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Abstract

Inference in large scale graphical models is
an important task in many domains, and in
particular for probabilistic relational models
(e.g,. Markov logic networks). Such models
often exhibit considerable symmetry, and it is
a challenge to devise algorithms that exploit
this symmetry to speed up inference. Here
we address this task in the context of the
MAP inference problem and its linear pro-
gramming relaxations. We show that sym-
metry in these problems can be discovered
using an elegant algorithm known as the k-
dimensional Weisfeiler-Lehman (k-WL) algo-
rithm. We run k-WL on the original graphi-
cal model, and not on the far larger graph of
the linear program (LP) as proposed in ear-
lier work in the field. Furthermore, the algo-
rithm is polynomial and thus far more prac-
tical than other previous approaches which
rely on orbit partitions that are GI complete
to find. The fact that k-WL can be used in
this manner follows from the recently intro-
duced notion of k-local LPs and their rela-
tion to Sherali Adams relaxations of graph
automorphisms. Finally, for relational mod-
els such as Markov logic networks, the bene-
fits of our approach are even more dramatic,
as we can discover symmetries in the original
domain graph, as opposed to running lifting
on the much larger grounded model.

1 Introduction

Many problems in probabilistic modeling and infer-
ence exhibit symmetries. In other words, they con-
sist of certain building blocks that are reused within
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the model. It has been suggested that such sym-
metries may be exploited to speed up inference in
these models. Indeed, this has motivated an active
field of research known as lifted probabilistic infer-
ence (e.g., see [1] and references therein). Lifting ap-
proaches are especially important and hold consider-
able promise in the context of relational probabilistic
models (RPMs) [2, 3, 4]. These tackle a long standing
goal of AI, namely unifying first-order logic (captur-
ing regularities and symmetries) and probability (cap-
turing uncertainty). RPMs often encode large, com-
plex models using only a few logical rules applied to
a large class of objects. Thus symmetries and redun-
dancies are likely to abound. Non-lifted inference in
these models requires operating on a mostly proposi-
tional representation level and does not exploit the
additional symmetries. In contrast, lifted inference
makes use of symmetries, which have been shown to
appear in AI tasks such as citation matchings, infor-
mation broadcasting, market analysis, tracking of ob-
jects, and biomolecular event prediction, among others
(e.g., see [5, 6, 7, 8, 9, 10, 11].

A sensible scheme in devising lifted inference algo-
rithms is to begin with an approximate inference1 al-
gorithm that provides good performance on the orig-
inal (non-lifted) model, and then seek an equivalent
and faster version of the algorithm, which exploits
symmetries. This methodology has been applied suc-
cessfully to the loopy belief propagation (LBP) algo-
rithm [12, 13, 14, 15]. These works identify variables
in the model that send and receive identical messages
due to symmetries of the factor graph, and calculate
these messages only once, resulting in often consider-
able savings. However, the downside of this approach
is that LBP is theoretically poorly understood and
does not always perform well. Another approximate
inference approach that has been very successful lately
is linear programming (LP) relaxations of the MAP
problem (e.g., see [16, 17]). These approximate the
MAP problem as an LP with polynomially many con-
straints, which is therefore tractable. LP relaxations

1We address approximate inference here, since exact in-
ference is intractable in most of the models of interest.
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have several nice properties. First, they result in an
upper bound on the MAP value, and can thus be used
within branch and bound methods. Second, they pro-
vide certificates of optimality, so that one knows when
the problem has been solved exactly.2 Third, the LP
can be solved using simple algorithms such as coor-
dinate descent, many of which have a nice message
passing structure [18, 19]. Fourth, the LP relaxations
can be progressively tightened by adding constraints
of a higher order. For example, a kth order MAP-LP
will involve constraints that consider k tuples of vari-
ables. This is also known as the Sherali-Adams (SA)
hierarchy of relaxations. It has been shown that such
tightenings can be done gradually, and as a result solve
challenging MAP problems [16, 20, 21].

Given the above, it is a natural step to try to lift MAP
LP relaxations, and their tightenings. Thus far, two
approaches have been proposed to this problem. The
first is to identify symmetries using the automorphism
group of the graph underlying the model [22, 23, 24].
Unfortunately, this requires calculating a quotient of
the graph with respect to its orbit partition and com-
puting the orbit partition is GI-complete (polynomial-
time equivalent to graph isomorphism and thus gen-
erally intractable). On the other hand, Mladenov et
al. [10] recently proposed a generic approach to lifting
linear programs that takes an LP as input and returns
a possibly smaller version of this LP. In principle, this
lifted linear programming method can indeed be ap-
plied to MAP-LP relaxations by forming the MAP-LP
and then applying the method of [10]. However, the
MAP-LP contains considerable structure, which [10]
is oblivious to. Indeed, the method we propose here
offers a faster lifting of MAP-LPs precisely due to this.

