A Proof of Lemma 2

Proof: Since the support of LL distributions is \mathbb{R}^{d}, two such distributions are equivalent (absolutely continuous with respect to each other) and the divergence is well-defined.

We start by calculating the following integral, assuming $\mu_{1} \leq \mu_{2}$:

$$
\begin{aligned}
I= & \int_{\mathbb{R}} \frac{\left|\omega-\mu_{2}\right|}{\sigma_{2}} \cdot \exp \left\{\frac{\left|\omega-\mu_{1}\right|}{\sigma_{1}}\right\} d \omega \\
= & \frac{\sigma_{1}}{\sigma_{2}}\left[\int_{-\infty}^{\mu_{1}}-\frac{\omega-\mu_{2}}{\sigma_{1}} \cdot \exp \left\{-\frac{\omega-\mu_{1}}{\sigma_{1}}\right\} d \omega\right. \\
& +\int_{\mu_{1}}^{\mu_{2}}-\frac{\omega-\mu_{2}}{\sigma_{1}} \cdot \exp \left\{\frac{\omega-\mu_{1}}{\sigma_{1}}\right\} d \omega \\
& \left.+\int_{\mu_{2}}^{\infty} \frac{\omega-\mu_{2}}{\sigma_{1}} \cdot \exp \left\{\frac{\omega-\mu_{1}}{\sigma_{1}}\right\} d \omega\right]
\end{aligned}
$$

Changing variables $y=\frac{\omega-\mu_{1}}{\sigma_{1}}$ yields,

$$
\begin{aligned}
I= & \frac{\sigma_{1}^{2}}{\sigma_{2}}\left[\int_{-\infty}^{0}\left(-y+\frac{\mu_{2}-\mu_{1}}{\sigma_{1}}\right) \cdot \exp \{y\} d y\right. \\
& -\int_{0}^{\frac{\mu_{2}-\mu_{1}}{\sigma_{1}}}\left(-y+\frac{\mu_{2}-\mu_{1}}{\sigma_{1}}\right) \cdot \exp \{-y\} d y \\
& \left.-\int_{\frac{\mu_{2}-\mu_{1}}{\sigma_{1}}}^{\infty}\left(-y+\frac{\mu_{2}-\mu_{1}}{\sigma_{1}}\right) \cdot \exp \{-y\} d y\right] \\
= & \frac{2 \sigma_{1}^{2}}{\sigma_{2}}+\left[\frac{\mu_{2}-\mu_{1}}{\sigma_{1}}+\exp \left\{-\frac{\mu_{2}-\mu_{1}}{\sigma}\right\}\right] .
\end{aligned}
$$

We thus conclude for the general case,

$$
\begin{equation*}
I=\frac{2 \sigma_{1}^{2}}{\sigma_{2}}\left[\frac{\left|\mu_{2}-\mu_{1}\right|}{\sigma_{1}}+\exp \left\{-\frac{\left|\mu_{2}-\mu_{1}\right|}{\sigma_{1}}\right\}\right] \tag{15}
\end{equation*}
$$

As for the Kulback-Leibler Divergence, we use the chain formula for independent random variables,

$$
\begin{aligned}
K L(Q \| P) & =\sum_{k=1}^{d} \mathrm{D}_{\mathrm{KL}}\left(Q_{k} \| P_{k}\right)=\sum_{k=1}^{d} \int_{\mathbb{R}} \log \left(\frac{Q_{i}}{P_{i}}\right) d Q_{i} \\
& =\sum_{k=1}^{d}\left[\log \left(\frac{\sigma_{P, k}}{\sigma_{Q, k}}\right)+\int_{\mathbb{R}}\left(2 \sigma_{Q, k}\right)^{-1} \times\right. \\
& \left.e^{-\frac{\left|\omega_{k}-\mu_{Q, k}\right|}{\sigma_{Q, k}}}\left[\frac{\left|\omega_{k}-\mu_{P, k}\right|}{\sigma_{P, k}}-\frac{\left|\omega_{k}-\mu_{Q, k}\right|}{\sigma_{Q, k}}\right] d \omega_{k}\right] .
\end{aligned}
$$

The first term of the integral is given in (15), and the second term is exactly the 1 -dimensional σ-weighted ℓ_{1}-norm, therefore, $\left(2 \sigma_{Q, k}\right)^{-1} \mathrm{E}_{Q}\left[\frac{\left|\omega_{k}-\mu_{Q, k}\right|}{\sigma_{Q, k}}\right]=1$, which completes the proof.

