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A Proof of Lemma 2

Proof: Since the support of LL distributions is Rd,
two such distributions are equivalent (absolutely con-
tinuous with respect to each other) and the divergence
is well-defined.

We start by calculating the following integral, assum-
ing µ1 ≤ µ2:
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Changing variables y = ω−µ1
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yields,
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We thus conclude for the general case,
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As for the Kulback-Leibler Divergence, we use the
chain formula for independent random variables,

KL(Q�P ) =
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The first term of the integral is given in (15), and the
second term is exactly the 1-dimensional σ-weighted

�1-norm, therefore, (2σQ,k)
−1

EQ
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�
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which completes the proof.

B Proof of Lemma 3

Proof: We prove that,

Pr
ω∼Q

(y(ω · x) < 0) = Pr
ω∼Q

[y(ω − µ) · x) < −y(µ · x)]

= E
�
x, y,µQ, σQ

�
.

The random variable4

Z = y(ω − µ) · x ,

is a sum of d independent zero-mean laplace dis-
tributed random variables,

Zk ∼ Laplace(0, σQ |xk|) ,

each is equal in distribution to a difference between
two i.i.d. exponential random variables. Therefore,
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,

(16)

where Ak, Bk ∼ Exp(λk) and,

λk = λk(x) = (σQ |xk|)−1
k = 1, . . . , d.

Without the loss of generality we assume that the co-
ordinates of x are sorted, i.e λ1 < λ2 · · · < λd. Calcu-
lating the convolution for xj �= xk and z ≥ 0,
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�
.

Exploiting the structure of the resulting convolution,
we convolve it with the lth density and get,

fAj+Ak+Al
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Performing convolution for all d densities yields,

f�d
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where we define ξk = ξk(x) =
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Similarly, we get the same result for f−�d
k=1 Bk

(z),

yet it is defined for z ≤ 0. From (16) we convolute the

4Notice that if xk = 0 the random variable ωkxk equals
zero too, therefore we assume without loss of generality
that xk �= 0 .
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difference and get,
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We integrate to get the CDF,
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Finally, we define αk(x) = ψk(x)
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and obtain for

ξ = sort(|x|) (3),
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In particular, from the symmetry of f�d
k=1 Ak−Bk

(z),

we have for µ = 0, that

1

2
= Pr

ω∼Q
(y(ω · x) < 0) =

d�
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which concludes the proof.

C Proof of Theorem 4

Proof: From the assumption that the data
is linearly separable we conclude that the set�
µQ | yixi · µQ ≥ 0, i = 1, . . . ,m

�
is not empty. Ad-

ditionally, the set is defined via linear constraints and
thus convex. The objective (7) is convex in σ as its
second derivative with respect to σ is dσ−2 > 0.

The regularization term of (7) is convex in µ as the
second derivative of |z| + exp(−|z|) is always positive
and well defined for all values of z (see also Remark 1
for a discussion of this function for values z ≈ 0).
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Figure 6: Illustration of the cumulative sums,�k
i=1 αi(x), for five 10-dimensional vectors.

As for the loss term � (yixi · µ), we use the following
auxiliary lemma.

Lemma 10 The following set of probability density
functions over the reals

S =
�
fpdf

��� f ∈ C1 , f(z) = f(−z),

and ∀z1, z2, |z2| > |z1| ⇒ f(z2) < f(z1)
�

is closed under convolution, i.e f, g ∈ S → f ∗ g ∈ S.

Since the random variables ω1, .., ωd are independent,
the density fZi

(z) of the margin Zi = yi
�
ω − µQ

�
·xi,

is obtained by convoluting d independent zero-mean
Laplace distributed random variables yi(ωk−µi,k)xi,k.
Since the 1-dimensional Laplace pdf is in S, it follows
from Lemma 10 by induction that so is fZi

. As a mem-
ber of S, the positivity of the derivative f �

Zi
(z) for z ≤ 0

is concluded from Lemma 10. Finally, we note that
the integral of the density is �cdf , the cumulative den-

sity function, E(xi, yi,µQ, σQ) =
� −yiµQ·xi

−∞ fZi
(z)dz.

Thus, the second derivative of E(xi, yi,µQ, σQ) for
positive values of the margin, equals to f �

Zi
(z) for

z ≤ 0, and hence positive. Changing variables
according to (6) completes the proof.