Our contribution here is thus to provide a scheme for
lifting MAP LP problems of any order. Our approach
is tractable, sound, and uses the special structure of
these LPs. Specifically, we propose a method that
achieves this by using an elegant algorithm known as
kth order Weisfeiler-Lehman (k-WL), originally devel-
oped for approximating the graph automorphism prob-
lem [25]. Our approach works as follows: given a graph
G and an order k, we run k-WL on the graph G to
identify indistinguishable kth order structures in the
graph. We next use these to construct a compact ver-
sion of various MAP-LP relaxations. We stress that
the symmetries are identified on the original graph and
not on the MAP-LP itself, which is considerably larger
for higher order relaxations. This is in stark contrast
to the approach of [10], which would look for symme-
tries on the MAP-LP. As we will show, the choice of
k depends on the structure of the relaxed MAP LP

2Of course this is not always the case, due to the in-
tractability of MAP in the general case.

problem. In particular, we build upon a recent struc-
tural characteriztion of general LPs, called k-locality,
introduced by Atserias and Maneva [26]. Intuitively,
an LP is called k-local if its variables and constraints
correspond to k-tuples of vertices of the graph under-
lying the LP. Atserias and Maneva have shown that
k-WL can be used to identify certain invariances of k-
local LPs. Here, we show that the invariances can be
viewed as symmetries and exploited to speed up MAP
LP inference. For example, in Section 3.2, we show
that the kth order tightening of a MAP LP is k + 1-
local and in turn efficiently liftable. In fact, we prove a
more general result, namely that any k-local LP can be
lifted efficiently using k-WL (see Section 3.1). For the
case of RPMs such as Markov Logic Networks (MLNs),
k-locality extends even further. As we will show in
Section 3.3, MAP LP relaxations of MLNs exhibit ad-
ditional locality, which can be detected using the ap-
propriate version of the WL algorithm. Finally, before
concluding, we present an empirical illustration of our
results demonstrating that they can yield significant
computational savings.

We would like to stress that our scheme not only re-
sults in tractable lifted versions of an important class
of inference algorithms. It also unifies the two seem-
ingly disparate works of [10] and [24]. Briefly, [10] uses
1-WL which is adequate for first order LPs, whereas
[24] uses exact automorphism (equivalent to full order
WL) which is adequate for exact MAP (and unneces-
sary for lower order LPs).

2 Background

We start off by introducing MAP problems, their LP
relaxations, and other relevant background.

2.1 MAP Inference in MRFs

Let X = (X1, X2, . . . , Xn) be a set of n discrete-
valued random variables and let xi represent the pos-
sible realizations of random variable Xi. Markov ran-
dom fields (MRFs) compactly represent a joint distri-
bution over X by assuming that it is obtained as a
product of functions defined on small subsets of vari-
ables [27]. For simplicity, we will restrict our dis-
cussion to a specific subset of MRFs, namely Ising
models with arbitrary topology.3 In an Ising model
on a graph G = (V,E), all variables are binary,
i.e., Xi ∈ {0, 1}. The model is then given by:

p(x) ∝ exp
[∑

ij∈E θijxixj +
∑
i θixi

]
. The Maxi-

3The one-to-one correspondence between the parame-
ters of the Ising model and the graph elements simplifies
our arguments, sparing us some auxiliary constructions.
This restriction does not come with a loss of generality.
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mum a-posteriori (MAP) inference problem is defined
as finding an assignment maximizing p(x). This can
equivalently be formulated as the following LP µ∗ =

argmaxµ∈M(G)

∑
ij∈E

µijθij +
∑

i
µiθi = θ · µ (1)

where the set M(G) is known as the marginal poly-
tope [17]. Even though Eq. 1 is an LP, the polytope
M(G) generally requires an exponential number of in-
equalities to describe, and is NP-complete to maximize
over. Hence one typically considers tractable relax-
ations (outer bounds) of M(G).

We next describe such outer bounds. The outer
bounds we consider are equivalent to the standard lo-
cal consistency bounds typically considered in the lit-
erature (e.g., see [17] Equation 8.32). However, we
present them in a slightly different manner, which sim-
plifies our presentation. Define the following set of
vectors in [0, 1]|V |+|E|:

P =

{
µ

∣∣∣∣ 0 ≤ µij , µi ≤ 1 ;µij ≤ µj ;
µij ≤ µi;µi + µj − µij ≤ 1

}
. (2)

The vectors with {0, 1} coordinates in this set are
the vertices of the marginal polytope. In other words
M(G) is the convex hull of P ∩ {0, 1}|V |+|E|. A stan-
dard way of outer bounding such polytopes is via the
Sherali-Adams (SA) hierarchy. These are a set of poly-
topes P = P 1 ⊇ P 2 ⊇ . . . ⊇ Pn = M(G) which
are progressively tighter bounds on M(G). The hi-
erarchy is obtained recursively as follows. The vari-
ables of P k correspond to k tuples of V . For instance
for k = 3 we have variables such as µ1,2,5. To get
from P k to P k+1 we multiply all inequalities in P k

by µ1, . . . , µn, (1 − µ1), . . . , (1 − µn) and linearize. In
the above example, we will get inequalities with ex-
pressions such as µ1,2,5µ6. This will be linearized to a
new variable µ1,2,5,6. In case of repeating indices like
µ1,2,5µ5, double indices will be eliminated resulting in
µ1,2,5. Thus, the kth level SA relaxation consists of
O(nk) constraints and variables. It has been shown
that even the k = 2 case results in significant gains,
and can be used to solve seemingly hard problems such
as protein design [20].

2.2 Graph Automorphisms and Color-passing

As mentioned earlier, lifting involves identifying sets
of indistinguishable variables in the LP. Since the LPs
we consider are closely related to graphs, it’s not sur-
prising that graph automorphisms have recently been
identified as an important toolbox for obtaining lift-
ings. We now briefly review relevant background.

Given a graph, its orbit partition (OP) is a partition
of the vertices V into S1, . . . , Sp such that for every

two vertices i, j ∈ Sk there is an automorphism that
maps i to j. In other words, vertices in Si are indis-
tinguishable. Indeed the lifting approach of [24] uses
such partitions. However, as mentioned earlier, these
are generally intractable to compute.

