Robust Forward Algorithms via PAC-Bayes and Laplace Distributions

A Proof of Lemma 2

Proof: Since the support of LL distributions is R,
two such distributions are equivalent (absolutely con-
tinuous with respect to each other) and the divergence
is well-defined.

We start by calculating the following integral, assum-
ing py < po:
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Changing variables y = yields,
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We thus conclude for the general case,
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As for the Kulback-Leibler Divergence, we use the
chain formula for independent random variables,
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The first term of the integral is given in (15), and the
second term is exactly the 1-dimensional o-weighted
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which completes the proof. [ ]

£1-norm, therefore, (2UQ,;€)_1 EQ[
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B Proof of Lemma 3

Proof: We prove that,

Pr(ylw-2) <0)= Pr [y(w—p) ) <-y(u-z)]
=& (SC, Y, NQa UQ) .
The random variable?

Z=ylw-—p) x,

is a sum of d independent zero-mean laplace dis-
tributed random variables,

Zy, ~ Laplace(0,0¢ |zk]) ,

each is equal in distribution to a difference between
two i.i.d. exponential random variables. Therefore,
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where Ay, B, ~ Exp()\;) and,
Ak = M) = (0g |zk))™" k=1,...,d
Without the loss of generality we assume that the co-

ordinates of @ are sorted, i.e Ay < Ag--- < Ag. Calcu-
lating the convolution for x; # x) and z > 0,
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Exploiting the structure of the resulting convolution,
we convolve it with the 1th density and get,

Fas+ap+4,(2) = AjApAx
[ = A7) €% — gy — A €297 + (N — Ap) e 7]
(/\j - Ak) (Am - )\]) ()\m — /\k) ’

Performing convolution for all d densities yields,
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Similarly, we get the same result for f_ S4B, (2),
yet it is defined for z < 0. From (16) we convolute the

where we define &, = &,(x) =

4Notice that if 2, = 0 the random variable wizk equals
zero too, therefore we assume without loss of generality
that x #0 .
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difference and get,
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We integrate to get the CDF,
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Finally, we define ay(x) = i’:g; and obtain for

§ = sort(|z]) (3),
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In particular, from the symmetry of fs~a 4 _p, (2),

we have for pu = 0, that
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which concludes the proof. [ |

C Proof of Theorem 4

Proof: From the assumption that the data
is linearly separable we conclude that the set
{NQ lyizi - g > 0,i=1,.. .,m} is not empty. Ad-
ditionally, the set is defined via linear constraints and
thus convex. The objective (7) is convex in o as its
second derivative with respect to o is do=2 > 0.

The regularization term of (7) is convex in p as the
second derivative of |z| + exp(—|z|) is always positive
and well defined for all values of z (see also Remark 1
for a discussion of this function for values z & 0).
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Figure 6: Illustration of the cumulative sums,

> iq ai(x), for five 10-dimensional vectors.

As for the loss term ¢ (y;x; - p), we use the following
auxiliary lemma.

Lemma 10 The following set of probability density
functions over the reals

S:{fpdf ’ feli, f(z) = f(-2),

and Ve, 72, 20| > [21] = f(z2) < f(o1)}

is closed under convolution, i.e f,g €S — fxg € S.

Since the random variables wq, ..,wq are independent,
the density fz,(z) of the margin Z; = y; (w — /.LQ) x;,
is obtained by convoluting d independent zero-mean
Laplace distributed random variables y; (wk — i k)i k-
Since the 1-dimensional Laplace pdf is in S, it follows
from Lemma 10 by induction that sois fz,. Asa mem-
ber of S, the positivity of the derivative f7, (z) for z <0
is concluded from Lemma 10. Finally, we note that
the integral of the density is £.4r, the cumulative den-
sity function, £(x,vi, g, 0Q) = [TURe® fy (2)dz
Thus, the second derivative of &(xy,yi, pg,oq) for
positive values of the margin, equals to f5 (z) for
z < 0, and hence positive. Changing variables
according to (6) completes the proof. [

