ω′‖22 −

ς

2
‖ω′ − ω‖22

)
dh′

≤
∫
h′
qh(h′)

(
d

2
ln ς +

1

2
‖ω′‖22 −

1

2
‖ω′ − ω‖22

)
dh′

≤
∫
h′
qh(h′)

(
d

2
ln ς +

1

2
‖ω′ − ω′ + ω‖22

)
dh′

=

∫
h′
qh(h′)

(
d

2
ln ς +

1

2
‖ω‖22

)
dh′

=
d

2
ln ς +

1

2
‖ω‖22 .

The first inequality follows from ς ≥ 1, by assumptions
n ≥ 2 and γ ≤

√
n; the second inequality follows from

the triangle inequality. Substituting Equation 29 for
ω, and Equation 30 for ς, completes the proof.

Lemma 19. For any h ∈ Hpvc, the class Hpvc has(
Qh ,

2d

mn
, 2

√(
‖w‖∞
κ

+ 1

)
(∆G + 1)

)
collective stability.

Proof Define the “bad” set as

BhHpvc , {h′ ∈ Hpvc : ‖ω′ − ω‖∞ ≥ 1} .

Since Qh is Gaussian, with mean ω and variance 1/ς,
using Lemma 4, with a ,∞ and ε , 1, we have that

Qh
{
h′ ∈ BhHpvc

}
= Qh {‖ω′ − ω‖∞ ≥ 1}

≤ 2d exp
(
− ς

2

)
= 2d exp

(
−1

2

(
9n(∆G + 2)

γ2

)2

ln(mn)

)
≤ 2d exp (− ln(mn))

=
2d

mn
.

The second inequality uses the fact that γ ≤
√
n and

9(∆G + 2) ≥
√

2.

Since Hpvc is a subset of Hsc
T , Theorem 4 holds for

every hypothesis in Hpvc. Thus, using Equation 29,
any h′ ∈ Hpvc has β-uniform collective stability for

β , 2

√
‖w′‖∞
κ′

CG = 2
√
‖ω′‖∞ CG.

For any h′ 6∈ BhHpvc , using the triangle inequality, we
have that

‖ω′‖∞ = ‖ω‖∞ + ‖ω′‖∞ − ‖ω‖∞
≤ ‖ω‖∞ + ‖ω′ − ω‖∞
≤ ‖ω‖∞ + 1.

Therefore, using Lemma 14, every h′ 6∈ BhHpvc must
have

β ≤ 2
√

(‖ω‖∞ + 1)CG

≤ 2
√

(‖ω‖∞ + 1) (∆G + 1).

Replacing ω with Equation 29 completes the proof.

The proof of Theorem 6 now follows directly from
Theorem 2, using Lemma 13 for the admissibility
constants, Lemma 19 for collective stability, and
Lemma 18 for the KL divergence. With probability
at least 1− δ over realizations of Ẑ,

L
γ
3 ,
γ
3 (Qh)− L

γ
3 ,
γ
3 (Qh, Ẑ) ≤ 2d

mn

+
2 ‖Θπ

n‖∞√
2mn

(
1 +

6

γ

√(
‖w‖∞
κ

+ 1

)
(∆G + 1)

)

×

√
d ln

(
9n(∆G + 2)

γ2

√
ln(mn)

)
+
‖w‖22
2κ2

+ ln
2

δ
.

Further, using Lemma 17, we have that

L
0
(h)− Lγ(h, Ẑ)

≤ L
γ
3 ,
γ
3 (Qh)− L

γ
3 ,
γ
3 (Qh, Ẑ) +

2√
mn

.

Combining these inequalities completes the proof.
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