An alternative approach to identifying “similar” ver-
tices is to use color passing procedures. The simplest
of these is the “1-dimensional Weisfeiler-Lehman” (or
1-WL. Also known as color passing). It iteratively par-
titions, or colors, the vertices of a graph according to
an iterated degree sequence: initially, all vertices get
the same color. Next, at each step, two vertices get
again the same color assigned if they have the same
histograms of colors among their neighbors. That is,
they get different colors if for some color c they have
a different number of neighbors of color c. The itera-
tion stops when the partition remains unchanged, i.e.,
it becomes stable. The resulting partition is known
as the coarsest equitable partition (CEP) of the graph,
which is not an orbit partition and in fact can generally
be coarser than the orbit partition [28].

The 1-WL partition has two key advantages in the
context of lifting. First, it can be calculated efficiently
in time O((|E| + |V |) log(|V |))[29]. Second, it can be
used to lift generic LPs via the procedure proposed
in [10]. However, 1-WL is not a natural approach to
lifting MAP-LPs since it is oblivious to their structure.

In this paper we use a generalized version of the WL
algorithm known as the k dimensional WL (or k-WL)
[25]. The idea in k-WL is to use not just the immediate
neighborhood in deciding whether two nodes are sim-
ilar but higher order neighborhoods. As an example,
if a graph is regular 1-WL will stop after one iteration
with all vertices having the same color. On the other
hand k-WL may find finer partitions as it considers
higher order structure. As we show later k-WL is in
fact the appropriate procedure for lifting MAP-LPs.

Finally, we note an elegant link between k-WL algo-
rithms and orbit partitions. It has recently been shown
[26] that the partitions found by k-WL are a solution
to a certain kth order fractional relaxation of the graph
automorphism problem. Due to this, we refer to the
symmetries found by k-WL as fractional symmetries.
Furthermore, when k = n the k-WL algorithm will
find the exact orbit partition. Thus k-WL spans a
spectrum of partitions, the coarsest one obtained with
1-WL and the finest with n-WL.

2.3 Local Linear Programs

Recall that our goal is to lift k-MAP-LPs. These
are linear programs whose structure is derived from
a graph G. Thus, one would expect that symmetries
in the graph are closely related to those of the LP. It
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turns out that there is a very elegant connection be-
tween the two, facilitated via the recently introduced
notion of k-local LP, which we review below. For more
details we refer to [26].

Many problems in combinatorial optimization take a
graph as input and construct an LP from this graph.
For example, maximum bipartite matching for a graph
G = (V,E) is a solution to the following problem:

max
∑
ij∈E zij

s.t.
∑
i zij = 1 ,

∑
j zij = 1 , and zij ≥ 0 .

(3)

The above essentially specifies a procedure that takes
G as input and returns an LP. A key question is then
when will different graphs result in similar LPs (e.g.,
in the sense that the solution of one can be converted
to a solution of the other). A recent work by Atserias
and Maneva [26] gives a elegant answer to this via the
notion of k locality.

Definition 1 Given a graph G = (V,E) and integer
K we say that a function C : V ∪ E → {1, . . . , P}
is a coloring of G. We assume that there is no edge
that shares the same color with a vertex. We then call
G = (V,E,C) a colored graph.

Definition 2 An LP generating procedure F(G) is a
function from colored graphs G = (V,E,C) to LPs
(A, b, c).4

Next, we will be interested in LP generating proce-
dures whose constraints are highly regular with respect
to graph structures. To this end, we need additional
definitions.

Definition 3 Given a set of vertices V , we denote by
V ≤k all the ordered subsets of V of size k or less, and
by V k all ordered subsets of exactly size k (i.e., all
k-tuples of V ).

Definition 4 For a k-tuple t of vertices of G, t =
(t1, ..., tk), we define etp(t) = {(i, j)|ti = tj} as the set
of pairs of indices of t whose elements are equal. Fur-
thermore, we define atp(t) = (IE , I1, ..., IP ), where
IE = {(i, j)|(ti, tj) ∈ E} is the set of index pairs
whose elements are adjacent in G and Ip = {i|C(ti) =
p} ∪ {(i, j)|C(ti, tj) = p}. In other words Ip is the set
of elements and pairs of elements in t that have the
color p in the graph.

Definition 5 An LP generating procedure F(G) is
basic k-local if: (A) It has one variable and one con-
straint for each k-tuple of V .5 (B) There exist func-

4We use (A, b, c) to denote the optimization problem of
minimizing c · x subject to Ax ≤ b.

5Thus, if k = 3 and |V | = 5 the constraints and vari-
ables will be indexed by i1, i2, i3 where im ∈ {1, . . . , 5}.

tions f, g, h with values in R such that:

Au,v =

{
f(etp(uv), atp(uv)) if |uv| ≤ k,
0 otherwise ,

bu = g(etp(u), atp(u)) , and cv = h(etp(v), atp(v)) .
Here uv is the concatenation of u and v, and |uv|
denotes the number of unique elements in uv. A union
of basic k-local procedures is called k-local.6

Intuitively, what the above definition means is that a
procedure is local if its coefficients matrix only depends
on the intersection between the tuple corresponding to
the constraint and the one corresponding to the vari-
ables. It however does not depend on the specific iden-
tity of these tuples. And this “anonymity” of k-tuples
is what we would like to exploit within lifted infer-
ence. It is akin to the interchangeability of random
variables within lifted inference, and the bounded size
k ensures that these potential symmetries in the LP
can be identified in a local fashion.

