A Proofs from Section 4

We collect together proofs and auxiliary algorithms from Section 4.

A.1 Proof of Lemma 4.1

Lemma A.1. The exponential of a matrix in the form $\begin{pmatrix} a\mathbf{I}_n & \mathbf{u} \\ \mathbf{u}^\top & b \end{pmatrix}$, where a and b are nonnegative, is

$$e^{\phi} \begin{pmatrix} (\cosh\psi + \sinh\psi\cos\gamma)\hat{\mathbf{u}}^{\top} & \sinh\psi\sin\gamma\hat{\mathbf{u}} \\ \sinh\psi\sin\gamma\hat{\mathbf{u}}^{\top} & \cosh\psi - \sinh\psi\cos\gamma \end{pmatrix} + e^{a} \begin{pmatrix} \mathbf{I}_{n} - \hat{\mathbf{u}}\hat{\mathbf{u}}^{\top} & 0 \\ 0 & 0 \end{pmatrix},$$
(A.1)

where $\hat{\mathbf{u}}$ is the unit vector $\mathbf{u}/||\mathbf{u}||$, $\phi = (a+b)/2$, $\psi = \sqrt{(a-b)^2/4 + ||\mathbf{u}||^2}$, and $\gamma = \tan^{-1}(2||\mathbf{u}||/(a-b))$.

We symbolically exponentiate an $n + 1 \times n + 1$ matrix of the form

$$\mathbf{M} = \begin{pmatrix} aI_n & \mathbf{u} \\ \mathbf{u}^{ op} & b \end{pmatrix}.$$

Since this matrix is real and symmetric, its eigenvalues λ_i are positive and its unit eigenvectors \mathbf{v}_i form an orthonormal basis. The method that we use to symbolically exponentiate it is to express it in the form

$$\mathbf{M} = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^\top$$

The exponential then becomes

$$e^{\mathbf{M}} = \sum_{i=1}^{n} e^{\lambda_i} \mathbf{v}_i \mathbf{v}_i^{\top}$$

As a matter of notation, let $\hat{\mathbf{u}}$ be the unit vector such that $\|\mathbf{u}\|\hat{\mathbf{u}} = \mathbf{u}$.

Eigenvalues. The characteristic equation for M is not difficult to calculate. It is:

$$(\lambda - a)^{n-1}(\lambda^2 - (a+b)\lambda + ab - \|\mathbf{u}\|^2).$$
(A.2)

This yields n-1 eigenvalues equal to a, and the other two equal to $(a+b)/2 + \sqrt{(a-b)^2/4 + \|\mathbf{u}\|^2}$ and $(a+b)/2 - \sqrt{(a-b)^2/4 + \|\mathbf{u}\|^2}$. We label them λ_1 and λ_2 , respectively, and the rest are equal to a.

Eigenvectors. First we show that **M** has two eigenvectors of the form $(\mathbf{u}, c)^{\top}$:

$$\begin{pmatrix} aI_n & \mathbf{u} \\ \mathbf{u}^\top & b \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ c \end{pmatrix} = \begin{pmatrix} (a+c)\mathbf{u} \\ \|\mathbf{u}\|^2 + bc \end{pmatrix},$$

So as long as we choose c such that $c^2 + ac = \|\mathbf{u}\|^2 + bc$, or $c = (b-a)/2 \pm \sqrt{(a-b)^2/4 + \|\mathbf{u}\|^2}$, then $(\mathbf{u}, c)^{\top}$ is an eigenvector with eigenvalue a + c. These two eigenvalues are just λ_1 and λ_2 . We will call the corresponding eigenvectors \mathbf{v}_1 and \mathbf{v}_2 .

Since **M** is symmetric, all of its eigenvectors are orthogonal. The remaining eigenvectors are of the form $(\mathbf{w}, 0)^{\top}$, where $\mathbf{w}^{\top}\mathbf{u} = 0$:

$$\begin{pmatrix} aI_n & \mathbf{u} \\ \mathbf{u}^\top & b \end{pmatrix} \begin{pmatrix} \mathbf{w} \\ 0 \end{pmatrix} = \begin{pmatrix} a\mathbf{w} \\ 0 \end{pmatrix}.$$

Clearly the corresponding eigenvalue for any such eigenvector is *a*, so there are n-1 of them. The corresponding parts of these eigenvectors are labeled \mathbf{w}_i , where $3 \le i \le n+1$, and we assume they are unit vectors.