D Proof of Lemma 10

Proof: Assume f,g € S and denote by h = fxg. The
derivative of a convolution between two differentiable
functions always exists, and equals to, % (fxg) =
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fo* (@). We compute for the convolution derivative,

9= [ se-o- (G2)
:/ ﬂz_t).( Nars [~ ey (420
[ e (B as [ e (B0
:/_oo {f(z—t) f(z +t)} (dii)>dt

where the last equality follows the fact dg (t) is an odd
function as a derivative of an even functlon. Since
fsg € S,h(z) € C; (i.e continuously differentiable al-
most everywhere), and since h/(z) is odd, we have that
h(z) is even. Using the monotonicity property of f, g,
ie |z2| > |z1] = f(22) < f(z1), we get,

/_OOO [f(z—t) —f(z—i—t)} : (%?) dt

:_ﬁywy/tjﬂz—ﬂ—f@+ﬂH%¥Wﬁ.

Since f,g are pdfs, the integral is always defined,
and thus the sign of the derivative of h depends on
the sign of its argument, and in particular it is an
increasing function for z < 0 and decreasing for z > 0,
yielding the third property for h. Thus, h € S, as
desired. ]

E Proof of Lemma 5

Proof: Setting ¢ = 0 and o = 1 the objective
becomes 0 4+ cmn. Since the loss is non-negative we
get that the minimizers satisfy,

cmn >

d
—dlogo*e+ o Z [Iu;ﬂ + efll"zq

k=1
+c§:€%% ) >
d
—dlogo*e+o* Z [|u;§| + e_l“’vl} .
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Substituting the optimal value of o* from (8) we get,

ed +d
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: .

cmn > —dlog

=dlog

Rearranging, we get,

cmnm ||
dexp () = mee Sy 7

) dt and we can conclude,

s ]

F  Proof of Theorem 6

Proof: While the empirical loss term depends only
on u, and was proved to be strictly convex for ex-
amples that satisfies y;&; - p > 0 in theorem 4, the
regularization term is optimized over both w,o. In-
corporating the optimal value for sigma from (8) into
the objective yields the following:

d
F(u,0* (1)) =dlog (Z || + em)

k=1
+ed Uy p)
i=1

Differentiating the regularization term twice with re-
spect to p results in the following Hessian matrix,

d
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for the d-dimensional vector VL =
sign () (1 — exp [= |pxl]), and  diag(exp [-p]) is
a diagonal vector for which its ith elements equals
exp (—p;). The Hessian H(u) is a difference of two
positive semi-definite matrices. We upper bound the
maximal eigenvalues of the second term by its trace,
indeed,
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Thus, the minimal eigenvalue of H () is bounded from
below by (—1), and the Hessian of the sum of the ob-
jective and 1||p[|? has positive eigenvalues, therefore
strictly convex.

For the second part, we use [17, Corollary 7.2.3] stating
the a diagonally-dominated matrix with non-negative
diagonal values is PSD. We next show that indeed
|[pt]loo < 1 is a sufficient condition for the Hessian to
be diagonally dominated. It is straightforward to ver-
ify that both conditions follows from the following set

of inequalities, for all k =1,...,d,

d
e~ |1kl Z(|”J| +e—\w|)
d
(1 — e~ el Z —leily > 0
j=1
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Fixing py the left-hand-side is decomposed to a sum
of one variable convex functions p;. We minimize it
for each p; by taking the derivative and setting it to
zero, yielding,

Ly Ikl _ g~ lns]

p <s1gn(uj) [e Brl — e~k D =0= p; = pg . (18)
From here we conclude that (17) is satisfied if ||pt]|o0 <
a for a scalar a > 0 that satisfy,

gla) =2¢"%+ae"*—=1>0.