3 Lifting k-Local MAP LPs

We will now show how k-locality can be exploited for
efficient lifting. To do so, we make use of the k-WL
algorithm mentioned earlier. We will first recap k-
WL and then show using recent results of Atserias
and Maneva [26] how it can be used to compress LPs,
whenever fractional symmetry is present.

3.1 Lifting k-local LPs by k-WL

Given a colored graph G = (V,E,C) and k > 1, k-
WL7 iteratively assigns colors to k-tuples of V . Denote
the color of u ∈ V k at iteration r by W r(u). Then, ini-
tially two tuples u = (u1, . . . , uk) and v = (v1, . . . , vk)
are assigned the same color, W 0(u) = W 0(v), iff they
satisfy etp(u) = etp(v) and atp(u) = atp(v) (see
Def. 4).8 To compute the color in iteration W r+1(u),
we define the operation for each g ∈ V and u ∈ V k:

sift(f,u, g) = (f(g, u2, . . . , uk), f(u1, g, . . . , uk), . . . ,

f(u1, u2, . . . , g)) .

Then, W r+1(u) = W r+1(v) holds iff for every tuple
of colors t, |{g ∈ V | sift(W r,u, g) = t}| = |{g′ ∈
V | sift(W r,v, g′) = t}| . In other words, the color of a

6By a union of procedures we mean a concatenation of
the constraints in each procedure.

7[26] present a unified but more complex definition of
WL for k > 0. For the sake of simplicity we stick to the
one presented here and use 1-WL as presented above.

8In other words if: (A) ui = uj ⇔ vi = vj , (B)
uiuj ∈ E ⇔ vivj ∈ E, and (C) C(ui) = C(vi) as well as
C(uiuj) = C(uiuj).
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tuple in the next iteration is the multiset : W r+1(u) =
〈sift(W r,u, g)|g ∈ V 〉. This is iterated until the col-
oring is stable, i.e. the partition induced by the colors
does not refine anymore. See [25] for details.

We are now ready to describe our lifting approach.
Assume k-WL has ended up with P colors and denote
by Wi ⊂ V k the subset of tuples that got color i.
Denote this partition of V k by W. Given W we define

the characteristic matrix X̂ ∈ R|V k|×P as follows:

X̂ui = 1/
√
|Wi| if u ∈Wi and X̂ui = 0 otherwise. (4)

Then, the following holds:

Theorem 1 Let (A,b, c) = F(G) be a k-local LP and

X̂ be the characteristic matrix of the k-WL partition
W of G. Then F ′(G) = (AX̂,b, X̂T c) is an LP with
P variables. Moreover it is equivalent to F(G) in the
following sense: (A) if y is feasible in F ′(G), then

x = X̂y is feasible in F(G); (B) if y∗ is an optimum

of F ′(G), then x∗ = X̂y∗ is an optimum of F(G) .

Proof See Appendix (A). �

That is, we have a lifted solver for k-local LPs in gen-
eral as summarized in Alg. 1.

3.2 Lifting k-MAP-LP

As a consequence of Theorem 1, all we need for efficient
lifting of tightened MAP-LPs is to show they are local.
This is indeed the case, as the following theorem states.

Theorem 2 The k-level Sherali-Adams tightening of
MAP-LP is (k + 1)-local in G.

Proof See Appendix (B). �

Consequently, we can compute a solution to the k-level
tightening of MAP-LP by (1) instantiating the LP for
an Ising model G and (2) running Alg. 1. Note that
WL treats G as an edge- and vertex-colored graph –
the pairwise parameters θij serve as edge colors, i.e.
C(ui, uj) = C(uk, ul) ⇔ θij = θkl, whereas the unary
parameters θi serve as node colors. Thus parameter
symmetry in the model is considered by WL as well.

Theorems 1 and 2 together significantly advance the
understanding of lifted inference. First, they provide
a complementary view on the spectrum of approxima-
tions of lifted inference approaches recently introduces
by Van den Broeck et al. [15] with a clear mathematical
notion of symmetry. At the bottom of the hierarchy
is lifted MAP-LP, and exact MAP inference is at the
top. In between, there are relaxations whose liftings
are equitable partitions of intermediate coarseness. To
calculate the k level partition we need to run k-WL

Algorithm 1: Lifted Solver for k-local LPs

Input: A k-local LP (A,b, c) = F(G)
Run k-WL(G) to obtain a partition W of V k;1

Calculate X̂ for W as in Eq. 4;2

Solve the LP (AX̂, b, X̂T c). Denote solution by y∗;3

return x∗ = X̂y∗4

whose complexity is O(k2nk+1 log(n)) (e.g., see [25]).
Moreover, they generalize the lifted MAP-LPs of [24],
which are based on non-fractional automorphisms. To
see this, suppose that we know the automorphism
group Aut(G) of a model G. Then, we can partition
the (≤ k)-tuples of G according to the following rule:
u,v ∈Wp if and only if u1, . . . , uk = π(v1), . . . , π(vk) ,
for some π ∈ Aut(G). If we lift k-MAP-LP with this
partition in the same way as in Theorem 1, we get LPs
identical to the special cases k = 1, 2 proposed in [24].
Since, by design k-WL approaches the former parti-
tions with increasing k, our lifted LPs are at least as
coarse. Moreover, they can be faster to compute since
WL does not rely on GI-completeness.