Since

$$e^{\mathbf{M}} = \sum_{i=1}^{n} e^{\lambda_i} \mathbf{v}_i \mathbf{v}_i^{ op}$$

and the eigenvalue *a* is of multiplicity n - 1, we have

$$e^{\mathbf{M}} = e^{\lambda_1} \frac{\mathbf{v}_1 \mathbf{v}_1^{\top}}{\|\mathbf{v}_1\|^2} + e^{\lambda_2} \frac{\mathbf{v}_2 \mathbf{v}_2^{\top}}{\|\mathbf{v}_2\|^2} + e^a \sum_{i=3}^n \begin{pmatrix} \mathbf{w}_i \mathbf{w}_i^{\top} & \mathbf{0} \\ \mathbf{0}^{\top} & \mathbf{0} \end{pmatrix}$$

$$= \frac{e^{\lambda_1}}{\|\mathbf{u}\|^2 + c_1^2} \begin{pmatrix} \mathbf{u} \mathbf{u}^{\top} & c_1 \mathbf{u} \\ c_1 \mathbf{u}^{\top} & c_1^2 \end{pmatrix} + \frac{e^{\lambda_2}}{\|\mathbf{u}\|^2 + c_2^2} \begin{pmatrix} \mathbf{u} \mathbf{u}^{\top} & c_2 \mathbf{u} \\ c_2 \mathbf{u}^{\top} & c_2^2 \end{pmatrix} + e^a \begin{pmatrix} \mathbf{I}_n - \hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & \mathbf{0} \\ \mathbf{0}^{\top} & \mathbf{0} \end{pmatrix}$$

The last term in the equality is due to the fact that $\hat{\mathbf{u}}$ and the $\hat{\mathbf{w}}_i$ form an orthonormal basis for \mathbb{R}^n , so $\hat{\mathbf{u}}\hat{\mathbf{u}}^\top + \sum \hat{\mathbf{w}}_i \hat{\mathbf{w}}_i^\top = I_n$. We can reduce some of the factors in the expression by observing that $\|\mathbf{u}\| = -c_1c_2$. Let

$$\beta_1^2 = \|\mathbf{u}\|^2 / (\|\mathbf{u}\|^2 + c_1^2) = -c_1 c_2 / (c_1^2 - c_1 c_2) = c_2 / (c_2 - c_1) = c_2^2 / (c_2^2 - c_1 c_2) = c_2^2 / (\|\mathbf{u}\|^2 + c_2^2)$$

$$\beta_2^2 = \|\mathbf{u}\|^2 / (\|\mathbf{u}\|^2 + c_2^2) = -c_1 c_2 / (c_2^2 - c_1 c_2) = -c_1 / (c_2 - c_1) = c_1^2 / (c_1^2 - c_1 c_2) = c_1^2 / (\|\mathbf{u}\|^2 + c_1^2)$$

Note also that $\beta_1^2 + \beta_2^2 = 1$.

The Exponential. All that remains is to put everything together:

$$e^{M} = \sum_{i=1}^{n} e^{\lambda_{i}} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}$$
$$= e^{\lambda_{1}} \begin{pmatrix} \beta_{1}^{2} \hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & \beta_{1} \beta_{2} \hat{\mathbf{u}} \\ \beta_{1} \beta_{2} \hat{\mathbf{u}}^{\top} & \beta_{2}^{2} \end{pmatrix} + e^{\lambda_{2}} \begin{pmatrix} \beta_{2}^{2} \hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & -\beta_{1} \beta_{2} \hat{\mathbf{u}} \\ -\beta_{1} \beta_{2} \hat{\mathbf{u}}^{\top} & \beta_{1}^{2} \end{pmatrix} + e^{a} \begin{pmatrix} I_{n} - \hat{\mathbf{u}} \hat{\mathbf{u}}^{\top} & \mathbf{0} \\ \mathbf{0}^{\top} & \mathbf{0} \end{pmatrix}$$

Some variable substitutions will give us the form in (A.1); $\lambda_1 = \phi + \psi$, $\lambda_2 = \phi - \psi$, and $\beta_1 = \cos(\gamma/2)$:

$$=e^{\phi}\begin{pmatrix}(\cosh\psi+\sinh\psi\cos\gamma)\hat{\mathbf{u}}^{\top}&\sinh\psi\sin\gamma\hat{\mathbf{u}}\\\sinh\psi\sin\gamma\hat{\mathbf{u}}^{\top}&\cosh\psi-\sinh\psi\cos\gamma\end{pmatrix}+e^{a}\begin{pmatrix}I_{n}-\hat{\mathbf{u}}\hat{\mathbf{u}}^{\top}&0\\0&0\end{pmatrix}$$