The function g(a) is monotonically decreasing and
continuous, with g(1) = 3/e — 1 > 0, which completes
the proof. In fact, one can compute numerically and
find that a* ~ 1.146 satisfy g(a*) = 0, which leads to
a slightly better constant than stated in the theorem.
|

G Proof of Lemma 7

Proof: We first need to compute ¢;;, directly, as
ai(x) is not defined on the standard basis, which con-
tains few elements of the same value,

Priey-w < 0] =Prwg < 0] = Pr(wg — pr) < —pg]

—Hk w
= / (20)7" e_l vk‘dwk .

oo

Thus, if pwr > 0 we get (the convex part)
Prie, -w<0] = ZLlexp(—|uk|). Otherwise, we
bound Prle;-w <0] with the linear extension
and get (1 + |ug|). To conclude, for each el-

ement k we get that, > . lin(yer - p) =
2 (exp{— |pe|} + (1 + |px])). Taking the sum over k
and multiplying by 2 yields the above regularization

term. [ |

H RobuCop Pseudo-code

Input: Training set S = {(x:, y:)} .-,

¢ >0, Artifical set A= {(ex,y):k=1.d,ycV}
Initialization: u(l) =0

Loop do until convergence criterion met:

—1
o Seti o0V = d (D0, el +exp {—lpuel})
e Solve  p™*Y = argmin, s lin(yzi - p)}
. N (zi,y:) € S
for: ¢i = { 25 (n+1) (zi,ys) € A
Output: p,o

I Proof of Lemma 8

Proof:
by,

Denote the change of the loss term of (12)

A=Y log (14 Diemvend)

i=1

- i log <1 + Dje ¥ [HS)JHS(")]) .
i=1

We start by bounding A; from below, then add to it
the difference of the regularization term, before and
after the update. Bounding the improvement for a
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single example, we get,

At 14 Dyevimiba
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By using —log(1 — z) > z for z < 1 we get,

~1log (1= qu(i) [1 — e7vmi’])

> g (i) [1 - el

Convexity of the exponent, for every oo € (0,1),
yields,
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Summing over the examples,
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adding the regularization terms completes the proof.
|

+

J Proof of Lemma 9

Proof: Without loss of generality we assume that
“g?k _#S?k

'y;e"w —v,¢e 2+ >0, and in addition we assume
for the sake of contradiction that, pg)k + 51(:) < 0.

Differentiating the objective with respect for 5t(t) and

equating to zero yields:
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Arranging the terms:

o 5 oy
—cyfe Tk +eypeter =1—e “@r
the right hand side is assumed to be strictly positive,
and as for the left hand side:

L 5,(:) - 5,(:)
— ’Yk; e 7Q,k + ,-Yk eo'Q,k

t t
N R AT R
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sl
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L) ()
4 tQuk _ _low
=— |, e’ —y,e 9k | <O0.

This is a contradiction,
5,(:) + pg)k > 0. The proof for the symmetric case

follows similarly. [ ]

so we must have that

K Experiments- Data Details:

Synthetic data: We generated 4, 000 vectors z; € R®
sampled from a zero mean isotropic normal distribu-
tion ; ~ AN(0,I). Labels were assigned by gener-
ating once per run w € R® at random and using:
y; = sign(w-a;). Each input @; training data was then
corrupted with probability p by adding to it a random
vector sampled from a zero mean isotropic Gaussian,
€; ~ N(0,0I), with some positive standard-deviation
o. Each run was repeated 20 times, and results are
average test-error over the 20 runs. All boosting al-
gorithms were run for 1,000 iterations, except for the
RobuCoP algorithm which was executed until a con-
vergence criterion was met, which often was about 20
rounds.

Vocal Joystick: For each problem, we picked three
sets of size 2,000 each, for training, parameter tuning
and testing. Each example is a frame of spoken value
described with 13 MFCC coefficients transformed into
27 features. In order to examine the robustness of
different algorithms, we contaminate 10% of the data
with an additive zero-mean i.i.d Gaussian noise, for
different values of the standard-deviation o.



