
Selective Sampling with Drift

Edward Moroshko Koby Crammer
Department of Electrical Engineering,

The Technion, Haifa, Israel
edward.moroshko@gmail.com

Department of Electrical Engineering,
The Technion, Haifa, Israel

koby@ee.technion.ac.il

Abstract

Recently there has been much work on selec-
tive sampling, an online active learning setting,
in which algorithms work in rounds. On each
round an algorithm receives an input and makes a
prediction. Then, it can decide whether to query
a label, and if so to update its model, otherwise
the input is discarded. Most of this work is fo-
cused on the stationary case, where it is assumed
that there is a fixed target model, and the perfor-
mance of the algorithm is compared to a fixed
model. However, in many real-world applica-
tions, such as spam prediction, the best target
function may drift over time, or have shifts from
time to time. We develop a novel selective sam-
pling algorithm for the drifting setting, analyze it
under no assumptions on the mechanism gener-
ating the sequence of instances, and derive new
mistake bounds that depend on the amount of
drift in the problem. Simulations on synthetic
and real-world datasets demonstrate the superi-
ority of our algorithms as a selective sampling
algorithm in the drifting setting.

1 Introduction

We consider the online binary classification task, in which
a learning algorithm predicts a binary label given inputs in
a sequence of rounds. An example of such task is clas-
sification of emails based on their content as spam or not
spam. Traditionally, the purpose of a learning algorithm
is to make the number of mistakes as small as possible
compared to predictions of some single function from some
class. We call this setting the stationary setting.

Following the pioneering work of Rosenblatt [18] many al-

Appearing in Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

gorithms were proposed for this setting. Some of them are
able to employ second-order information. For example, the
second-order perceptron algorithm [5] extends the origi-
nal perceptron algorithm and uses the spectral properties of
the data to improve performance. Another example is the
AROW algorithm [8] which uses confidence as a second-
order information. All these second-order algorithms can
be seen as RLS (Regularized Least Squares) based, as their
update equations are similar to those of RLS, updating a
weight vector and a covariance-like matrix. Under the sta-
tionary setting, RLS-based second-order algorithms have
been successfully applied to the regression and classifica-
tion tasks, as shown in Table 1.

Despite the extensive and impressive guarantees that can be
made for algorithms in such setting [5, 8], competing with
the best fixed function is not always good enough. In many
real-world applications, the true target function is not fixed,
but is slowly changing over time, or switching from time to
time. These reasons led to the development of algorithms
and accompanying analysis for drifting and shifting set-
tings, which we collectively call the non-stationary setting.
For online regression, few algorithms were developed for
this setting [13, 22, 16]. Yet, for online classification, the
Shifting Perceptron algorithm [4] is a first-order algorithm
that shrinks the weight vector each iteration, and in this way
weaken dependence on the past. The Modified Perceptron
algorithm [3] is another first-order algorithm that had been
shown to work well in the drifting setting [9]. In this pa-
per we derive a new RLS-based second-order algorithm for
classification, designed to work with target drift, and thus
we fill the missing configuration in Table 1. Our algorithm
extends the second-order perceptron algorithm [5], and we
provide a performance bound in the mistake bound model.

A practical variant of the fully supervised online classifi-
cation setting, is where, at each prediction step, the learner
can abstain from observing the current label. This setting
is called selective sampling [12]. In this setting a learn-
ing algorithm actively decides when to query for a label.
If the label is queried, then the label value can be used
to improve future predictions, and otherwise the algorithm
never knows whether his prediction was correct. Roughly

651

Selective Sampling with Drift

Stationary Non-stationary
Regression [23, 2, 11] [16, 22]

Classification [5, 8] This work

Table 1: Fully supervised online RLS-based second-order
algorithms.

speaking, selective sampling algorithms can be divided in
two groups. In the first group, a simple randomized rule
is used to turn fully supervised algorithm to selective sam-
pling algorithm. The rule uses the margin of the estimate.
This group includes the selective sampling versions of the
perceptron and the second-order perceptron algorithms [7].
In the second group, selective sampling algorithms are de-
rived based on comparing the variance of the RLS estimate
to some threshold. This group includes the BBQ algorithm
[6], where the threshold decays polynomially with t as t−κ,
and more involved variants where the threshold depends on
the margin of the RLS estimate [10, 17].

In all previous work on selective sampling the performance
of an algorithm is compared to the performance of a single
linear comparator. To the best of our knowledge, our work
is the first instance of learning online in the context of drift-
ing in the selective sampling setting. We build on the work
of Cesa-Bianchi et al [7] that combined a randomized rule
into the Perceptron algorithm, yielding a selective sampling
algorithm. We analyze the resulting algorithm in the drift-
ing setting, and derive a bound on the expected number of
mistakes of the algorithm. Thus, we fill the non-stationary
cell in Table 2. Simulations on synthetic and real-world
datasets show the advantages of our algorithm, in a fully
supervised and selective sampling settings.

2 Problem setting
We consider the standard online learning model [1, 15] for
binary classification, in which learning proceeds in a se-
quence of rounds t = 1, 2, . . . , T . In round t the algo-
rithm observes an instance xt ∈ Rd and outputs a predic-
tion ŷt ∈ {−1,+1} for the label yt associated with xt.
We say that the algorithm has made a prediction mistake
if ŷt 6= yt, and denote by Mt the indicator function of the
event ŷt 6= yt. After observing the correct label yt the al-
gorithm may update its prediction rule, and then proceeds
to the next round. We denote by m the total number of
mistakes over a sequence of T examples.