A.2 Selecting α

Recall that $\mathbf{u}_i = \mathbf{A}_i \alpha$ (from section 4). Let $\hat{\mathbf{u}}_i = \mathbf{u}_i / \|\mathbf{u}_i\|$. Let us denote the elements of the matrix in (A.1) as

$$p_i^{11} = e^{\phi} (\cosh \psi + \sinh \psi \cos \gamma) = e^{\phi} \cosh \psi$$
$$p_i^{12} = e^{\phi} (\sinh \psi \sin \gamma) = -e^{\phi} \sinh \psi$$
$$p_i^{22} = e^{\phi} (\cosh \psi - \sinh \psi \cos \gamma) = e^{\phi} \cosh \psi$$

We observe that $\hat{\mathbf{u}}_i \hat{\mathbf{u}}_i^{\top}$ is a rank one outer product with unit trace and that a_i is the same for all *i*. So $\sum_i Q_i(\alpha) \bullet \mathbf{P}_i$ is given as:

$$\left(\sum_{i=0}^{m} (2p_i^{12} \hat{\mathbf{u}}_i^{\top} \mathbf{A}_i)\right) \alpha \ge -m(n-1)e^a - \sum_{i=0}^{m} (p_i^{11} + p_i^{22}s).$$
(A.3)

It is worth noting that the right hand side bears a close resemblance to the trace of **P**, which is $m(n-1)e^a + \sum_{i=0}^m (p_i^{11} + p_i^{22})$ (the trace of **I**_n is n, and the trace of $\hat{\mathbf{u}}_i \hat{\mathbf{u}}_i^{\top}$ is always 1). We know that $s = \omega = 1$ (see Section 4), so this makes the RHS equal to the trace. Also from normalization step of Algorithm 1 we know that **P** is normalized with trace 1, so we have the following:

$$\left(\sum_{i=1}^{m} (2p_i^{12} \hat{\mathbf{u}}_i^{\top} \mathbf{A}_i)\right) \boldsymbol{\alpha}^{(t)} \ge -1.$$
(A.4)

Practical Considerations. We highlight two important practical consequences of our formulation. First, the procedure produces a very sparse update to α : in each iteration, only two coordinates of α are updated. This makes each iteration

very efficient, taking only linear time. Second, by expressing \mathbf{u}_i in terms of \mathbf{g}_i we never need to explicitly compute \mathbf{A}_i (as $\mathbf{u}_i = \mathbf{A}_i \alpha$), which in turn means that we do not need to compute the (expensive) square root of \mathbf{G}_i explicitly.

Another beneficial feature of the dual-finding procedure for MKL is that terms involving the primal variables \mathbf{P} are either normalized (when we set the trace of \mathbf{P} to 1) or eliminated (due to the fact that we have a compact closed-form expression for \mathbf{P}), which means that we never have to explicitly maintain \mathbf{P} , save for a small number (4*m*) of variables.

A.3 Proof that ρ^2 is O(1)

Lemma A.2. ρ is bounded by 3/2.

Proof. ρ is defined as the maximum of $\|\mathbf{Q}(\alpha^{(t)})\|$ for all *t*. Here $\|\cdot\|$ denotes the largest eigenvalue in absolute value [3]. Because $s = \omega = 1$ (see Section 4), the eigenvalues of $\mathbf{Q}_i(\alpha^{(t)})$ are 1 (with multiplicity n-1), and $1 \pm \|\mathbf{A}_i\alpha^{(t)}\|$. The greater of these in absolute value is clearly $1 + \|\mathbf{A}_i\alpha^{(t)}\|$.

 $\|\mathbf{A}_i \boldsymbol{\alpha}^{(t)}\|$ is equal to

$$((\boldsymbol{\alpha}^{(t)})^T \mathbf{A}_i^T \mathbf{A}_i \boldsymbol{\alpha}^{(t)})^{\frac{1}{2}} = \left(\frac{1}{r_i} (\boldsymbol{\alpha}^{(t)})^T \mathbf{G}_i \boldsymbol{\alpha}^{(t)}\right)^{\frac{1}{2}}.$$

 $\alpha^{(t)}$ always has two nonzero elements, and they are equal to 1/2. They also correspond to values of **y** with opposite signs, so if *j* and *k* are the coordinates in question, $(\alpha^{(t)})^T \mathbf{G}_i \alpha^{(t)} \leq (1/4)(\mathbf{G}_{i(jj)} + \mathbf{G}_{i(kk)})$, because $\mathbf{G}_{i(jk)}$ and $\mathbf{G}_{i(kj)}$ are both negative. Because of the factor of $1/r_i$, and because r_i is the trace of \mathbf{G}_i , $\|\mathbf{A}_i \alpha^{(t)}\| \leq 1/2$. This is true for any of the *i*, so the maximum eigenvalue of $\mathbf{Q}(\alpha^{(t)})$ in absolute value is bounded by 1 + 1/2 = 3/2.

