A Proofs from Section 4

We collect together proofs and auxiliary algorithms from Section 4.

A.1 Proof of Lemma 4.1

Lemma A.1. The exponential of a matrix in the form $\left(\begin{array}{ll}a \mathbf{I}_{n} & \mathbf{u} \\ \mathbf{u}^{\top} & b\end{array}\right)$, where a and b are nonnegative, is

$$
e^{\phi}\left(\begin{array}{cc}
(\cosh \psi+\sinh \psi \cos \gamma) \hat{\mathbf{u}}_{\mathbf{u}} \hat{\mathrm{a}}^{\top} & \sinh \psi \sin \gamma \hat{\mathbf{u}} \tag{A.1}\\
\sinh \psi \sin \gamma \hat{\mathbf{u}}^{\top} & \cosh \psi-\sinh \psi \cos \gamma
\end{array}\right)+e^{a}\left(\begin{array}{cc}
\mathbf{I}_{n}-\hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & 0 \\
0 & 0
\end{array}\right)
$$

where $\hat{\mathbf{u}}$ is the unit vector $\mathbf{u} /\|\mathbf{u}\|, \phi=(a+b) / 2, \psi=\sqrt{(a-b)^{2} / 4+\|\mathbf{u}\|^{2}}$, and $\gamma=\tan ^{-1}(2\|\mathbf{u}\| /(a-b))$.
We symbolically exponentiate an $n+1 \times n+1$ matrix of the form

$$
\mathbf{M}=\left(\begin{array}{ll}
a I_{n} & \mathbf{u} \\
\mathbf{u}^{\top} & b
\end{array}\right)
$$

Since this matrix is real and symmetric, its eigenvalues λ_{i} are positive and its unit eigenvectors \mathbf{v}_{i} form an orthonormal basis. The method that we use to symbolically exponentiate it is to express it in the form

$$
\mathbf{M}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}
$$

The exponential then becomes

$$
e^{\mathbf{M}}=\sum_{i=1}^{n} e^{\lambda_{i}} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}
$$

As a matter of notation, let $\hat{\mathbf{u}}$ be the unit vector such that $\|\mathbf{u}\| \hat{\mathbf{u}}=\mathbf{u}$.

Eigenvalues. The characteristic equation for \mathbf{M} is not difficult to calculate. It is:

$$
\begin{equation*}
(\lambda-a)^{n-1}\left(\lambda^{2}-(a+b) \lambda+a b-\|\mathbf{u}\|^{2}\right) \tag{A.2}
\end{equation*}
$$

This yields $n-1$ eigenvalues equal to a, and the other two equal to $(a+b) / 2+\sqrt{(a-b)^{2} / 4+\|\mathbf{u}\|^{2}}$ and $(a+b) / 2-$ $\sqrt{(a-b)^{2} / 4+\|\mathbf{u}\|^{2}}$. We label them λ_{1} and λ_{2}, respectively, and the rest are equal to a.

Eigenvectors. First we show that \mathbf{M} has two eigenvectors of the form $(\mathbf{u}, c)^{\top}$:

$$
\left(\begin{array}{ll}
a I_{n} & \mathbf{u} \\
\mathbf{u}^{\top} & b
\end{array}\right)\binom{\mathbf{u}}{c}=\binom{(a+c) \mathbf{u}}{\|\mathbf{u}\|^{2}+b c}
$$

So as long as we choose c such that $c^{2}+a c=\|\mathbf{u}\|^{2}+b c$, or $c=(b-a) / 2 \pm \sqrt{(a-b)^{2} / 4+\|\mathbf{u}\|^{2}}$, then $(\mathbf{u}, c)^{\top}$ is an eigenvector with eigenvalue $a+c$. These two eigenvalues are just λ_{1} and λ_{2}. We will call the corresponding eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}.
Since \mathbf{M} is symmetric, all of its eigenvectors are orthogonal. The remaining eigenvectors are of the form $(\mathbf{w}, 0)^{\top}$, where $\mathbf{w}^{\top} \mathbf{u}=0$:

$$
\left(\begin{array}{ll}
a I_{n} & \mathbf{u} \\
\mathbf{u}^{\top} & b
\end{array}\right)\binom{\mathbf{w}}{0}=\binom{a \mathbf{w}}{0}
$$

Clearly the corresponding eigenvalue for any such eigenvector is a, so there are $n-1$ of them. The corresponding parts of these eigenvectors are labeled \mathbf{w}_{i}, where $3 \leq i \leq n+1$, and we assume they are unit vectors.