B Proof of Lemma 3

Proof: We prove that,

$$
\begin{aligned}
\operatorname{Pr}_{\omega \sim \mathcal{Q}}(y(\boldsymbol{\omega} \cdot \boldsymbol{x})<0) & \left.=\operatorname{Pr}_{\omega \sim \mathcal{Q}}[y(\boldsymbol{\omega}-\boldsymbol{\mu}) \cdot \boldsymbol{x})<-y(\boldsymbol{\mu} \cdot \boldsymbol{x})\right] \\
& =\mathcal{E}\left(\boldsymbol{x}, y, \boldsymbol{\mu}_{Q}, \sigma_{Q}\right)
\end{aligned}
$$

The random variable ${ }^{4}$

$$
Z=y(\boldsymbol{\omega}-\boldsymbol{\mu}) \cdot \boldsymbol{x}
$$

is a sum of d independent zero-mean laplace distributed random variables,

$$
Z_{k} \sim \operatorname{Laplace}\left(0, \sigma_{Q}\left|x_{k}\right|\right)
$$

each is equal in distribution to a difference between two i.i.d. exponential random variables. Therefore,
$\operatorname{Pr}_{\omega \sim \mathcal{Q}}(y(\boldsymbol{\omega} \cdot \boldsymbol{x})<0)=\operatorname{Pr}\left(\sum_{k=1}^{d} A_{k}-\sum_{k=1}^{d} B_{k}<-y(\boldsymbol{\mu} \cdot \boldsymbol{x})\right)$,
where $A_{k}, B_{k} \sim \operatorname{Exp}\left(\lambda_{k}\right)$ and,
$\lambda_{k}=\lambda_{k}(\boldsymbol{x})=\left(\sigma_{Q}\left|x_{k}\right|\right)^{-1} \quad k=1, \ldots, d$.
Without the loss of generality we assume that the coordinates of \boldsymbol{x} are sorted, i.e $\lambda_{1}<\lambda_{2} \cdots<\lambda_{d}$. Calculating the convolution for $x_{j} \neq x_{k}$ and $z \geq 0$,

$$
\begin{aligned}
f_{A_{j}+A_{k}}(z) & =\int_{0}^{z} \lambda_{j} \lambda_{j} e^{-\lambda_{j}(-t) z} e^{-\lambda_{k}(t)} d t \\
& =\frac{\lambda_{j} \lambda_{k}}{\lambda_{j}-\lambda_{k}}\left[e^{-\lambda_{k} z}-e^{-\lambda_{j} z}\right]
\end{aligned}
$$

Exploiting the structure of the resulting convolution, we convolve it with the lth density and get,
$f_{A_{j}+A_{k}+A_{l}}(z)=\lambda_{j} \lambda_{k} \lambda_{l} \times$
$\frac{\left[\left(\lambda_{m}-\lambda_{j}\right) e^{-\lambda_{k} z}-\left(\lambda_{m}-\lambda_{k}\right) e^{-\lambda_{j} z}+\left(\lambda_{j}-\lambda_{k}\right) e^{-\lambda_{m} z}\right]}{\left(\lambda_{j}-\lambda_{k}\right)\left(\lambda_{m}-\lambda_{j}\right)\left(\lambda_{m}-\lambda_{k}\right)}$.
Performing convolution for all d densities yields,
$f_{\sum_{k=1}^{d} A_{k}}(z)=\sum_{k=1}^{d} \xi_{k} e^{-\lambda_{k} z}$ for $z \geq 0$,
where we define $\xi_{k}=\xi_{k}(\boldsymbol{x})=\frac{(-1)^{k-1} \prod_{j=1}^{d} \lambda_{j}}{\prod_{n=1, n \neq k}^{d}\left|\lambda_{n}-\lambda_{k}\right|}$.
Similarly, we get the same result for $f_{-\sum_{k=1}^{d} B_{k}}(z)$, yet it is defined for $z \leq 0$. From (16) we convolute the