The performance of an algorithm is measured by the total
number of mistakes it makes on an arbitrary sequence of
examples. In the standard performance model, the goal is to
bound this total number of mistakes in terms of the perfor-
mance of the best fixed linear classifier u ∈ Rd in hindsight.
Since finding u ∈ Rd that minimizes the number of mis-
takes on a known sequence is a computationally hard prob-
lem, the performance of the best predictor in hindsight is
often measured using the cumulative hinge loss Lγ,T (u) =∑T
t=1 `γ,t (u), where `γ,t (u) = max

{
0, γ − ytu>xt

}
is

Stationary Non-stationary
[7] This work

Table 2: Second-order randomized selective sampling al-
gorithms for classification.

the hinge loss of the competitor u on round t for some mar-
gin threshold γ > 0.

In the drifting setting that we consider in this work, the
learning algorithm faces the harder goal of bounding its to-
tal number of mistakes in terms of the cumulative hinge
loss achieved by an arbitrary sequence u1, u2, . . . , uT ∈
Rd of comparison vectors. The cumulative hinge loss of
such sequence is Lγ,T ({ut}) =

∑T
t=1 `γ,t (ut). To make

this goal feasible, the bound is allowed to scale also with
the norm of u1 and the total amount of drift defined to be
V = V ({ut}) =

∑T
t=2 ‖ut − ut−1‖

2.

We consider two settings: (a) standard supervised online
binary classification (described above), and (b) selective
sampling. In the later setting, after each prediction the
learner may observe the correct label yt only by issuing
a query. If no query is issued at time t, then yt remains un-
known. We represent the algorithm’s decision of querying
the label at time t through the value of a Bernoulli random
variable Zt, and the event of a mistake with the indicator
variable Mt = 1. Note that we measure the performance
of the algorithm by the total number of mistakes it makes
on a sequence of examples, including the rounds where the
true label yt remains unknown.

Finally, L̄γ,T ({ut}) = E
[∑T

t=1MtZt`γ,t (ut)
]

is the ex-
pected total hinge loss of a competitor on mistaken and
queried rounds, and trivially L̄γ,T ({ut}) ≤ Lγ,T ({ut}).

3 Algorithms
Online algorithms work in rounds. On round t the algo-
rithm receives an input xt and makes a prediction. We fol-
low Moroshko and Crammer [16] and design the predic-
tion as a last-step min-max problem in the context of drift-
ing. Yet, unlike all previous work, we design algorithms
for classification. Specifically, prediction is the solution of
the following optimization problem,

ŷT = arg min
ŷT∈{−1,+1}

max
yT∈{−1,+1}

[
T∑
t=1

(yt − ŷt)2

− min
u1,...,uT

QT (u1, . . . , uT)

]
, (1)

where

Qt (u1, . . . , ut) =b ‖u1‖2 + c
t−1∑
s=1

‖us+1 − us‖2

+

t∑
s=1

(
ys − u>s xs

)2

652

Edward Moroshko, Koby Crammer

for some positive constants b, c1.

This optimization problem can also be seen as a game
where the algorithm chooses a prediction label ŷt ∈
{−1,+1} to minimize the last-step regret, while an adver-
sary chooses a target label yt ∈ {−1,+1} to maximize it.
The first term of (1) is the loss suffered by the algorithm
while Qt (u1, . . . , ut) is a sum of the loss suffered by some
sequence of linear functions {us}ts=1, a penalty for consec-
utive pairs that are far from each other, and for the norm of
the first to be far from zero.

The following lemma enables to solve (1) by specifying
means to solve the inner optimization problem in (1).

Lemma 1 ([16], Lemma 2). Denote
Pt (ut) = minu1,...,ut−1

Qt (u1, . . . , ut). Then
Pt (ut) = u>t Dtut − 2u>t et + ft where,

D1 = bI + x1x
>
1 Dt =

(
D−1t−1 + c−1I

)−1
+ xtx

>
t (2)

e1 = y1x1 et =
(
I+c−1Dt−1

)−1
et−1+ytxt (3)

f1 = y21 ft=ft−1 − e>t−1 (cI+Dt−1)
−1
et−1+y2t ,

where,Dt ∈ Rd×d is a PSD matrix, et ∈ Rd×1 and ft ∈ R.

From the lemma we solve, minu1,...,ut
Qt (u1, . . . , ut), by,

min
u1,...,ut

Qt (u1, . . . , ut) = min
ut

Pt(ut) = −e>t D−1t et+ft .