Since

$$
e^{\mathbf{M}}=\sum_{i=1}^{n} e^{\lambda_{i}} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}
$$

and the eigenvalue a is of multiplicity $n-1$, we have

$$
\begin{aligned}
e^{\mathbf{M}} & =e^{\lambda_{1}} \frac{\mathbf{v}_{1} \mathbf{v}_{1}^{\top}}{\left\|\mathbf{v}_{1}\right\|^{2}}+e^{\lambda_{2}} \frac{\mathbf{v}_{2} \mathbf{v}_{2}^{\top}}{\left\|\mathbf{v}_{2}\right\|^{2}}+e^{a} \sum_{i=3}^{n}\left(\begin{array}{cc}
\mathbf{w}_{i} \mathbf{w}_{i}^{\top} & \mathbf{0} \\
\mathbf{0}^{\top} & 0
\end{array}\right) \\
& =\frac{e^{\lambda_{1}}}{\|\mathbf{u}\|^{2}+c_{1}^{2}}\left(\begin{array}{cc}
\mathbf{u} \mathbf{u}^{\top} & c_{1} \mathbf{u} \\
c_{1} \mathbf{u}^{\top} & c_{1}^{2}
\end{array}\right)+\frac{e^{\lambda_{2}}}{\|\mathbf{u}\|^{2}+c_{2}^{2}}\left(\begin{array}{cc}
\mathbf{u} \mathbf{u}^{\top} & c_{2} \mathbf{u} \\
c_{2} \mathbf{u}^{\top} & c_{2}^{2}
\end{array}\right)+e^{a}\left(\begin{array}{cc}
\mathbf{I}_{n}-\hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & \mathbf{0} \\
\mathbf{0}^{\top} & 0
\end{array}\right)
\end{aligned}
$$

The last term in the equality is due to the fact that $\hat{\mathbf{u}}$ and the $\hat{\mathbf{w}}_{i}$ form an orthonormal basis for \mathbb{R}^{n}, so $\hat{\mathbf{u}} \hat{\mathbf{u}}^{\top}+\sum \hat{\mathbf{w}}_{i} \hat{\mathbf{w}}_{i}^{\top}=I_{n}$. We can reduce some of the factors in the expression by observing that $\|\mathbf{u}\|=-c_{1} c_{2}$. Let

$$
\begin{aligned}
& \beta_{1}^{2}=\|\mathbf{u}\|^{2} /\left(\|\mathbf{u}\|^{2}+c_{1}^{2}\right)=-c_{1} c_{2} /\left(c_{1}^{2}-c_{1} c_{2}\right)=c_{2} /\left(c_{2}-c_{1}\right)=c_{2}^{2} /\left(c_{2}^{2}-c_{1} c_{2}\right)=c_{2}^{2} /\left(\|\mathbf{u}\|^{2}+c_{2}^{2}\right) \\
& \beta_{2}^{2}=\|\mathbf{u}\|^{2} /\left(\|\mathbf{u}\|^{2}+c_{2}^{2}\right)=-c_{1} c_{2} /\left(c_{2}^{2}-c_{1} c_{2}\right)=-c_{1} /\left(c_{2}-c_{1}\right)=c_{1}^{2} /\left(c_{1}^{2}-c_{1} c_{2}\right)=c_{1}^{2} /\left(\|\mathbf{u}\|^{2}+c_{1}^{2}\right)
\end{aligned}
$$