[^0]difference and get,
\[

$$
\begin{aligned}
& f_{\sum_{k=1}^{d} A_{k}-B_{k}}(z)=\left(f_{\sum_{k=1}^{d} A_{k}} * f_{-\sum_{k=1}^{d} B_{k}}\right)(z) \\
= & \int_{-\infty}^{\min (z, 0)}\left(\sum_{m=1}^{d} \xi_{m} e^{\lambda_{m} t}\right)\left(\sum_{k=1}^{d} \xi_{k} e^{\lambda_{k}(z-t)}\right) d t \\
= & \left.\sum_{m, n=1}^{d} \xi_{m} \xi_{k} e^{-\lambda_{k} z} \frac{e^{\left(\lambda_{m}+\lambda_{k}\right) t}}{\lambda_{m}+\lambda_{k}}\right|_{-\infty} ^{\min (z, 0)} \\
= & \sum_{m, n=1}^{d} \frac{\xi_{m} \xi_{k}}{\lambda_{m}+\lambda_{k}} e^{-\lambda_{k}|z|}=\sum_{k=1}^{d} \psi_{k} e^{-\lambda_{k}|z|} \\
& \text { for } \psi_{k}=\psi_{k}(\boldsymbol{x})=\sum_{m=1}^{d} \frac{\xi_{m} \xi_{k}}{\lambda_{m}+\lambda_{k}}
\end{aligned}
$$
\]

We integrate to get the CDF,

$$
\begin{aligned}
& \ell_{c d f}(y(\boldsymbol{\omega} \cdot \boldsymbol{x}))=\int_{z=-\infty}^{-y(\boldsymbol{\mu} \cdot \boldsymbol{x})} \sum_{k=1}^{d} \psi_{k} e^{-\lambda_{k}|z|} \\
& =\left\{\begin{array}{cl}
\sum_{k=1}^{d} \frac{\psi_{k}}{\lambda_{k}} e^{-\lambda_{k} y(\boldsymbol{\mu} \cdot \boldsymbol{x})} & y(\boldsymbol{\mu} \cdot \boldsymbol{x}) \geq 0 \\
1-\sum_{k=1}^{d} \frac{\psi_{k}}{\lambda_{k}} e^{\lambda_{k} y(\boldsymbol{\mu} \cdot \boldsymbol{x})} & y(\boldsymbol{\mu} \cdot \boldsymbol{x})<0
\end{array}\right.
\end{aligned}
$$

Finally, we define $\alpha_{k}(\boldsymbol{x})=\frac{\psi_{k}(\boldsymbol{x})}{\lambda_{k}(\boldsymbol{x})}$ and obtain for $\xi=\operatorname{sort}(|x|)(3)$,

$$
\begin{aligned}
& \alpha_{k}(\boldsymbol{x})=\xi_{k}\left(\prod_{j=1}^{d} \xi_{j}\right)^{-2} \prod_{j=1, j \neq k}^{d}\left|\xi_{j}^{-1}-\xi_{k}^{-1}\right|^{-1} \\
& \times \sum_{m=1}^{d}(-1)^{m+k}\left(\xi_{k}^{-1}+\xi_{m}^{-1}\right)^{-1} \prod_{j=1, j \neq m}^{d}\left|\xi_{j}^{-1}-\xi_{m}^{-1}\right|^{-1}
\end{aligned}
$$

In particular, from the symmetry of $f_{\sum_{k=1}^{d} A_{k}-B_{k}}(z)$, we have for $\boldsymbol{\mu}=0$, that

$$
\frac{1}{2}=\operatorname{Pr}_{\omega \sim \mathcal{Q}}(y(\boldsymbol{\omega} \cdot \boldsymbol{x})<0)=\sum_{k=1}^{d} \alpha_{i}
$$

which concludes the proof.

C Proof of Theorem 4

Proof: From the assumption that the data is linearly separable we conclude that the set $\left\{\boldsymbol{\mu}_{Q} \mid y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q} \geq 0, i=1, \ldots, m\right\}$ is not empty. Additionally, the set is defined via linear constraints and thus convex. The objective (7) is convex in σ as its second derivative with respect to σ is $d \sigma^{-2}>0$.

The regularization term of (7) is convex in $\boldsymbol{\mu}$ as the second derivative of $|z|+\exp (-|z|)$ is always positive and well defined for all values of z (see also Remark 1 for a discussion of this function for values $z \approx 0$).

Figure 6: Illustration of the cumulative sums, $\sum_{i=1}^{k} \alpha_{i}(\boldsymbol{x})$, for five 10-dimensional vectors.

As for the loss term $\ell\left(y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}\right)$, we use the following auxiliary lemma.