(4)
Next, we substitute the value of eT from (3) (as a function
of yT) in (4), and then substitute (4) in (1). Omitting terms
not depending explicitly on yT and ŷT we get from (1) that,

ŷT = arg min
ŷT∈{−1,+1}

max
yT∈{−1,+1}

[(
x>TD

−1
T xT

)
y2T

+ 2yT

(
x>TD

−1
T

(
I + c−1DT−1

)−1
eT−1 − ŷT

)
+ ŷ2T

]

= arg min
ŷT∈{−1,+1}

[
x>TD

−1
T xT

+ 2
∣∣∣x>TD−1T (

I + c−1DT−1
)−1

eT−1 − ŷT
∣∣∣+ ŷ2T

]
= sign(p̂t)|t=T ,

where

p̂t = x>t D
−1
t

(
I + c−1Dt−1

)−1
et−1 . (5)

To the best of our knowledge, this is the first applica-
tion of the last-step min-max approach directly for clas-
sification, and not as a reduction from regression, which is
possible by employing the square loss, as in least-squares

1We still use the squared loss in (1), as done for least-squares
SVMs [21, 20], which allows us to compute all quantities analyt-
ically.

SVMs [21, 20]. Indeed, we showed that the optimal predic-
tion for classification is the sign of the optimal prediction
for regression [16].

Our algorithm includes the second-order perceptron [5] al-
gorithm as a special case when c = ∞. The second-order
perceptron algorithm is indeed using the sign of the optimal
min-max prediction for regression [11], which is in fact
the prediction of the AAR algorithm [23] (aka ”forward
algorithm” [2]). Additionally, similar to other algorithms
[18, 5], we update the algorithm only on mistaken rounds.
We call the algorithm LASEC for last-step adaptive classi-
fier. LASEC is a special case of Fig. 1 when setting a =∞
(see below). Note that in the pseudocode two indices are
used, the current time t and the number of examples used
to update the model k. This makes the presentation simpler
as some examples are not used to update the model, the
ones for which there was no classification mistake. Note,
the update equations of Fig. 1 are essentially (2) and (3).
The LASEC algorithm can be seen as an extension to the
non-stationary setting of the second-order perceptron algo-
rithm [5]. Indeed, for c = ∞ the LASEC algorithm is
reduced to the second-order perceptron algorithm.

Next, we turn LASEC from an algorithm that uses the la-
bels of all inputs to one that queries labels stochastically.
Specifically, the algorithm uses the margin |p̂t| defined in
(5) to randomly choose whether to make a prediction. We
interpret large values of the margin |p̂t| as being confident
in the prediction, which should reduce the probability of
querying the label. Specifically, the algorithm is querying
a label with probability a/(a + |p̂t|) for some a > 0. If
a → ∞ the algorithm will always query, and reduce to
LASEC, while if a→ 0 it will never query.

This approach for deriving selective-algorithms from
margin-based online algorithms is not new, and was used
to design an algorithm for the non-drifting case [7]. Yet,
unlike other selective sampling algorithms [7, 6, 10, 17],
our algorithm is designed to work in the drifting setting.
Since the algorithm is based on the LASEC algorithm,
we call it LASEC-SS, where SS stands for selective sam-
pling. The algorithm is summarized in Fig. 1 as well. Note
that LASEC-SS includes other algorithms as special cases.
Specifically, LASEC-SS is reduced for c =∞ to the selec-
tive sampling version of the second-order perceptron algo-
rithm [7], and as mentioned above, for a =∞ it is reduced
to LASEC, and the setting of both c = ∞, a = ∞ reduces
the algorithm to the second-order perceptron, which in turn
reduces to the perceptron algorithm for b→∞.

The algorithm is flexible enough to be tuned both to drift-
ing or non-drifting setting (using c), between selective sam-
pling or supervised learning (using a), and between first-
order or second-order modeling (using b).

Our algorithm can be combined with Mercer kernels as it
employs only sums of inner- and outer-products of the in-

653

Selective Sampling with Drift

Parameters: 0 < b < c , 0 < a
Initialize: Set D0 = (bc)/(c − b) I ∈ Rd×d , e0 = 0 ∈
Rd and k = 1
For t = 1, . . . , T do
• Receive an instance xt ∈ Rd
• Set

St =
(
D−1k−1 + c−1I

)−1
+ xtx

>
t see (2)

p̂t = x>t S
−1
t

(
I + c−1Dk−1

)−1
ek−1 see (5)

• Output prediction ŷt = sign(p̂t)
• Draw a Bernoulli random variable Zt ∈ {0, 1} of pa-

rameter a
a+|p̂t|

• If Zt = 1 then query label yt ∈ {−1,+1} and if
ŷt 6= yt then update:

ek =
(
I + c−1Dk−1

)−1
ek−1 + ytxt see (3)

Dk = St

k ← k + 1

Figure 1: LASEC for selective sampling. Set a = ∞ for
the supervised setting.

puts. This allows it to build non-linear models (e.g. [19]).

4 Analysis

We now prove bounds for the number of mistakes of our
algorithm. We provide a mistake bound for the fully super-
vised version (LASEC) and for the selective sampling ver-
sion (LASEC-SS). Our bounds depend on the total drift of
the reference sequence Vm =

∑m
k=2 ‖uk − uk−1‖

2 which
is calculated on rounds when the algorithm makes updates.
We denote byM ⊆ {1, 2, . . .} the set of indices when the
algorithm updates. For the supervised setting it is the set
of mistaken trials (Mt = 1). For the selective sampling
setting it is the set of indices when Zt = 1 and Mt = 1.