Note also that $\beta_{1}^{2}+\beta_{2}^{2}=1$.
The Exponential. All that remains is to put everything together:

$$
\begin{aligned}
e^{M} & =\sum_{i=1}^{n} e^{\lambda_{i}} \mathbf{v}_{i} \mathbf{v}_{i}^{\top} \\
& =e^{\lambda_{1}}\left(\begin{array}{cc}
\beta_{1}^{2} \hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & \beta_{1} \beta_{2} \hat{\mathbf{u}} \\
\beta_{1} \beta_{2} \hat{\mathbf{u}}^{\top} & \beta_{2}^{2}
\end{array}\right)+e^{\lambda_{2}}\left(\begin{array}{cc}
\beta_{2}^{2} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}}^{\top} & -\beta_{1} \beta_{2} \hat{\mathbf{u}} \\
-\beta_{1} \beta_{2} \hat{\mathbf{u}}^{\top} & \beta_{1}^{2}
\end{array}\right)+e^{a}\left(\begin{array}{cc}
I_{n}-\hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & \mathbf{0} \\
\mathbf{0}^{\top} & 0
\end{array}\right) .
\end{aligned}
$$

Some variable substitutions will give us the form in (A.1); $\lambda_{1}=\phi+\psi, \lambda_{2}=\phi-\psi$, and $\beta_{1}=\cos (\gamma / 2)$:

$$
=e^{\phi}\left(\begin{array}{cc}
(\cosh \psi+\sinh \psi \cos \gamma) \hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & \sinh \psi \sin \gamma \hat{\mathbf{u}} \\
\sinh \psi \sin \gamma \hat{\mathbf{u}}^{\top} & \cosh \psi-\sinh \psi \cos \gamma
\end{array}\right)+e^{a}\left(\begin{array}{cc}
I_{n}-\hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & 0 \\
0 & 0
\end{array}\right) .
$$

A. 2 Selecting α

Recall that $\mathbf{u}_{i}=\mathbf{A}_{i} \alpha$ (from section 4). Let $\hat{\mathbf{u}}_{i}=\mathbf{u}_{i} /\left\|\mathbf{u}_{\mathbf{i}}\right\|$. Let us denote the elements of the matrix in (A.1) as

$$
\begin{array}{lr}
p_{i}^{11}=e^{\phi}(\cosh \psi+\sinh \psi \cos \gamma) & =e^{\phi} \cosh \psi \\
p_{i}^{12}=e^{\phi}(\sinh \psi \sin \gamma) & =-e^{\phi} \sinh \psi \\
p_{i}^{22}=e^{\phi}(\cosh \psi-\sinh \psi \cos \gamma) & =e^{\phi} \cosh \psi
\end{array}
$$

We observe that $\hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top}$ is a rank one outer product with unit trace and that a_{i} is the same for all i. So $\sum_{i} Q_{i}(\alpha) \bullet \mathbf{P}_{i}$ is given as:

$$
\begin{equation*}
\left(\sum_{i=0}^{m}\left(2 p_{i}^{12} \hat{\mathbf{u}}_{i}^{\top} \mathbf{A}_{i}\right)\right) \alpha \geq-m(n-1) e^{a}-\sum_{i=0}^{m}\left(p_{i}^{11}+p_{i}^{22} s\right) . \tag{A.3}
\end{equation*}
$$

It is worth noting that the right hand side bears a close resemblance to the trace of \mathbf{P}, which is $m(n-1) e^{a}+\sum_{i=0}^{m}\left(p_{i}^{11}+p_{i}^{22}\right)$ (the trace of \mathbf{I}_{n} is n , and the trace of $\hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top}$ is always 1). We know that $s=\omega=1$ (see Section 4), so this makes the RHS equal to the trace. Also from normalization step of Algorithm 1 we know that \mathbf{P} is normalized with trace 1 , so we have the following:

$$
\begin{equation*}
\left(\sum_{i=1}^{m}\left(2 p_{i}^{12} \hat{\mathbf{u}}_{i}^{\top} \mathbf{A}_{i}\right)\right) \alpha^{(t)} \geq-1 \tag{A.4}
\end{equation*}
$$

Practical Considerations. We highlight two important practical consequences of our formulation. First, the procedure produces a very sparse update to α : in each iteration, only two coordinates of α are updated. This makes each iteration
very efficient, taking only linear time. Second, by expressing \mathbf{u}_{i} in terms of \mathbf{g}_{i} we never need to explicitly compute \mathbf{A}_{i} (as $\mathbf{u}_{i}=\mathbf{A}_{i} \alpha$), which in turn means that we do not need to compute the (expensive) square root of $\mathbf{G}_{\mathbf{i}}$ explicitly.
Another beneficial feature of the dual-finding procedure for MKL is that terms involving the primal variables \mathbf{P} are either normalized (when we set the trace of \mathbf{P} to 1) or eliminated (due to the fact that we have a compact closed-form expression for \mathbf{P}), which means that we never have to explicitly maintain \mathbf{P}, save for a small number $(4 m)$ of variables.