Lemma 10 The following set of probability density functions over the reals

$$
\begin{aligned}
& \mathbb{S}=\left\{f_{p d f} \mid f \in \mathcal{C}_{1}, f(z)=f(-z)\right. \\
& \text { and } \left.\forall z_{1}, z_{2},\left|z_{2}\right|>\left|z_{1}\right| \Rightarrow f\left(z_{2}\right)<f\left(z_{1}\right)\right\}
\end{aligned}
$$

is closed under convolution, i.e $f, g \in \mathbb{S} \rightarrow f * g \in \mathbb{S}$.

Since the random variables $\omega_{1}, . ., \omega_{d}$ are independent, the density $f_{Z_{i}}(z)$ of the margin $Z_{i}=y_{i}\left(\boldsymbol{\omega}-\boldsymbol{\mu}_{Q}\right) \cdot \boldsymbol{x}_{i}$, is obtained by convoluting d independent zero-mean Laplace distributed random variables $y_{i}\left(\omega_{k}-\mu_{i, k}\right) x_{i, k}$. Since the 1-dimensional Laplace pdf is in \mathbb{S}, it follows from Lemma 10 by induction that so is $f_{Z_{i}}$. As a member of \mathbb{S}, the positivity of the derivative $f_{Z_{i}}^{\prime}(z)$ for $z \leq 0$ is concluded from Lemma 10. Finally, we note that the integral of the density is $\ell_{c d f}$, the cumulative density function, $\mathcal{E}\left(\boldsymbol{x}_{i}, y_{i}, \boldsymbol{\mu}_{Q}, \sigma_{Q}\right)=\int_{-\infty}^{-y_{i}} \boldsymbol{\mu}_{Q} \cdot \boldsymbol{x}_{i} f_{Z_{i}}(z) d z$. Thus, the second derivative of $\mathcal{E}\left(\boldsymbol{x}_{i}, y_{i}, \boldsymbol{\mu}_{Q}, \sigma_{Q}\right)$ for positive values of the margin, equals to $f_{Z_{i}}^{\prime}(z)$ for $z \leq 0$, and hence positive. Changing variables according to (6) completes the proof.

D Proof of Lemma 10

Proof: Assume $f, g \in \mathbb{S}$ and denote by $h=f * g$. The derivative of a convolution between two differentiable functions always exists, and equals to, $\frac{d}{d z}(f * g)=$
$f *\left(\frac{d g}{d z}\right)$. We compute for the convolution derivative, Rearranging, we get,

$$
\begin{array}{rlr}
& h^{\prime}(z)=\int_{-\infty}^{\infty} f(z-t) \cdot\left(\frac{d g(t)}{d t}\right) d t & d \exp \left(\frac{c m \eta}{d}\right) \geq \sum_{k=}^{a} \\
= & \int_{-\infty}^{0} f(z-t) \cdot\left(\frac{d g(t)}{d t}\right) d t+\int_{0}^{\infty} f(z-t) \cdot\left(\frac{d g(t)}{d t}\right) d t & \text { and we can conclude, } \\
= & \int_{-\infty}^{0} f(z-t) \cdot\left(\frac{d g(t)}{d t}\right) d t+\int_{-\infty}^{0} f(z+t) \cdot\left(\frac{d g(-t)}{d t}\right) d t & \sigma^{*} \geq \mathrm{e} \\
= & \int_{-\infty}^{0}[f(z-t)-f(z+t)]\left(\frac{d g(t)}{d t}\right) d t,
\end{array}
$$

where the last equality follows the fact $\frac{d g(t)}{d t}$ is an odd function as a derivative of an even function. Since $f, g \in \mathbb{S}, h(z) \in \mathcal{C}_{1}$ (i.e continuously differentiable almost everywhere), and since $h^{\prime}(z)$ is odd, we have that $h(z)$ is even. Using the monotonicity property of f, g, i.e $\left|z_{2}\right|>\left|z_{1}\right| \Rightarrow f\left(z_{2}\right)<f\left(z_{1}\right)$, we get,

$$
\begin{aligned}
& \int_{-\infty}^{0}[f(z-t)-f(z+t)] \cdot\left(\frac{d g(t)}{d t}\right) d t \\
= & -\operatorname{sign}(z) \cdot \int_{-\infty}^{0}|f(z-t)-f(z+t)|\left|\frac{d g(t)}{d t}\right| d t .
\end{aligned}
$$

Since f, g are pdfs, the integral is always defined, and thus the sign of the derivative of h depends on the sign of its argument, and in particular it is an increasing function for $z<0$ and decreasing for $z>0$, yielding the third property for h. Thus, $h \in \mathbb{S}$, as desired.