Theorem 2. Assume the LASEC algorithm (of Fig. 1 with
a = ∞) is run on a finite sequence of examples. Then
for any reference sequence {ut} and γ > 0 the number
m = |M| of mistakes satisfies

m ≤ 1

γ
Lγ,T ({ut})

+
1

γ

√√√√(b ‖u1‖2 + cVm +
m∑
k=1

(
u>k xk

)2)∑
t∈M

x>t D
−1
k xt

(6)

Remark 3. For the stationary case, when uk = u ∀k
(Vm = 0) and we set c = ∞ for the LASEC algorithm
we recover the second-order perceptron bound [5].

Theorem 4. Assume the LASEC-SS algorithm of Fig. 1 is
run on a sequence of T examples with parameter a > 0.
Then for any reference sequence {ut} and γ > 0 the ex-
pected number of mistakes satisfies

E

[
T∑
t=1

Mt

]
≤ 1

γ
L̄γ,T ({ut})

+
a

2γ2

(
b ‖u1‖2 + cVm + E

[
T∑
t=1

MtZt
(
u>t xt

)2])

+
1

2a
E

[
T∑
t=1

MtZtx
>
t D
−1
t xt

]
. (7)

Moreover, the expected number of labels queried by the al-
gorithm equals

∑T
t=1 E

[
a

a+|p̂t|

]
.

Remark 5. As in other context [7]: Thm. 2 is not a special
case of Thm. 4. Indeed, setting a = ∞ makes the bound
of Thm. 4 unbounded, as opposed to Thm. 2. Also, from
the last part of Thm. 4 we observe that more labels would
be queried for larger values of a. However, the tradeoff
between number of queries and mistakes is not clear.
Remark 6. For the stationary case, when uk = u ∀k
(Vm = 0) and we set c = ∞ for the LASEC-SS algorithm
we recover the bound of the selective sampling version of
the second-order perceptron algorithm [7].

The bound (7) depends on the parameter a. If we would
know the future, by setting,

a = γ

√√√√√ E
[∑T

t=1MtZtx>t D
−1
t xt

]
b ‖u1‖2 + cVm + E

[∑T
t=1MtZt

(
u>t xt

)2]
we would minimize the bound and get

E

[
T∑
t=1

Mt

]
≤ 1

γ
L̄γ,T ({ut})

+
1

γ

√√√√√√√√√√

(
b ‖u1‖2 + cVm + E

[
T∑
t=1

MtZt
(
u>t xt

)2])

×

(
E

[
T∑
t=1

MtZtx
>
t D
−1
t xt

]) .

The last bound is an expectation version of the mistake
bound for the (deterministic) LASEC algorithm of Thm. 2,
and it might be even sharper than the LASEC bound,
since the magnitude of the three quantities L̄γ,T ({ut}),

E
[∑T

t=1MtZt
(
u>t xt

)2]
and E

[∑T
t=1MtZtx

>
t D
−1
t xt

]
is ruled by the size of the random set of updates {t :
ZtMt = 1}, which is typically smaller than the set of mis-
taken trials of the deterministic algorithm.

We now prove the bounds in Thm. 2 and Thm. 4, in the
following unified proof.

654

Edward Moroshko, Koby Crammer

Proof. Consider only the rounds t when the algorithm
makes an update, that is t ∈ M. Noting that our choice
p̂t = x>t S

−1
t

(
I + c−1Dk−1

)−1
ek−1 (in Fig. 1) is the

same as the prediction of the LASER algorithm for regres-
sion with drift, we can use the result proven by Moroshko
and Crammer [16] (Theorem 4 therein), from where we
have that for any sequence u1, . . . , um∑
t∈M

(p̂t − yt)2 ≤b ‖u1‖2 + c

m∑
k=2

‖uk − uk−1‖2

+
m∑
k=1

(
yk − u>k xk

)2
+
∑
t∈M

x>t D
−1
k xt . (8)

Note that in (8) the sums are over rounds when the algo-
rithm makes an update (for simplicity, we write yk as short-
hand for ytk where tk ∈M). Expanding the squares in (8),
lower bound p̂2t ≥ 0 and substituting ytp̂t = − |p̂t| when
t ∈M we obtain∑

t∈M
|p̂t| ≤

b

2
‖u1‖2 +

c

2
Vm −

m∑
k=1

yku
>
k xk

+
1

2

m∑
k=1

(
u>k xk

)2
+

1

2

∑
t∈M

x>t D
−1
k xt .

The last bound is correct for any sequence uk. We replace
uk with a

γuk (for some a > 0) and get

∑
t∈M
|p̂t| ≤b

a2

2γ2
‖u1‖2 + c

a2

2γ2
Vm −

a

γ

m∑
k=1

yku
>
k xk

+
a2

2γ2

m∑
k=1

(
u>k xk

)2
+

1

2

∑
t∈M

x>t D
−1
k xt .

Using γ−`γ,t (ut) ≤ ytu>t xt, which follows the definition
of the hinge loss, we get∑
t∈M

(|p̂t|+ a) ≤ a

γ

∑
t∈M

`γ,t (ut) +
1

2

∑
t∈M

x>t D
−1
k xt

+
a2

2γ2

(
b ‖u1‖2 + cVm +

m∑
k=1

(
u>k xk

)2)
. (9)

Next, to prove the bound for the LASEC algorithm in
Thm. 2, we further bound |p̂t| ≥ 0 in (9) and then divide it
by a. We obtain

m ≤ 1

γ

∑
t∈M

`γ,t (ut) +
1

2a

∑
t∈M

x>t D
−1
k xt

+
a

2γ2

(
b ‖u1‖2 + cVm +

m∑
k=1

(
u>k xk

)2)
.