D Proof of Lemma 10

Proof: Assume f, g ∈ S and denote by h = f∗g. The
derivative of a convolution between two differentiable
functions always exists, and equals to, d

dz (f ∗ g) =
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f ∗
�
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�
. We compute for the convolution derivative,
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where the last equality follows the fact dg(t)
dt is an odd

function as a derivative of an even function. Since
f, g ∈ S, h(z) ∈ C1 (i.e continuously differentiable al-
most everywhere), and since h�(z) is odd, we have that
h(z) is even. Using the monotonicity property of f, g,
i.e |z2| > |z1| ⇒ f(z2) < f(z1), we get,
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·
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Since f, g are pdfs, the integral is always defined,
and thus the sign of the derivative of h depends on
the sign of its argument, and in particular it is an
increasing function for z < 0 and decreasing for z > 0,
yielding the third property for h. Thus, h ∈ S, as
desired.

E Proof of Lemma 5

Proof: Setting µ = 0 and σ = 1 the objective
becomes 0 + cmη. Since the loss is non-negative we
get that the minimizers satisfy,
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Substituting the optimal value of σ∗ from (8) we get,
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Rearranging, we get,
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�cmη

d

�
≥
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|µ∗
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and we can conclude,

σ∗ ≥ exp
�
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d

�
.

F Proof of Theorem 6

Proof: While the empirical loss term depends only
on µ, and was proved to be strictly convex for ex-
amples that satisfies yixi · µ ≥ 0 in theorem 4, the
regularization term is optimized over both µ, σ. In-
corporating the optimal value for sigma from (8) into
the objective yields the following:

F (µ, σ∗(µ)) =d log

�
d�

k=1

|µk| + e−|µk|
�

+ c

m�

i=1

�(yxi · µ).

Differentiating the regularization term twice with re-
spect to µ results in the following Hessian matrix,

H(µ) =
d

�d
k=1 |µk| + e−|µk|

×
�

diag(exp [−µ]) − v · v�
�d

k=1 |µk| + e−|µk|

�
,

for the d-dimensional vector vk =
sign (µk) (1 − exp [− |µk|]), and diag(exp [−µ]) is
a diagonal vector for which its ith elements equals
exp (−µi). The Hessian H(µ) is a difference of two
positive semi-definite matrices. We upper bound the
maximal eigenvalues of the second term by its trace,
indeed,

max
j

λj


 d
��d

k=1 |µk| + e−|µk|
�2




≤ dv�v
��d
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�2
��d
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<
d× d

d2
= 1 .
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Thus, the minimal eigenvalue of H(µ) is bounded from
below by (−1), and the Hessian of the sum of the ob-
jective and 1

2�µ�2 has positive eigenvalues, therefore
strictly convex.

For the second part, we use [17, Corollary 7.2.3] stating
the a diagonally-dominated matrix with non-negative
diagonal values is PSD. We next show that indeed
�µ�∞ ≤ 1 is a sufficient condition for the Hessian to
be diagonally dominated. It is straightforward to ver-
ify that both conditions follows from the following set
of inequalities, for all k = 1, . . . , d,

e−|µk|
d�

j=1

(|µj | + e−|µj |)

− (1 − e−|µk|)
d�

j=1

(1 − e−|µj |) > 0

or equivalently,

e−|µk| + e−|µk| 1
d

d�

j=1

|µj | +
1

d

d�

j=1

e−|µj | − 1 > 0

⇔ e−|µk|
�
d + 1

d
+

1

d
|µk|

�
+ e−|µk|


1

d

d�

j=1,j �=k

|µj |




+
1

d

d�

j=1,j �=k

e−|µj | − 1 > 0 . (17)

Fixing µk the left-hand-side is decomposed to a sum
of one variable convex functions µj . We minimize it
for each µj by taking the derivative and setting it to
zero, yielding,

1

d

�
sign(µj)

�
e−|µk| − e−|µj |

��
= 0 ⇒ µj = µk . (18)

From here we conclude that (17) is satisfied if �µ�∞ ≤
a for a scalar a ≥ 0 that satisfy,

g(a) = 2e−a + ae−a − 1 > 0 .

The function g(a) is monotonically decreasing and
continuous, with g(1) = 3/e− 1 > 0, which completes
the proof. In fact, one can compute numerically and
find that a∗ ≈ 1.146 satisfy g(a∗) ≈ 0, which leads to
a slightly better constant than stated in the theorem.

G Proof of Lemma 7

Proof: We first need to compute �lin directly, as
αk(x) is not defined on the standard basis, which con-
tains few elements of the same value,

Pr [ek · ω ≤ 0] = Pr [ωk ≤ 0] = Pr [(ωk − µk) < −µk]

=

� −µk

−∞
(2σ)

−1
e−

|ωk|
σ dωk .