E Proof of Lemma 5

Proof: Setting $\boldsymbol{\mu}=\mathbf{0}$ and $\sigma=1$ the objective becomes $0+c m \eta$. Since the loss is non-negative we get that the minimizers satisfy,

$$
\begin{aligned}
& c m \eta \geq \\
& -d \log \sigma^{*} e+\sigma^{*} \sum_{k=1}^{d}\left[\left|\mu_{k}^{*}\right|+e^{-\left|\mu_{k}^{*}\right|}\right] \\
& +c \sum_{i} \ell\left(y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}^{*}\right) \geq \\
& -d \log \sigma^{*} e+\sigma^{*} \sum_{k=1}^{d}\left[\left|\mu_{k}^{*}\right|+e^{-\left|\mu_{k}^{*}\right|}\right] .
\end{aligned}
$$

Substituting the optimal value of σ^{*} from (8) we get,

$$
\begin{aligned}
c m \eta & \geq-d \log \frac{e d}{\sum_{k=1}^{d}\left|\mu_{k}^{*}\right|+e^{-\left|\mu_{k}^{*}\right|}}+d \\
& =d \log \frac{\sum_{k=1}^{d}\left|\mu_{k}^{*}\right|+e^{-\left|\mu_{k}^{*}\right|}}{d}
\end{aligned}
$$

F Proof of Theorem 6

Proof: While the empirical loss term depends only on $\boldsymbol{\mu}$, and was proved to be strictly convex for examples that satisfies $y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu} \geq 0$ in theorem 4 , the regularization term is optimized over both $\boldsymbol{\mu}, \sigma$. Incorporating the optimal value for sigma from (8) into the objective yields the following:

$$
\begin{aligned}
\mathcal{F}\left(\boldsymbol{\mu}, \sigma^{*}(\boldsymbol{\mu})\right)= & d \log \left(\sum_{k=1}^{d}\left|\mu_{k}\right|+e^{-\left|\mu_{k}\right|}\right) \\
& +c \sum_{i=1}^{m} \ell\left(y \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}\right)
\end{aligned}
$$

Differentiating the regularization term twice with respect to $\boldsymbol{\mu}$ results in the following Hessian matrix,

$$
\begin{aligned}
& H(\boldsymbol{\mu})=\frac{d}{\sum_{k=1}^{d}\left|\mu_{k}\right|+e^{-\left|\mu_{k}\right|}} \times \\
& {\left[\operatorname{diag}(\exp [-\boldsymbol{\mu}])-\frac{\boldsymbol{v} \cdot \boldsymbol{v}^{\top}}{\sum_{k=1}^{d}\left|\mu_{k}\right|+e^{-\left|\mu_{k}\right|}}\right]}
\end{aligned}
$$

for the d-dimensional vector $v_{k}=$ $\operatorname{sign}\left(\mu_{k}\right)\left(1-\exp \left[-\left|\mu_{k}\right|\right]\right)$, and $\operatorname{diag}(\exp [-\boldsymbol{\mu}]) \quad$ is a diagonal vector for which its ith elements equals $\exp \left(-\mu_{i}\right)$. The Hessian $H(\boldsymbol{\mu})$ is a difference of two positive semi-definite matrices. We upper bound the maximal eigenvalues of the second term by its trace, indeed,

$$
\left.\begin{array}{rl}
\max _{j} \lambda_{j} & \left(\frac{d}{\left(\sum_{k=1}^{d}\left|\mu_{k}\right|+e^{-\left|\mu_{k}\right|}\right)^{2}}\right.
\end{array}\right)
$$

Thus, the minimal eigenvalue of $H(\boldsymbol{\mu})$ is bounded from below by (-1), and the Hessian of the sum of the objective and $\frac{1}{2}\|\boldsymbol{\mu}\|^{2}$ has positive eigenvalues, therefore strictly convex.
For the second part, we use [17, Corollary 7.2.3] stating the a diagonally-dominated matrix with non-negative diagonal values is PSD. We next show that indeed $\|\boldsymbol{\mu}\|_{\infty} \leq 1$ is a sufficient condition for the Hessian to be diagonally dominated. It is straightforward to verify that both conditions follows from the following set of inequalities, for all $k=1, \ldots, d$,