A. 3 Proof that ρ^{2} is $O(1)$

Lemma A.2. ρ is bounded by $3 / 2$.
Proof. ρ is defined as the maximum of $\left\|\mathbf{Q}\left(\alpha^{(t)}\right)\right\|$ for all t. Here $\|\cdot\|$ denotes the largest eigenvalue in absolute value [3]. Because $s=\omega=1$ (see Section 4), the eigenvalues of $\mathbf{Q}_{i}\left(\alpha^{(t)}\right)$ are 1 (with multiplicity $n-1$), and $1 \pm\left\|\mathbf{A}_{i} \alpha^{(t)}\right\|$. The greater of these in absolute value is clearly $1+\left\|\mathbf{A}_{i} \alpha^{(t)}\right\|$.
$\left\|\mathbf{A}_{i} \alpha^{(t)}\right\|$ is equal to

$$
\left(\left(\alpha^{(t)}\right)^{T} \mathbf{A}_{i}^{T} \mathbf{A}_{i} \alpha^{(t)}\right)^{\frac{1}{2}}=\left(\frac{1}{r_{i}}\left(\alpha^{(t)}\right)^{T} \mathbf{G}_{i} \alpha^{(t)}\right)^{\frac{1}{2}}
$$

$\alpha^{(t)}$ always has two nonzero elements, and they are equal to $1 / 2$. They also correspond to values of \mathbf{y} with opposite signs, so if j and k are the coordinates in question, $\left(\alpha^{(t)}\right)^{T} \mathbf{G}_{i} \alpha^{(t)} \leq(1 / 4)\left(\mathbf{G}_{i(j j)}+\mathbf{G}_{i(k k)}\right)$, because $\mathbf{G}_{i(j k)}$ and $\mathbf{G}_{i(k j)}$ are both negative. Because of the factor of $1 / r_{i}$, and because r_{i} is the trace of $\mathbf{G}_{i},\left\|\mathbf{A}_{i} \alpha^{(t)}\right\| \leq 1 / 2$. This is true for any of the i, so the maximum eigenvalue of $\mathbf{Q}\left(\alpha^{(t)}\right)$ in absolute value is bounded by $1+1 / 2=3 / 2$.

A. 4 Exponentiating M

From $\mathbf{M}_{i}^{(t)}$ in Algorithm 1 and (4.2), we have $\mathbf{M}_{i}^{(t)}=\frac{1}{2 \rho}\left(\mathbf{Q}_{i}\left(\alpha^{(t)}\right)+\rho \mathbf{I}_{n+1}\right)$, where ρ is a program parameter which is explained in 4.2.

Our $\mathbf{Q}_{i}(\alpha)=\left(\begin{array}{cc}\mathbf{I}_{n} & \mathbf{A}_{i} \alpha \\ \left(\mathbf{A}_{i} \alpha\right)^{\top} & 1\end{array}\right)$ is of the form $\left(\begin{array}{cc}a \mathbf{I}_{n} & \mathbf{u}_{\mathbf{i}} \\ \mathbf{u}_{\mathbf{i}}^{\top} & b\end{array}\right)$, where $a=1$ and $b=1$ are non-negative $\forall i$ and $\mathbf{u}_{i}=\mathbf{A}_{i} \alpha$. So we have

$$
\begin{equation*}
\mathbf{u}_{i}^{\top} \mathbf{u}_{i}=\left(\mathbf{A}_{i} \alpha\right)^{\top} \mathbf{A}_{i} \alpha=\alpha^{\top} \mathbf{A}_{i}^{\top} \mathbf{A}_{i} \alpha=\alpha^{\top} \frac{1}{r_{i}} \mathbf{G}_{i} \alpha \tag{A.5}
\end{equation*}
$$