The last bound is minimized by setting

a = γ

√√√√ ∑
t∈M x>t D

−1
k xt

b ‖u1‖2 + cVm +
∑m
k=1

(
u>k xk

)2 ,

and by using
∑
t∈M `γ,t (ut) ≤ Lγ,T ({ut}) we get the

desired bound of Thm. 2,

m ≤ 1

γ
Lγ,T ({ut})

+
1

γ

√√√√(b ‖u1‖2 + cVm +
m∑
k=1

(
u>k xk

)2)∑
t∈M

x>t D
−1
k xt .

To prove the mistake bound for the LASEC-SS algorithm in
Thm. 4, we note that the sum

∑
t∈M (|p̂t|+ a) on the LHS

of (9) can be written as
∑
tMtZt (|p̂t|+ a). Taking expec-

tation on both sides of (9) and using EZt = a/ (a+ |p̂t|)
we bound the expected number of mistakes of the algo-
rithm,

E

[
T∑
t=1

Mt

]
≤ 1

γ
L̄γ,T ({ut})

+
a

2γ2

(
b ‖u1‖2 + cVm + E

[
T∑
t=1

MtZt
(
u>t xt

)2])

+
1

2a
E

[
T∑
t=1

MtZtx
>
t D
−1
t xt

]
.

The value of the expected number of queried labels trivially
follows, E

[∑T
t=1 Zt

]
=
∑T
t=1 E

[
a

a+|p̂t|

]
.

Next, we further bound the term
∑
t∈M x>t D

−1
k xt in

Thm. 2. Using Lemma 5 and Lemma 7 of Moroshko and
Crammer [16] we have∑

t∈M
x>t D

−1
k xt ≤ ln

∣∣∣∣1bDm

∣∣∣∣+ c−1
m∑
k=1

Tr (Dk−1)

≤ ln

∣∣∣∣1bDm

∣∣∣∣+ c−1Tr (D0)

+
m

c
dmax

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
, (10)

where ‖xt‖2 ≤ X2. Substituting (10) in (6) we get a
bound of the form m ≤ 1

γD + 1
γ

√
A (B +mC) for the

LASEC algorithm, solved for m with the following techni-
cal lemma.

Lemma 7. Let A,B,C,D, γ,m > 0 satisfy m ≤ 1
γD +

1
γ

√
A (B +mC). Then

m ≤ 1

γ
D +

1

2γ2
AC

+
1

γ

√
1

γ
DAC +

1

4γ2
(AC)

2
+AB . (11)

The proof appears in the supplementary material. Using
Lem. 7 we have the bound (11) for the LASEC algorithm,

655

Selective Sampling with Drift

where

A = b ‖u1‖2 + cVm +

m∑
k=1

(
u>k xk

)2
,

B = ln

∣∣∣∣1bDm

∣∣∣∣+ c−1Tr (D0) ,

C = c−1dmax
{(

3X2 +
√
X4 + 4X2c

)
/2, b+X2

}
,

D = Lγ,T ({ut}) .

Next, we use corollary 8 from Moroshko and Crammer [16]
to get the final bound for LASEC.
Corollary 8. Assume ‖xt‖2 ≤ X2 and set b = εc for

some 0 < ε < 1. Denote µ = max

{
9/8X2,

(b+X2)
2

8X2

}
.

Assume the LASEC algorithm is run on T examples. If

Vm ≤ T
√
2dX
µ3/2 then by setting c =

(√
2TdX
Vm

)2/3
we have

the bound (11) for the number of mistakes of the LASEC
algorithm, where

D = Lγ,T ({ut}) ,

A = b ‖u1‖2 +
(√

2dX
)2/3

T 2/3V 1/3
m +

m∑
k=1

(
u>k xk

)2
,

B = ln

∣∣∣∣1bDm

∣∣∣∣+
ε

1− ε
d,

C = (4dX)
2/3

T−1/3V 1/3
m .

Proof. As was shown [16] we have

max

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
= 2X

√
2c ,

and thus

A = b ‖u1‖2 + cVm +

m∑
k=1

(
u>k xk

)2
= b ‖u1‖2 +

(√
2dX

)2/3
T 2/3V 1/3

m +
m∑
k=1

(
u>k xk

)2
,

B = ln

∣∣∣∣1bDm

∣∣∣∣+ c−1Tr (D0) = ln

∣∣∣∣1bDm

∣∣∣∣+
ε

1− ε
d ,

C =
2
√

2dX√
c

=
2
√

2dX(√
2TdX
Vm

)1/3 = (4dX)
2/3

T−1/3V 1/3
m .

The last bound for the LASEC algorithm is difficult to
interpret. Roughly speaking, the number of mistakes
grows with the amount of drift as ∼T 1/3V

2/3
m , because

A∼T 2/3V
1/3
m ,C∼T−1/3V 1/3

m and the bound is∼AC. An-
other bound for the drifting setting was shown by Caval-
lanti et al for the Shifting Perceptron [4]. However, they

used other notation of drift, which uses the norm rather than
the square norm of the difference of comparison vectors, as
we do. Thus, the two bounds are not comparable in general.