A.4 Exponentiating M

From $\mathbf{M}_{i}^{(t)}$ in Algorithm 1 and (4.2), we have $\mathbf{M}_{i}^{(t)} = \frac{1}{2\rho} (\mathbf{Q}_{i}(\boldsymbol{\alpha}^{(t)}) + \rho \mathbf{I}_{n+1})$, where ρ is a program parameter which is explained in 4.2.

Our $\mathbf{Q}_i(\alpha) = \begin{pmatrix} \mathbf{I}_n & \mathbf{A}_i \alpha \\ (\mathbf{A}_i \alpha)^\top & 1 \end{pmatrix}$ is of the form $\begin{pmatrix} a\mathbf{I}_n & \mathbf{u}_i \\ \mathbf{u}_i^\top & b \end{pmatrix}$, where a = 1 and b = 1 are non-negative $\forall i$ and $\mathbf{u}_i = \mathbf{A}_i \alpha$. So we have

$$\mathbf{u}_i^{\top} \mathbf{u}_i = (\mathbf{A}_i \alpha)^{\top} \mathbf{A}_i \alpha = \alpha^{\top} \mathbf{A}_i^{\top} \mathbf{A}_i \alpha = \alpha^{\top} \frac{1}{r_i} \mathbf{G}_i \alpha$$
(A.5)

where the last equality follows from $\mathbf{A}_i^{\top} \mathbf{A}_i = \frac{1}{r_i} \mathbf{G}_i$ (cf. (4.2)). As we shall show in Algorithm 3, at each iteration the matrix to be exponentiated is a sum of matrices of the form $\frac{1}{2\rho} (\mathbf{Q}_i (\sum_{t=1}^{\tau} \alpha^{(t)}) + \rho t \mathbf{I}_{n+1})$, so Lemma A.1 can be applied at every iteration. Additionally, a = b, so many of the substitutions simplify considerably: $\phi = a$, $\psi = ||\mathbf{u}||$, $\sin \gamma = \pm 1$, and $\cos \gamma = 0$.

We provide in detail the algorithm we use to exponentiate the matrix **M**. This subroutine is called from Algorithm 3 in Section 4.

Practical considerations. In Lemma A.1, large inputs to the functions exp, cosh, and sinh will cause them to rapidly overflow even at double-precision range. Fortunately there are two steps we can take. First, $\exp(x)/2$ gets exponentially close to both $\sinh(x)$ and $\cosh(x)$ as x gets larger, so above a high enough value, we can simply approximate $\sinh(x)$ and $\cosh(x)$ with $\exp(x)/2$.

Because exp can overflow just as much as sinh or cosh, this doesn't solve the problem completely. However, since **P** is always normalized so that $tr(\mathbf{P}) = 1$, we can multiply the elements of **P** by any factor we choose and the factor will be normalized out in the end. So above a certain value, we can use exp alone and throw a "quashing" factor $(e^{-\phi-q})$ into the equations before computing the result, and it will be normalized out later in the computation. For our purposes, setting q = 20 suffices. Note that this trades overflow for underflow, but underflow can be interpreted merely as one kernel disappearing from significance.

Algorithm 4 EXPONENTIATE-*M*

Input: y, α , $\{G_i\}$, ε' , ρ , t $\phi \leftarrow -\frac{\varepsilon'}{2\rho}(1+\rho)t$ for $i \in [1..m]$ do $\|\mathbf{u}_i\| \leftarrow \sqrt{\alpha^T G_i \alpha}$ $\mathbf{g}_i \leftarrow \frac{1}{\|\mathbf{u}_i\|} \mathbf{G}_i \alpha$ $\psi_i \leftarrow \frac{\varepsilon'}{2\rho} \|\mathbf{u}_i\|$ end for $q \leftarrow \max_i \psi_i$ if q < 20 then for $i \in [1..m]$ do $l_i^{11} \leftarrow \cosh(\psi_i)$ $l_i^{12} \leftarrow -\sinh(\psi_i)$ end for $e_{\mathbf{M}} \leftarrow 1$ else for $i \in [1..m]$ do $l_i^{11} \leftarrow e^{\psi_i - q}$ $l_i^{12} \leftarrow -l_i^{11}$ end for $e_{\mathbf{M}} \leftarrow 2e^{-q}$ end if $S \leftarrow m(n-1)e_{\mathbf{M}} + 2\sum_i l_i^{11}$ for $i \in [1..m]$ do $l_i^{11} \leftarrow l_i^{11}/S$ $l_i^{12} \leftarrow l_i^{12}/S$ end for $\mathbf{g} \leftarrow \sum_i 2l_i^{12} \mathbf{g}_i$ Return l_i^{12} , \mathbf{g}