$$
\begin{aligned}
& e^{-\left|\mu_{k}\right|} \sum_{j=1}^{d}\left(\left|\mu_{j}\right|+e^{-\left|\mu_{j}\right|}\right) \\
& -\left(1-e^{-\left|\mu_{k}\right|}\right) \sum_{j=1}^{d}\left(1-e^{-\left|\mu_{j}\right|}\right)>0
\end{aligned}
$$

or equivalently,

$$
\begin{align*}
& e^{-\left|\mu_{k}\right|}+e^{-\left|\mu_{k}\right|} \frac{1}{d} \sum_{j=1}^{d}\left|\mu_{j}\right|+\frac{1}{d} \sum_{j=1}^{d} e^{-\left|\mu_{j}\right|}-1>0 \\
\Leftrightarrow & e^{-\left|\mu_{k}\right|}\left(\frac{d+1}{d}+\frac{1}{d}\left|\mu_{k}\right|\right)+e^{-\left|\mu_{k}\right|}\left(\frac{1}{d} \sum_{j=1, j \neq k}^{d}\left|\mu_{j}\right|\right) \\
& +\frac{1}{d} \sum_{j=1, j \neq k}^{d} e^{-\left|\mu_{j}\right|}-1>0 . \tag{17}
\end{align*}
$$

Fixing μ_{k} the left-hand-side is decomposed to a sum of one variable convex functions μ_{j}. We minimize it for each μ_{j} by taking the derivative and setting it to zero, yielding,

$$
\begin{equation*}
\frac{1}{d}\left(\operatorname{sign}\left(\mu_{j}\right)\left[e^{-\left|\mu_{k}\right|}-e^{-\left|\mu_{j}\right|}\right]\right)=0 \Rightarrow \mu_{j}=\mu_{k} \tag{18}
\end{equation*}
$$

From here we conclude that (17) is satisfied if $\|\boldsymbol{\mu}\|_{\infty} \leq$ a for a scalar $a \geq 0$ that satisfy,

$$
g(a)=2 e^{-a}+a e^{-a}-1>0
$$

The function $g(a)$ is monotonically decreasing and continuous, with $g(1)=3 / e-1>0$, which completes the proof. In fact, one can compute numerically and find that $a^{*} \approx 1.146$ satisfy $g\left(a^{*}\right) \approx 0$, which leads to a slightly better constant than stated in the theorem.

G \quad Proof of Lemma 7

Proof: We first need to compute $\ell_{\text {lin }}$ directly, as $\alpha_{k}(\boldsymbol{x})$ is not defined on the standard basis, which contains few elements of the same value,

$$
\begin{aligned}
\operatorname{Pr}\left[\boldsymbol{e}_{k} \cdot \boldsymbol{\omega} \leq 0\right] & =\operatorname{Pr}\left[\omega_{k} \leq 0\right]=\operatorname{Pr}\left[\left(\omega_{k}-\mu_{k}\right)<-\mu_{k}\right] \\
& =\int_{-\infty}^{-\mu_{k}}(2 \sigma)^{-1} e^{-\frac{\left|\omega_{k}\right|}{\sigma}} d \omega_{k} .
\end{aligned}
$$

Thus, if $\mu_{k} \geq 0$ we get (the convex part) $\operatorname{Pr}\left[\boldsymbol{e}_{k} \cdot \boldsymbol{\omega} \leq 0\right]=\frac{1}{2} \exp \left(-\left|\mu_{k}\right|\right)$. Otherwise, we bound $\operatorname{Pr}\left[\boldsymbol{e}_{k} \cdot \boldsymbol{\omega} \leq 0\right]$ with the linear extension and get $\frac{1}{2}\left(1+\left|\mu_{k}\right|\right)$. To conclude, for each element k we get that, $\sum_{y= \pm 1} \ell_{\text {lin }}\left(y \boldsymbol{e}_{k} \cdot \boldsymbol{\mu}\right)=$ $\frac{1}{2}\left(\exp \left\{-\left|\mu_{k}\right|\right\}+\left(1+\left|\mu_{k}\right|\right)\right)$. Taking the sum over k and multiplying by 2 yields the above regularization term.