Next, we move to get explicit mistake bound for the
LASEC-SS algorithm, by bounding the right term in
Thm. 4. Again, using Lemma 5 and Lemma 7 from [16]
we get,
T∑
t=1

MtZtx
>
t D
−1
t xt ≤ ln

∣∣∣∣1bDT

∣∣∣∣+ c−1
T∑
t=1

Tr (Dt−1)

≤ ln

∣∣∣∣1bDT

∣∣∣∣+ c−1Tr (D0)

+ Tc−1dmax
{(

3X2 +
√
X4 + 4X2c

)
/2, b+X2

}
.

Combining this bound with Thm. 4 we get,

E

[
T∑
t=1

Mt

]
≤ 1

γ
L̄γ,T ({ut})

+
a

2γ2

(
b ‖u1‖2 + cVm + E

[
T∑
t=1

MtZt
(
u>t xt

)2])

+
1

2a

(
E ln

∣∣∣∣1bDT

∣∣∣∣+ c−1Tr (D0)

+ Tc−1dmax
{(

3X2 +
√
X4 + 4X2c

)
/2, b+X2

})
.

We now state the main result of this section, bounding the
expect number of mistakes of the LASEC-SS algorithm.
This is an immediate application of corollary 8 from [16].
Corollary 9. Assume ‖xt‖2 ≤ X2 and set b = εc for

some 0 < ε < 1. Denote µ = max

{
9/8X2,

(b+X2)
2

8X2

}
.

Assume the LASEC-SS algorithm is run on T examples. If

Vm ≤ T
√
2dX
µ3/2 then by setting c =

(√
2TdX
Vm

)2/3
we get

E

[
T∑
t=1

Mt

]
≤ 1

γ
L̄γ,T ({ut}) + b

a

2γ2
‖u1‖2

+
a

2γ2

(√
2dX

)2/3
T 2/3V 1/3

m

+
a

2γ2
E

[
T∑
t=1

MtZt
(
u>t xt

)2]

+
1

2a

(
E ln

∣∣∣∣1bDT

∣∣∣∣+
ε

1− ε
d+ (4dX)

2/3
T 2/3V 1/3

m

)
.

Again, we can optimize the last bound for the algorithm’s
parameter a. Setting

a = γ

√√√√√√√√
E ln

∣∣ 1
bDT

∣∣+ ε
1−εd+ (4dX)

2/3
T 2/3V

1/3
m(

b ‖u1‖2 +
(√

2dX
)2/3

T 2/3V
1/3
m

+E
[∑T

t=1MtZt
(
u>t xt

)2])
656

Edward Moroshko, Koby Crammer

we obtain

E

[
T∑
t=1

Mt

]
≤ 1

γ
L̄γ,T ({ut})

+
1

γ

[(
b ‖u1‖2 +

(√
2dX

)2/3
T 2/3V 1/3

m

+ E

[
T∑
t=1

MtZt
(
u>t xt

)2])(E ln

∣∣∣∣1bDT

∣∣∣∣+
ε

1− ε
d

+ (4dX)
2/3

T 2/3V 1/3
m

)]1/2
.

5 Experimental Study

We evaluated our algorithm with both synthetic and real-
world data with shifts, by comparing the average accuracy
(total number of correct online classifications divided by
the number of examples) of LASEC and LASEC-SS.

Data: In our first experiment we use a synthetic dataset
with 10, 000 examples of dimension d = 50. The inputs
xt ∈ R50 were drawn from a zero-mean unit-covariance
Gaussian distribution. The target ut ∈ R50 is a zero-
mean unit-covariance Gaussian vector, which is switched
every 500 examples to some other random vector. That
is u1 = ... = u500, u501 = ... = u1000, The la-
bels are set according to yt = sign(x>t ut). Our second
experiment uses the US Postal Service handwritten digits
recognition corpus (USPS) [14]. It contains normalized
grey scale images of size 16×16, divided into a training
(test) set of 7, 291 (2, 007) images. We combined the sets
to get 9, 298 examples. Based on the USPS multiclass data
we generated binary data with shifts. We chose at random
some digits to be positive class (the other digits are nega-
tive class). The partition to positive and negative classes is
changed every 500 examples at random, that is every 500
samples we changed the subgroup of labels (out of 10) that
are labeled as +1 (labels in the complementary subgroup
are labeled as -1). Each set of experiments was repeated 50
times and the error bars in the plots correspond to the 95%
confidence interval over the 50 runs.

Supervised Online Learning with Drift: In the
supervised-online classification task we compared the per-
formance of LASEC (setting a =∞ in Fig. 1) to five other
algorithms: the second-order perceptron algorithm (SOP)
[5], the Perceptron algorithm [18], the Shifting Perceptron
algorithm [4], the Modified Perceptron algorithm [3] and
the Randomized Budget Perceptron algorithm [4].