where the last equality follows from $\mathbf{A}_{i}^{\top} \mathbf{A}_{i}=\frac{1}{r_{i}} \mathbf{G}_{i}$ (cf. (4.2)). As we shall show in Algorithm 3, at each iteration the matrix to be exponentiated is a sum of matrices of the form $\frac{1}{2 \rho}\left(\mathbf{Q}_{i}\left(\sum_{t=1}^{\tau} \alpha^{(t)}\right)+\rho t \mathbf{I}_{n+1}\right)$, so Lemma A. 1 can be applied at every iteration. Additionally, $a=b$, so many of the substitutions simplify considerably: $\phi=a, \psi=\|\mathbf{u}\|, \sin \gamma= \pm 1$, and $\cos \gamma=0$.

We provide in detail the algorithm we use to exponentiate the matrix \mathbf{M}. This subroutine is called from Algorithm 3 in Section 4.

Practical considerations. In Lemma A.1, large inputs to the functions exp, cosh, and sinh will cause them to rapidly overflow even at double-precision range. Fortunately there are two steps we can take. First, $\exp (x) / 2$ gets exponentially close to both $\sinh (x)$ and $\cosh (x)$ as x gets larger, so above a high enough value, we can simply approximate $\sinh (x)$ and $\cosh (x)$ with $\exp (x) / 2$.

Because exp can overflow just as much as sinh or cosh, this doesn't solve the problem completely. However, since \mathbf{P} is always normalized so that $\operatorname{tr}(\mathbf{P})=1$, we can multiply the elements of \mathbf{P} by any factor we choose and the factor will be normalized out in the end. So above a certain value, we can use exp alone and throw a "quashing" factor ($e^{-\phi-q}$) into the equations before computing the result, and it will be normalized out later in the computation. For our purposes, setting $q=20$ suffices. Note that this trades overflow for underflow, but underflow can be interpreted merely as one kernel disappearing from significance.

```
Algorithm 4 EXPONENTIATE- \(M\)
Input: \(\mathbf{y}, \alpha,\left\{\mathbf{G}_{i}\right\}, \varepsilon^{\prime}, \rho, t\)
    \(\phi \leftarrow-\frac{\varepsilon^{\prime}}{2 \rho}(1+\rho) t\)
    for \(i \in[1 . . m]\) do
        \(\left\|\mathbf{u}_{i}\right\| \leftarrow \sqrt{\alpha^{T} \mathbf{G}_{i} \alpha}\)
        \(\mathbf{g}_{i} \leftarrow \frac{1}{\left\|\mathbf{u}_{i}\right\|} \mathbf{G}_{i} \alpha\)
        \(\psi_{i} \leftarrow \frac{\varepsilon^{\prime}}{2 \rho}\left\|\mathbf{u}_{i}\right\|\)
    end for
    \(q \leftarrow \max _{i} \psi_{i}\)
    if \(q<20\) then
        for \(i \in[1 . . m]\) do
            \(l_{i}^{11} \leftarrow \cosh \left(\psi_{i}\right)\)
            \(l_{i}^{12} \leftarrow-\sinh \left(\psi_{i}\right)\)
        end for
        \(e_{\mathbf{M}} \leftarrow 1\)
    else
        for \(i \in[1 . . m]\) do
            \(l_{i}^{11} \leftarrow e^{\psi_{i}-q}\)
            \(l_{i}^{12} \leftarrow-l_{i}^{11}\)
        end for
        \(e_{\mathbf{M}} \leftarrow 2 e^{-q}\)
    end if
    \(S \leftarrow m(n-1) e_{\mathbf{M}}+2 \sum_{i} l_{i}^{11}\)
    for \(i \in[1 . . m]\) do
        \(l_{i}^{11} \leftarrow l_{i}^{11} / S\)
        \(l_{i}^{12} \leftarrow l_{i}^{12} / S\)
    end for
    \(\mathbf{g} \leftarrow \sum_{i} 2 l_{i}^{12} \mathbf{g}_{i}\)
    Return \(\mathbf{1}_{\mathbf{i}}{ }^{12}, \mathbf{g}\)
```