H RobuCop Pseudo-code

Input: Training set $S=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{m}$,
$c>0$, Artifical set $\mathcal{A}=\left\{\left(\boldsymbol{e}_{k}, y\right): k=1 \ldots d, y \in \mathcal{Y}\right\}$
Initialization: $\boldsymbol{\mu}^{(1)}=0$
Loop do until convergence criterion met:

- Set:

$$
\sigma^{(n+1)}=d\left(\sum_{k=1}^{d}\left|\mu_{k}\right|+\exp \left\{-\left|\mu_{k}\right|\right\}\right)^{-1}
$$

- Solve $\mu^{(n+1)}=\arg \min _{\mu}\left\{\sum_{S \cup \mathcal{A}} \tilde{c}_{i} \cdot \ell_{\text {lin }}\left(y \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}\right)\right\}$
for:

$$
\tilde{c}_{i}= \begin{cases}c & \left(\boldsymbol{x}_{i}, y_{i}\right) \in S \\ 2 \sigma^{(n+1)} & \left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathcal{A}\end{cases}
$$

Output: $\boldsymbol{\mu}, \sigma$

I Proof of Lemma 8

Proof: Denote the change of the loss term of (12) by,

$$
\begin{aligned}
\Delta_{t}= & \sum_{i=1}^{m} \log \left(1+D_{i} e^{-y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t)}}\right) \\
& -\sum_{i=1}^{m} \log \left(1+D_{i} e^{-y_{i} \boldsymbol{x}_{i} \cdot\left[\boldsymbol{\mu}_{Q}^{(t)}+\boldsymbol{\delta}^{(t)}\right]}\right) .
\end{aligned}
$$

We start by bounding Δ_{t} from below, then add to it the difference of the regularization term, before and after the update. Bounding the improvement for a
single example, we get,

$$
\begin{aligned}
& \frac{\Delta_{t, i}}{c}=-\log \left(\frac{1+D_{i} e^{-y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t+1)}}}{1+D_{i} e^{-y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t)}}}\right) \\
& \quad=-\log \left(\frac{1}{1+D_{i} e^{-y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t)}}}+\frac{D_{i} e^{-y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t+1)}}}{1+D_{i} e^{-y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t)}}}\right) \\
& \quad=-\log \left(1-\frac{D_{i}}{\left.D_{i}+e^{y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t)}}+\frac{D_{i} e^{-y_{i} \boldsymbol{x}_{i}\left[\boldsymbol{\mu}_{Q}^{(t+1)}-\boldsymbol{\mu}_{Q}^{(t)}\right]}}{D_{i}+e^{y_{i} \boldsymbol{x}_{i} \cdot \boldsymbol{\mu}_{Q}^{(t)}}}\right)} \begin{array}{l}
\quad=-\log \left(1-q_{t}(i)\left[1-e^{-y_{i} x_{i, k} \delta_{k}^{(t)}}\right]\right) .
\end{array} .\right) .
\end{aligned}
$$

By using $-\log (1-z) \geq z$ for $z<1$ we get,

$$
\begin{aligned}
& -\log \left(1-q_{t}(i)\left[1-e^{-y_{i} x_{i, k} \delta_{k}^{(t)}}\right]\right) \\
& \geq q_{t}(i)\left[1-e^{-y_{i} x_{i, k} \delta_{k}^{(t)}}\right]
\end{aligned}
$$

Convexity of the exponent, for every $\sigma_{Q, k} \in(0,1)$, yields,

$$
\begin{aligned}
e^{-y_{i} x_{i, k} \delta_{k}^{(t)}} \leq & \sigma_{Q, k}\left|x_{i, k}\right| e^{-\operatorname{sign}\left(y_{i} x_{i, k}\right) \frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}} \\
& +\left(1-\sigma_{Q, k}\left|x_{i, k}\right|\right) e^{0}
\end{aligned}
$$

Summing over the examples,

$$
\begin{aligned}
\Delta_{t} & \geq c \sum_{i=1}^{m} q_{t}(i) \sigma_{Q, k}\left|x_{i, k}\right|\left(1-e^{-\operatorname{sign}\left(y_{i} x_{i, k}\right) \frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}\right) \\
& =c \sum_{i=1, y_{i} x_{i, k} \geq 0}^{m} q_{t}(i) \sigma_{Q, k}\left|x_{i, k}\right|\left(1-e^{-\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}\right) \\
& +c \sum_{i=1, y_{i} x_{i, k}<0}^{m} q_{t}(i) \sigma_{Q, k}\left|x_{i, k}\right|\left(1-e^{\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}\right) \\
& =c \sigma_{Q, k}\left(\gamma_{k}^{+}\left[1-e^{-\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}\right]+\gamma_{k}^{-}\left[1-e^{\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}\right]\right)
\end{aligned}
$$

adding the regularization terms completes the proof.