Both the Shifting Perceptron and the Randomized Budget
Perceptron are tuned using a single parameter (denoted by
λ and B respectively). Since the optimal values of these

parameters simply reduced these algorithms to the origi-
nal Perceptron, we set λ = 0.01 and B = 500 for syn-
thetic data, and λ = 0.0001 and B = 1, 000 for real-world
data. The setting of B = 500 is actually the switching
window, while for real-world data we alleviated the Ran-
domized Budget Perceptron and used twice the switching
window as the budget. For the LASEC and SOP algorithms
the parameters were tuned using a random draw of the data.

The results comparing supervised classification algorithms
on synthetic data are shown in Fig. 2(a). While for t < 500
(before the first shift) the SOP algorithm is the best as ex-
pected, we see that the LASEC algorithm deals better with
the shifts and outperforms other algorithms. For the real-
world USPS dataset (see Fig. 2(d)) LASEC slightly out-
performs SOP, and both outperform other perceptron-like
algorithms, due to the usage of second-order information.

Selective Sampling Online Learning with Drift: For
the selective sampling task we compared the LASEC-SS
algorithm from Fig. 1 to several selective sampling algo-
rithms: the selective sampling version of second-order per-
ceptron algorithm (SOP-SS) [7], the selective sampling
version of perceptron algorithm (Perceptron-SS) [7] and
the BBQ algorithm [6]. In addition to the BBQ algo-
rithm [6], we also consider a variant of the BBQ algorithm,
which we call BBQ-I. This algorithm is similar to the orig-
inal BBQ algorithm but it performs updates only when the
queried label is different from the predicted label. Each
algorithm has one parameter that controls the tradeoff be-
tween the query rate (fraction of queried labels) and the
accuracy of the algorithm. For fairness, this parameter was
set to get about the same query rate for all algorithms.

Fig. 2(b) and Fig. 2(e) summarize the accuracy of the algo-
rithms on synthetic data for query rate ∼0.1 and ∼0.4. In
both cases LASEC-SS outperforms other algorithms. Be-
fore the first shift at round 500 the BBQ is the best as
expected from previous results [17], but its performance
significantly degrade after the first shift. This is because
this algorithm performs query when the quantity rt =
x>t A

−1
t xt is large enough (see [6]), while the matrix At

grows each time a label is queried. Large At makes rt
small, the algorithm converges and stops query labels. If
after that a switch occurs, the algorithm fails in predictions
but cannot query correct labels because rt is small. This
causes a significant degradation in the prediction accuracy.
On the other hand, the BBQ-I algorithm performs less up-
dates (as it performs updates only when a mistake occurs),
and thus the algorithm converges much slower. This makes
it simpler to adapt to changing environment, after a switch
occurs. We note that for stationary environment (when
ut = u ∀t), BBQ outperforms BBQ-I, as well as other se-
lective sampling algorithms (see [17]). For low query rate
as in Fig. 2(b), all algorithms hardly deal with the shifts, as
expected. However, our algorithm still converges on a bet-

657

Selective Sampling with Drift

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.7

0.72

0.74

0.76

0.78

0.8

0.82

Number of examples

A
ve

ra
ge

 a
cc

ur
ac

y
Comparison of online classification algorithms on synthetic shifting data

LASEC
SOP
Perceptron
Shift 0.01
Mod. Perc
Rand 500

(a)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of examples

A
ve

ra
ge

 a
cc

ur
ac

y

Query rate = 0.1

LASEC−SS
SOP−SS
Perceptron−SS
BBQ
BBQ−I

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Fraction of queried labels

A
ve

ra
ge

 a
cc

ur
ac

y

Comparison of selective−sampling algorithms on synthetic shifting data

LASEC−SS
SOP−SS
Perceptron−SS
BBQ
BBQ−I

(c)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of examples

A
ve

ra
ge

 a
cc

ur
ac

y

Comparison of online classification algorithms on real world shifting data

LASEC
SOP
Perceptron
Shift 0.0001
Mod. Perc
Rand 1000

(d)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of examples

A
ve

ra
ge

 a
cc

ur
ac

y

Query rate = 0.4

LASEC−SS
SOP−SS
Perceptron−SS
BBQ
BBQ−I

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fraction of queried labels

A
ve

ra
ge

 a
cc

ur
ac

y

Comparison of selective−sampling algorithms on real world shifting data

LASEC−SS
SOP−SS
Perceptron−SS
BBQ
BBQ−I

(f)

Figure 2: Left: accuracy against number of examples for binary fully supervised classification algorithms on (a) synthetic
shifting dataset, and (d) USPS shifting dataset. Middle: accuracy against number of examples with query rate (b) ∼0.1,
and (e) ∼0.4. Right: accuracy against fraction of queried labels for selective sampling algorithms on (c) synthetic shifting
dataset, and (f) USPS shifting dataset.

ter average accuracy. For higher rate as in Fig. 2(e), our al-
gorithm deals well with the shifts and the average accuracy
does not decrease. This is in contrary to other algorithms.
For the SOP-SS algorithm we see in Fig. 2(e) that the per-
formance increase over time after an initial drop. This is
because the SOP algorithm tends to converge fast and then
it acts as no labels are needed, because the margin is large.
After a data shift, the algorithm experiences a drop because
no labels are sampled. After some time the algorithm de-
tects that labels are needed (because the margin is small)
and performance increase.