3.3 Lifting MAP-LPs for Relational Models

The notion of locality results in even more dramatic
speedups for the case of relational models. Specifi-
cally, let us focus on Markov logic networks (MLNs).
See [30] for an introduction. To obtain the graphical
model corresponding to an MLN one needs to ground
the MLN which can be quite costly. Furthermore, if
one then wants to run k-MAP-LP on the resulting
model, this requires further compilation efforts. Here
we show that symmetries in the MAP-LP of an MLN
can be inferred without even grounding, thus result-
ing in considerable saving. The key to doing this is
to show that the MAP-LP is in fact local in a much
smaller graph, which we call the domain graph.

Consider the classical Smokers-Friends (SF) MLN
shown in Fig. 1. Now assume we want to eventually
solve the MAP-LP on the grounding of this model.
For that sake of simplicity,9 consider a class of MLNs
with one unary predicate u(X) and one symmetric bi-
nary predicate b(X,Y ) only, ; e.g. the first clause of
the SF MLN where u = sm and b = fr. In this case, we
can directly apply Eq. 2 to the grounded network and
obtain the following LP (nonnegativity constraints are
omitted for clarity): P (M) =

∀C ∈ clauses(M) : ∀(d1, d2) ∈ D ×D
µCd1,d2 ≤ µbd1,d2 , µCd1,d2 ≤ µud1 ,
µbd1,d2 + µud1 − µCd1,d2 ≤ 1

 . (5)

9Our arguments generalize to arbitrary pairwise MLNs.
Every MLN can be converted to a pairwise one [31].
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D = {d1, ..., d5}, X, Y ∈ D
θ1 : fr(X,Y ) ∧ sm(X) (C1)

θ2 : sm(X)⇒ ca(X) (C2)

T : fr(d1, d2), fr(d3, d4), sm(d2), sm(d4),

F : ¬ca(d5), (E)

Figure 1: (Top) The MLN SF. Here D is a given
set of people, fr encodes friendship relationships, sm
whether a person smokes, and ca whether a person has
cancer. E.g. the second rule says that smoking causes
cancer to a certain extent θ2. The sets T, F encode our
evidence (E) about ca and fr. (Bottom) The domain
graph of SF and the resulting lifting (Box).

Here, the variable µbd1,d2 corresponds to the pseudo-
marginal of the ground atom b(d1, d2). Additionally,
we get the evidence constraints µbd1,d2 = 1 if b(d1, d2)

is observed true and µbd1,d2 = 0 if the atom is observed
false (and likewise for the unary predicate). It is not
difficult to see that Eq. 5 is a local LP and hence can be
lifted using Theorem 1. However, instead of applying
the LP generating procedure to the graph induced by
the grounding of the MLN, we can equivalently con-
sider the following directed graph, which we call the
domain graph10 GD(M) of M.

The vertices of the domain graph GD(M) consist of
the domain elements of M (called the domain vertices)
and, for every clause and predicate name, we add a sin-
gle vertex (called a name vertex). In our running ex-
ample, GD(SF) = {d1, ..., d5, sm, ca, fr, C1, C2}. The
connectivity and coloring of this graph are determined
by the evidence. For every unary predicate u, we color
a domain vertex di with u or ¬u if u(di) or ¬u(di)
(recall that we allow more than one color per vertex).
We add a directed edge from di to dj if for some bi-
nary predicate b, either b(di, dj) or ¬b(di, dj) is ob-
served; and we color the edge accordingly. Finally,
we color the name vertices with the predicate/clause
name together with a unique color (e.g. ?) to sepa-
rate them from the domain vertices and let them re-
main disconnected. The resulting complete domain
graph GD(SF) is shown in Fig. 1. Its size is inde-

10This is similar to Bui et al.’s [24] renaming permuta-
tions but is different in that we have to encode the predi-
cates to conform to the theory.

pendent of the number of ground clauses and grows
only with the size of the evidence since it consists of
|D|+|clauses(M)|+|predicates(M)| many vertices and
|evidence| many edges.

We note that P (M) is exactly 3-local in GD(M) . This
implies that a partition of (not necessarily all) indistin-
guishable variables of MAP-LP for MLNs can be com-
puted by 3-WL executed on GD(M) . To accommo-
date for predicates of higher arity, the domain graph
becomes a colored oriented hyper-graph (i.e. a colored
collection of tuples)11. The locality of the correspond-
ing MAP-LP is then given by the maximum number
of different domain elements that can be encountered
in a ground clause plus one (for name vertices). We
upper-bound this by v + 1, where v is the maximum
number of free variables in a clause over all clauses.
Hence, we have the following Theorem:

Theorem 3 P (M) is (v + 1)-local in GD(M).

Thm. 3 has several important consequences. First
of all, we do not have to ground anymore. We can
compute a lifting based on the structure of the MLN
and the given evidence, as incorporated in GD(M)
only. Second, for a fixed v, lifting is polynomial in
the number of domain elements. Domain elements
that do not participate in evidence need not be con-
sidered, since they are indistinguishable disconnected
nodes of the domain hyper-graph. This results in a
speed-up. Third, we know 1-MAP-LP of a propo-
sitional graph is 2-local, and the ground MLN con-
tains O(nv) ground atoms with n = |D|. Recall fur-
ther that k-WL runs in time O(k2mk+1 logm) for a
graph of m vertices. Hence, the cost of running 1-
WL on the grounded MAP-LP (the approach of [10])
is then O((nv)2 log(nv)) = O(vn2v log(n)) in terms of
domain elements. Running (v + 1)-WL on the do-
main hyper-graph would cost O(v2nv+2 log(n)) . As-
suming v << n, lifting via the domain graph has a
clear advantage. Moreover, by virtue of composing the
above construction with the generation procedure for
k-MAP-LP, we have an end-to-end locality of k(v+1),
if we see k-MAP-LP as a function of the domain graph.
This results in even further speed-ups as opposed to
either grounding, tightening and lifting or grounding
and applying Section 3.2. Finally, the locality of MLN
MAP-LPs does not depend on the number of clauses
per se, as k-local LPs are closed under unions. Hence,
adding clauses with the same number of free variables
will not increase the ability to distinguish between do-
main elements and refine the partition.