J Proof of Lemma 9

Proof: Without loss of generality we assume that $\gamma_{k}^{+} e^{\frac{\mu_{Q, k}^{(t)}}{\sigma_{Q, k}}}-\gamma_{k}^{-} e^{-\frac{\mu_{Q, k}^{(t)}}{\sigma_{Q, k}}}>0$, and in addition we assume for the sake of contradiction that, $\mu_{Q, k}^{(t)}+\delta_{k}^{(t)}<0$. Differentiating the objective with respect for $\delta_{t}^{(t)}$ and
equating to zero yields:

$$
\begin{aligned}
& \begin{array}{l}
=\frac{\partial}{\partial \delta_{t}}\left\{-\mu_{Q, k}^{(t)}-\delta_{k}^{(t)}+\sigma_{Q, k} e^{\frac{\mu_{Q, k}^{(t)}+\delta_{k}^{(t)}}{\sigma_{Q, k}}}\right. \\
\left.\quad+c \sigma_{Q, k}\left(\gamma_{k}^{+} e^{-\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}+\gamma_{k}^{-} e^{\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}\right)\right\} \\
= \\
\text { - } 1+e^{\frac{\mu_{Q, k}^{(t)}+\delta_{k}^{(t)}}{\sigma_{Q, k}}}-c \gamma_{k}^{+} e^{-\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}+c \gamma_{k}^{-} e^{\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}=0 . \\
\text { Arranging the terms: } \\
\quad-c \gamma_{k}^{+} e^{-\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}+c \gamma_{k}^{-} e^{\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}=1-e^{\frac{\mu_{Q, k}^{(t)}+\delta_{k}^{(t)}}{\sigma_{Q, k}}},
\end{array},
\end{aligned}
$$

the right hand side is assumed to be strictly positive, and as for the left hand side:

$$
\begin{aligned}
& -\gamma_{k}^{+} e^{-\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}}+\gamma_{k}^{-} e^{\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}} \\
< & -\gamma_{k}^{+} e^{-\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}} \cdot e^{\frac{\mu_{Q, k}^{(t)}+\delta_{k}^{(t)}}{\sigma_{Q, k}}}+\gamma_{k}^{-} e^{\frac{\delta_{k}^{(t)}}{\sigma_{Q, k}}} \cdot e^{-\frac{\mu_{Q, k}^{(t)}+\delta_{k}^{(t)}}{\sigma_{Q, k}}} \\
= & -\left(\gamma_{k}^{+} e^{\frac{\mu_{Q, k}^{(t)}}{\sigma_{Q, k}}}-\gamma_{k}^{-} e^{-\frac{\mu_{Q, k}^{(t)}}{\sigma_{Q, k}}}\right)<0 .
\end{aligned}
$$

This is a contradiction, so we must have that $\delta_{k}^{(t)}+\mu_{Q, k}^{(t)} \geq 0$. The proof for the symmetric case follows similarly.

K Experiments- Data Details:

Synthetic data: We generated 4,000 vectors $\boldsymbol{x}_{i} \in \mathbb{R}^{8}$ sampled from a zero mean isotropic normal distribution $\boldsymbol{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Labels were assigned by generating once per run $\boldsymbol{\omega} \in \mathbb{R}^{8}$ at random and using: $y_{i}=\operatorname{sign}\left(\boldsymbol{\omega} \cdot \boldsymbol{x}_{i}\right)$. Each input \boldsymbol{x}_{i} training data was then corrupted with probability p by adding to it a random vector sampled from a zero mean isotropic Gaussian, $\epsilon_{i} \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{I})$, with some positive standard-deviation σ. Each run was repeated 20 times, and results are average test-error over the 20 runs. All boosting algorithms were run for 1,000 iterations, except for the RobuCoP algorithm which was executed until a convergence criterion was met, which often was about 20 rounds.
Vocal Joystick: For each problem, we picked three sets of size 2, 000 each, for training, parameter tuning and testing. Each example is a frame of spoken value described with 13 MFCC coefficients transformed into 27 features. In order to examine the robustness of different algorithms, we contaminate 10% of the data with an additive zero-mean i.i.d Gaussian noise, for different values of the standard-deviation σ.

[^0]: ${ }^{4}$ Notice that if $x_{k}=0$ the random variable $\omega_{k} x_{k}$ equals zero too, therefore we assume without loss of generality that $x_{k} \neq 0$.