Fig. 2(c) and Fig. 2(f) show the tradeoff between average
accuracy and fraction of queried labels on synthetic and
real-world (USPS) data accordingly. Evidently, LASEC-
SS is the best selective sampling algorithm in the drifting
setting. In addition, we can see that unlike the stationary
setting where it was shown [7] that a small fraction of la-
bels are enough to get the accuracy of a fully supervised
setting, in the drifting case much more labels are needed.
This is because old queried labels cannot contribute to form
a good predictor due to a drift in the model, and the algo-
rithm must query more labels to have a good prediction ac-
curacy. Yet, our algorithm can employ half of the labels to
get performance not too far from the full information case.

6 Conclusions

We proposed a novel second-order algorithm for binary
classification designed to work in non-stationary (drifting)
selective sampling setting. Our algorithm is based on the
last-step min-max approach, and we showed how to solve
the last-step min-max optimization problem directly for
classification using the square loss. To the best of our
knowledge, this is the first algorithm designed to work in
the selective sampling setting when there is a drift. We
proved mistake bound for the algorithm in the fully super-
vised setting, and a bound for the expected number of mis-
takes for the selective sampling version of the algorithm.
Experimental study shows that our algorithm outperforms
other algorithms, in the supervised and selecting sampling
settings. For the algorithm to perform well, the amount of
drift V or a bound over it should be known in advance. An
interesting direction is to design algorithms that automati-
cally detect the level of drift, or are invariant to it.

Acknowledgements: This research was funded in part
by the Intel Collaborative Research Institute for Computa-
tional Intelligence (ICRI-CI) and in part by an Israeli Sci-
ence Foundation grant ISF- 1567/10.

658

Edward Moroshko, Koby Crammer

References

[1] Dana Angluin. Queries and concept learning. Ma-
chine Learning, 2(4):319–342, 1987.

[2] K.S. Azoury and M.W. Warmuth. Relative loss
bounds for on-line density estimation with the expo-
nential family of distributions. Machine Learning,
43(3):211–246, 2001.

[3] Avrim Blum, Alan M. Frieze, Ravi Kannan, and
Santosh Vempala. A polynomial-time algorithm for
learning noisy linear threshold functions. Algorith-
mica, 22(1/2):35–52, 1998.

[4] Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Clau-
dio Gentile. Tracking the best hyperplane with a
simple budget perceptron. Machine Learning, 69(2-
3):143–167, 2007.

[5] Nicoló Cesa-Bianchi, Alex Conconi, and Claudio
Gentile. A second-order perceptron algorithm. Siam
Journal of Commutation, 34(3):640–668, 2005.

[6] Nicolò Cesa-Bianchi, Claudio Gentile, and Francesco
Orabona. Robust bounds for classification via selec-
tive sampling. In ICML, pages 121–128, 2009.

[7] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca
Zaniboni. Worst-case analysis of selective sampling
for linear classification. Journal of Machine Learning
Research, 7:1205–1230, 2006.

[8] K. Crammer, A. Kulesza, and M. Dredze. Adaptive
regularization of weighted vectors. In Advances in
Neural Information Processing Systems 23, 2009.

[9] Koby Crammer, Yishay Mansour, Eyal Even-Dar, and
Jennifer Wortman Vaughan. Regret minimization
with concept drift. In COLT, pages 168–180, 2010.

[10] Ofer Dekel, Claudio Gentile, and Karthik Sridharan.
Robust selective sampling from single and multiple
teachers. In COLT, pages 346–358, 2010.

[11] Jurgen Forster. On relative loss bounds in generalized
linear regression. In Fundamentals of Computation
Theory (FCT), 1999.

[12] Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Se-
lective sampling using the Query By Committee algo-
rirhm. Machine Learning, 28:133–168, 1997.

[13] Mark Herbster and Manfred K. Warmuth. Tracking
the best linear predictor. Journal of Machine Learning
Research, 1:281–309, 2001.

[14] J. J. Hull. A database for handwritten text recogni-
tion research. IEEE Trans. Pattern Anal. Mach. In-
tell., 16(5):550–554, May 1994.

[15] Nick Littlestone. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285–318, 1987.

[16] Edward Moroshko and Koby Crammer. A last-step
regression algorithm for non-stationary online learn-
ing. In AISTATS, 2013.

[17] Francesco Orabona and Nicolò Cesa-Bianchi. Better
algorithms for selective sampling. In ICML, pages
433–440, 2011.

[18] F. Rosenblatt. The perceptron: A probabilistic model
for information storage and organization in the brain.
Psychological Review, 65:386–407, 1958.

[19] B. Schölkopf and A. J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimiza-
tion and Beyond. MIT Press, 2002.

[20] J.A.K. Suykens, T. van Gestel, and J. de Brabanter.
Least Squares Support Vector Machines. World Sci-
entific Publishing Company Incorporated, 2002.

[21] Johan A. K. Suykens and Joos Vandewalle. Least
squares support vector machine classifiers. Neural
Processing Letters, 9(3):293–300, 1999.

[22] Nina Vaits and Koby Crammer. Re-adapting the reg-
ularization of weights for non-stationary regression.
In The 22nd International Conference on Algorithmic
Learning Theory, ALT ’11, 2011.

[23] Volodya Vovk. Competitive on-line statistics. Inter-
national Statistical Review, 69, 2001.

659