11All our previous arguments carry over to colored hyper-
graphs. The concept of isomorphism type can be extended
and colored, oriented hyper-graph can be uniquely con-
verted to a colored simple graph preserving all topological
information by the addition of linearly many extra vertices.
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Figure 2: (Left) End-to-end benefits in running times on the SF MLN without evidence (the lower, the faster).
(Middle) Frucht and McKay graphs used to encode different social networks as evidence. The colors indicate the
node partitions (of these graphs but not for the corresponding MAP-LPs) yielded by 1-WL and 3-WL, which
in this case coincide with the CEP resp. OP. (Right) Statistics on the SF MLN using the social networks as
evidence. (a) Sizes of ground and lifted LPs. (b) Achieved objectives. (Best viewed in color)

4 Experimental Illustration

To illustrate our results experimentally, we conducted
experiments on SF MLN.

The first experiment investigates whether domain lift-
ing can be faster. To compare the speed for inference,
we considered the 2-MAP-LP for the MLN with no ev-
idence with up to 7 people. This induced ground LPs
with up to 85400 variables and 670036 constraints. We
compared ground inference (i.e., no lifting), 1-WL on
the grounded MLN following [10], and domain lifting
(i.e., 6-WL on the domain graph). Fig. 2(left) sum-
marizes the end-to-end benefit in running times, i.e.,
inference time minus the time for ground inference mi-
nus (including grounding, lifting, and solving the LP).
The results clearly show that domain lifting is benefi-
cial and it can speed up inference considerably.

The second experiment illustrates the difference be-
tween symmetries based on automorphisms and based
on fractional automorphisms. We used the so-called
Frucht (among 12 people) and McKay (among 8 peo-
ple) graphs, see Fig. 2(middle), to encode social net-
works among people as evidence in the SF MLN. As
one can see, 1-WL clusters all nodes of the Frucht
graph together. This is fine for 1-MAP-LP. As soon as
we want to use domain lifting or move up the SA hier-
archy, we have to use at least 3-WL, which automati-
cally separates all nodes. In contrast, the OP resulting
from using standard automorphisms to identify sym-
metries [24] separates all nodes already for 1-MAP-LP
and hence results in finer lifting for 1-MAP-LP com-
pared to using fractional automorphisms. For McKay,
even 3-WL still identifies symmetries, the same as
the OP in this case. Overall, this shows that frac-
tional symmetries can yield coarser liftings for MAP-
LPs compared to using automorphisms. This is con-
firmed by Fig. 2(right,a), which summarizes the sizes
of the corresponding lifted LPs. Finally, for all exper-
iments we recorded the achieved objective as shown in
Fig. 2(right,b); they always coincided.

5 Conclusions

Shifting focus towards fractional symmetries, we de-
veloped a sound and tractable lifting for a large class
of MAP LP inference algorithms. The approach is
well-grounded in a graphical property of the inference
task at hand, namely its locality, recently introduced
for LPs in general. For LP relaxations of MAP, we
showed that the way to exploit symmetries is inde-
pendent of the particular relaxations and — as long
as they are k-local — is realized by the k-WL algo-
rithm. Both the time for and the amount of lifting
depends on k. More local inference algorithms yield
larger compression in less time but might be less tight.
Thus, locality contributes to a deeper understanding
of the interaction between symmetries and the com-
plexity of probabilistic inference. Moreover, the over-
lap with lifted BP suggests that the notion of locality
goes beyond LPs. Exploring this is an exciting avenue
for future work. Finally, it would be interesting to de-
sign message passing algorithms for solving the lifted
MAP-LPs discovered by our approach.
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for Scientific Research and Development, 1180-
218.6/2011, and by the German Science Foundation
(DFG), KE 1686/2-1.

6 Appendix

(A) Proof of Theorem 1. The first step towards
k-WL lifting of LPs is to note that it is commonly
used as a heuristic for the graph isomorphism prob-
lem. To do so, take a pair of graphs, G and H, for
which isomorphism must be determined and run k-WL
on both. Next, compare the set of colors produced on
both graphs. If they are different the graphs are cer-
tainly not isomorphic. If they are the same, we call
the two graphs k-WL equivalent, G ≡kWL H. The ≡kWL

equivalence relation is identical to isomorphism on
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many graph classes, but not in general, as counterex-
amples have been found. Whenever G ≡kWL H, we
can build a symmetric compatibility matrix XG 7→H ∈
R|V ≤k|×|U≤k|. In other words, a matrix whose columns
are indexed by the (≤ k)-tuples of G and rows by the
(≤ k)-tuples of H (or vice versa since X is symmetric).
We do this by setting XG7→H

uv = 1/|Wm| if u,v ∈ Wm

for some m and 0 otherwise (*). We will call X the
flat matrix of the partition W.

Next, we note that k-local LPs cannot distinguish k-
WL isomorphic graphs.