Thus, if µk ≥ 0 we get (the convex part)
Pr [ek · ω ≤ 0] = 1

2 exp (− |µk|). Otherwise, we
bound Pr [ek · ω ≤ 0] with the linear extension
and get 1

2 (1 + |µk|). To conclude, for each el-
ement k we get that,

�
y=±1 �lin(yek · µ) =

1
2 (exp {− |µk|} + (1 + |µk|)). Taking the sum over k
and multiplying by 2 yields the above regularization
term.

H RobuCop Pseudo-code

Input: Training set S = {(xi, yi)}mi=1,
c > 0, Artifical set A = {(ek, y) : k = 1...d, y ∈ Y}
Initialization: µ(1) = 0
Loop do until convergence criterion met:

• Set: σ(n+1) = d
��d

k=1 |µk|+ exp {−|µk|}
�−1

• Solve µ(n+1) = argminµ

��
S∪A c̃i · �lin(yxi · µ)

�

for: c̃i =

�
c (xi, yi) ∈ S

2σ(n+1) (xi, yi) ∈ A

Output: µ, σ

I Proof of Lemma 8

Proof: Denote the change of the loss term of (12)
by,

Δt =

m�

i=1

log
�

1 + Die
−yixi·µ(t)

Q

�

−
m�

i=1

log

�
1 + Die

−yixi·
�
µ

(t)
Q +δ(t)

��
.

We start by bounding Δt from below, then add to it
the difference of the regularization term, before and
after the update. Bounding the improvement for a
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single example, we get,

Δt,i

c
= − log

�
1 + Die

−yixi·µ(t+1)
Q
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Q

�
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k
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.

By using − log(1 − z) ≥ z for z < 1 we get,

− log
�

1 − qt(i)
�
1 − e−yixi,kδ

(t)
k

��

≥qt(i)
�
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(t)
k

�
.

Convexity of the exponent, for every σQ,k ∈ (0, 1),
yields,

e−yixi,kδ
(t)
k ≤σQ,k |xi,k| e− sign(yixi,k)

δ
(t)
k

σQ,k

+ (1 − σQ,k |xi,k|) e0 .

Summing over the examples,

Δt ≥c
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,

adding the regularization terms completes the proof.

J Proof of Lemma 9

Proof: Without loss of generality we assume that

γ+
k e

µ
(t)
Q,k

σQ,k − γ−
k e

−
µ
(t)
Q,k

σQ,k > 0 , and in addition we assume

for the sake of contradiction that, µ
(t)
Q,k + δ

(t)
k < 0.

Differentiating the objective with respect for δ
(t)
t and

equating to zero yields:

=
∂

∂δt

�
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k
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Arranging the terms:

−cγ+
k e

− δ
(t)
k

σQ,k + cγ−
k e

δ
(t)
k

σQ,k = 1 − e
µ
(t)
Q,k

+δ
(t)
k
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,

the right hand side is assumed to be strictly positive,
and as for the left hand side:

− γ+
k e

− δ
(t)
k

σQ,k + γ−
k e

δ
(t)
k

σQ,k

<− γ+
k e

− δ
(t)
k

σQ,k · e
µ
(t)
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k
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k e
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k
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µ
(t)
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�
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k e

µ
(t)
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k e

−
µ
(t)
Q,k
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�
< 0 .

This is a contradiction, so we must have that

δ
(t)
k + µ

(t)
Q,k ≥ 0. The proof for the symmetric case

follows similarly.

K Experiments- Data Details:

Synthetic data: We generated 4, 000 vectors xi ∈ R8

sampled from a zero mean isotropic normal distribu-
tion xi ∼ N (0, I). Labels were assigned by gener-
ating once per run ω ∈ R8 at random and using:
yi = sign(ω ·xi). Each input xi training data was then
corrupted with probability p by adding to it a random
vector sampled from a zero mean isotropic Gaussian,
�i ∼ N (0, σI), with some positive standard-deviation
σ. Each run was repeated 20 times, and results are
average test-error over the 20 runs. All boosting al-
gorithms were run for 1, 000 iterations, except for the
RobuCoP algorithm which was executed until a con-
vergence criterion was met, which often was about 20
rounds.
Vocal Joystick: For each problem, we picked three
sets of size 2, 000 each, for training, parameter tuning
and testing. Each example is a frame of spoken value
described with 13 MFCC coefficients transformed into
27 features. In order to examine the robustness of
different algorithms, we contaminate 10% of the data
with an additive zero-mean i.i.d Gaussian noise, for
different values of the standard-deviation σ.