Lemma 6 Let G = (V,E) and H = (U,F ) be graphs
such that G ≡kWL H and let XG 7→H be as above. Then
for a k-local LP generating procedure F , F(G) is feasi-
ble iff F(H) is feasible. If the vector x∗ = (xv)v∈V ≤k

is a solution to F(G), then y∗ = (yu)u∈U≤k with
yu =

∑
v∈V ≤k XG7→H

vu xv is a solution to F(H).

Proof This directly follows the two main results in
[26]: (i) X as above solves the k-th level SA tight-
ening of the Fractional Isomorphism (FI) problem
(Lemma 6)12. (ii) Solutions of k-local LPs are pre-
served by solutions of k-SA-FI (Thm. 2). �

Now we have everything at hand to lift local LPs using
k-WL. Note that the above result gives a way to com-
pute a solution of F(H) from a solution of F(G), given
that G ≡k H. We will now show that this method also
yields the fractional symmetries of a single graph and
the related F(G).

Clearly, for any graph G, G ≡kWL G regardless of
k. If the coloring produced by k-WL on the tuples
of G is trivial (i.e. every tuple is uniquely colored),
then XG 7→G (from now on we will call this simply X)
is the identity matrix. However, suppose the color-
ing is not trivial. Then, applying Lemma 6 yields
that the image of C contains a solution to F(G).
I.e., if x∗ solves F(G), then so does Xx∗. This im-
plies that restricting the search space of F(G) =
(A,b, c) to the span of X (i.e. solving F(G)|X =
argmaxx cT (Xx) s.t. A(Xx) ≤ b resp. F(G)|X =
(AX,b, XT c) ) yields at least one solution to F(G).

Observe that the flat matrix X of any partition P =
{P1, ..., Pp} (regardless of whether it has special prop-

erties) admits a factorization as follows: X = X̂X̂T ,
where X̂im = 1/

√
Pm if i ∈ Pm and X̂im = 0 other-

wise. Now, X computed according to (*) is the flat
matrix of the k-WL partition W = {W1, ..,WP } of
tuples of G having P classes. Hence, it admits the fac-
torization X = X̂X̂T , with X̂um = 1/

√
|Wm| if tuple

u is in color class Wm and 0 otherwise. Here, Wm is

12This result appears more explicitly in [32]. Note, how-
ever, that the k − 1 of their convention is the k of ours.

the set of all nodes having the same color m. Because
of this factorization and the above argument, we have
that at least one solution of F(G) can be expressed as

X̂X̂Tx∗. Finally, note that rank(X̂T ) = rankX = P,

hence {XG 7→Gx|x ∈ R|V ≤k|} = {X̂y|y ∈ RP }. This
allows us to re-express our restricted LP as F(G)|X =

(AX̂,b, X̂T c). However, F(G)|X is now a problem in
only w variables! Thus, whenever G has a nontriv-
ial k-WL partition, restricting the LP to X̂ may yield
significant reductions in size. �

(B) Proof of Theorem 2. The argumentation
follows the structure of the locality proofs in [26], and
we refer the reader to [26] for a more detailed discus-
sion of locality proofs. We will first restate an observa-
tion of [26]. Let L be a linear program whose variables
and constraints are indexed by (≤ k)-tuples of V . Let
us fix the constraint indexed by the tuple u and a sub-
set P ⊆ V, |P | ≤ k. Now, if for all v, we have that
Auv is nonzero only if v ∈ P (≤k) and all elements of
u are also elements of v, then this LP is k-local. This
special case is called bounded k-local in [26].

Recall that we produce the k-MAP-LP by multi-
plying every constraint of MAP-LP by the expres-
sion

∏
i∈I µi

∏
j∈J(1 − µj) for all I, J ⊆ V with

|I ∪ J | ≤ t − 1 and then linearizing. We let
S(I, J) =

∑
J′⊆J(−1)|J

′|µI∪J′ be the linearization of∏
i∈I µi

∏
j∈J(1 − µj) (note that here |I ∪ J | ≤ t − 1

does not necessarily hold). Observe that S(I, J) = 0
if I and J are not disjoint. Then, the constraints of
k-MAP-LP become: ∀{u, v} ∈ E :

S(I ∪ {u, v}, J) ≤ S(I ∪ {u})(A)

S(I ∪ {u}) + S(I ∪ {v}, J)− S(I ∪ {u, v}, J) ≤ S(I, J)

S(I ∪ {u, v}, J) ≥ 0

S(I ∪ {u}, J) ≥ 0

We treat every line of the above as a separate LP.
Note the variables are indexed by sets instead of tu-
ples, hence, we replace every set-indexed variable µI ,
I = {v1, ..., vp} by the tuple-indexed variable µa,
a = (v1, ..., vp). Since this introduces a dependency on
the order of the variables which was not there before,
we must add the additional constraints µa = µ(π◦a),
for every permutation π : {1, ..., p} → {1, ..., p}. Ob-
serve that the indices of the variables and constraints
range over P = I ∪ J ∪ E. Since |I ∪ J | ≤ k − 1, we
have |P | ≤ k + 1. Hence, we are exactly in the case
described at the beginning of the proof, implying all
constraints are bounded k + 1-local LPs. Finally, we
encode the edge weights of the Ising model as edge
colors. Suppose there are m distinct values, r1, ..., rm
among all θ′ijs. We say C(ij) = p if θij = ri. Then, the
objective of the LP is generated as cv = C(v) if v is a
2-tuple and 0 otherwise. �

630



Martin Mladenov, Amir Globerson, Kristian Kersting

References

[1] K. Kersting. Lifted probabilistic inference. In
Proceedings of ECAI-2012. IOS Press, 2012.

[2] L. Getoor and B. Taskar, editors. An Introduc-
tion to Statistical Relational Learning. MIT Press,
2007.

[3] L. De Raedt, P. Frasconi, K. Kersting, and S.H.
Muggleton, editors. Probabilistic Inductive Logic
Programming, volume 4911 of Lecture Notes in
Computer Science. Springer, 2008.

[4] L. De Raedt. Logical and Relational Learning.
Springer, 2008.

[5] P. Sen, A. Deshpande, and L. Getoor. Exploiting
Shared Correlations in Probabilistic Databases.
In Proc. of the Intern. Conf. on Very Large Data
Bases (VLDB-08), 2008.

[6] K. Kersting, Y. El Massaoudi, B. Ahmadi, and
F. Hadiji. Informed lifting for message–passing.
In Proc. of the 24th AAAI Conf. on Artificial In-
telligence (AAAI–10), 2010.

[7] J. Choi, A. Guzman-Rivera, and E. Amir. Lifted
relational kalman filtering. In Proc. of the 22nd
Int. Joint Conf. on Artificial Intelligence(IJCAI),
pages 2092–2099, 2011.

[8] A. Nath and P. Domingos. Efficient lifting for on-
line probabilistic inference. In Proc. of the 24th
AAAI Conf. on Artificial Intelligence (AAAI),
2010.

[9] C. Kiddon and P. Domingos. Coarse-to-fine in-
ference and learning for first-order probabilistic
models. In Proc. of the 25th AAAI Conf. on Ar-
tificial Intelligence (AAAI 2011), 2011.

[10] M. Mladenov, B. Ahmadi, and K. Kersting. Lifted
linear programming. In 15th Int. Conf. on Artifi-
cial Intelligence and Statistics (AISTATS 2012),
pages 788–797, 2012. Volume 22 of JMLR: W&CP
22.

[11] B. Ahmadi, K. Kersting, M. Mladenov, and
S. Natarajan. Exploiting symmetries for scaling
loopy belief propagation and relational training.
Machine Learning Journal, 92:91–132, 2013.

[12] P. Singla and P. Domingos. Lifted First-Order
Belief Propagation. In Proc. of the 23rd AAAI
Conf. on Artificial Intelligence (AAAI-08), pages
1094–1099, Chicago, IL, USA, July 13-17 2008.

[13] K. Kersting, B. Ahmadi, and S. Natarajan.
Counting Belief Propagation. In Proc. of the
25th Conf. on Uncertainty in Artificial Intelli-
gence (UAI–09), 2009.

[14] B. Ahmadi, K. Kersting, and S. Sanner. Multi-
Evidence Lifted Message Passing, with Applica-
tion to PageRank and the Kalman Filter. In Proc.
of the 22nd Int. Joint Conf. on AI (IJCAI–11),
2011.

[15] G. Van den Broeck, A. Choi, and A. Darwiche.
Lifted relax, compensate and then recover: From
approximate to exact lifted probabilistic infer-
ence. In Proc. of the 28th Conf. on Uncertainty
in Artificial Intelligence (UAI), 2012.

[16] D. Sontag and T. Jaakkola. New outer bounds
on the marginal polytope. In Proc. of the 21st
Annual Conference on Neural Information Pro-
cessing Systems (NIPS-2007), 2007.

[17] M.J. Wainwright and M.I. Jordan. Graphical
models, exponential families, and variational in-
ference. Found. Trends Mach. Learn., 1(1-2):1–
305, January 2008.

[18] O. Meshi, T. Jaakkola, and A. Globerson. Conver-
gence rate analysis of MAP coordinate minimiza-
tion algorithms. In Advances in Neural informa-
tion Processing Systems 25. MIT Press, 2012.

[19] D. Sontag, A. Globerson, and T. Jaakkola. Intro-
duction to dual decomposition for inference. In
S. Sra, S. Nowozin, and S. J. Wright, editors, Op-
timization for Machine Learning, pages 219–285.
MIT Press, 2011.

[20] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola,
and Y. Weiss. Tightening LP relaxations for map
using message passing. In Proc. of the 24th Con-
ference in Uncertainty in Artificial Intelligence
(UAI-2008), pages 503–510, 2008.

[21] D. Sontag, D.K. Choe, and Y. Li. Efficiently
searching for frustrated cycles in map inference.
In Proc. of the 28th Conference on Uncertainty in
Artificial Intelligence (UAI-2012), pages 795–804,
2012.

[22] M. Niepert. Markov chains on orbits of permuta-
tion groups. In Proc. of the 28th Conf. on Uncer-
tainty in Artificial Intelligence (UAI), 2012.

[23] J. Noessner, M. Niepert, and H. Stuckenschmidt.
Rockit: Exploiting parallelism and symmetry for
map inference in statistical relational models. In
Proceedings of the Twenty-Seventh AAAI Confer-
ence on Artificial Intelligence, July 14-18, 2013,
Bellevue, Washington, USA, 2013.

631



Efficient Lifting of MAP LP Relaxations Using k-Locality

[24] H.H. Bui, T.N. Huynh, and S. Riedel. Auto-
morphism groups of graphical models and lifted
variational inference. In Proc. of the 29th Con-
ference on Uncertainty in Artificial Intelligence
(UAI-2013), 2013.
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