
A Proofs of clustering speedup

Proof of Lemma 1. Given portions x and y of red
and blue balls, resp., in the left urn, consider the
2 × 2 × 2 possible Gibbs moves: remove red/blue
from left/right urn and replace in left/right urn. For
large data size N , data size changes very little after
a single removal, so the add and remove steps decou-
ple into differentials dxrem, dyrem, dxadd, and dyadd.
Compute the probabilities of each move; then com-
pute the mean and variance in x and, by red-blue
symmetry, y:

E[dxrem] =
1

N

1− 2x

2

V[dxrem] =
1

N2

x(1− x)

r

E[dxadd] =
1

2N

n2r1 − n1r2

n2r1 + n1r2
+

α

N2

2n1

xr + (1− x)l

V[dxadd] =
1

N2

r n2r1 n1r2

(n2r1 + n1r2)2

+
α

N3

[
n1n2

(xn1 + (1− x)n2)2
+

2

xn1 + (1− x)n2

]
with lower-case intrinsic quantities defined as

r1 = (#red on left)/N r2 = (#red on right)/N

b1 = (#blue on left)/N b2 = (#blue on right)/N

n1 = r1 + b1 n2 = r2 + b2

These moments comprise the N -scaled Fokker-
Planck coefficients
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By inspection these depend only on intrinsic quan-
tities and the scaled hyperparameter α

N .

Proof of Theorem 2. At fixed error bound ε, the
continuous dynamics is within ε of true dynamics
by data size, say, Nε. Thus at large data sizes,
the MCMC dynamics is linear and mixing time is
Tcold = O

(
N2 log(ε)

)
. In a subsample annealing

schedule β(t) = t/T , the subsample annealing dy-
namics at subsamples larger than Nε is approxi-
mately time-scaled versions of the dynamics at full
size N , so the effective schedule length is
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Since effective time is inverse in data size, annealing
mixes in time Tanneal = O (N log(ε)).

B Proofs of bimodal speedup

Proof of Lemma 3. Consider a two-state system
x = [x, 1− x]T at energy levels [Nγ, 0]. The steady-
state solution at temperature β should be πbeta :=
[σ(βγN), σ(βγN)], where σ(t) = 1

1+exp(−t) is the lo-

gistic sigmoid function. In continuous time mixing,
we think of the state briefly jumping on to an en-
ergy barrier of height βδN then jumping back down
according to πβ . If the rate of jumping up to energy
βδN is exp(−βδN), then the dynamics is:
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The first coordinate x determines the state; expand-
ing yields Equation 1.

Proof of Theorem 4. In this binary system the TVD
of state x from truth is |x−xtrue| = |x−σ(γN)|. Now
we seek asymptotic lower bounds on T guaranteeing
TVD< ε. To prove (a) observe that in cold infer-
ence (β = 1), the system is linear homogeneous with
eigenvalue exp(−Nδ). To prove (b) we transform
from time coordinates t to “natural” coordinates
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where, assuming worst-case initial condition x(0) =
0, the final state x is a uniform integral

x =

∫ 1

0

σ(β(τ)Nγ) dτ

involving the transformed annealing schedule
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Using the inequality σ(γ) − σ(βγ) ≤ exp(−βγ), we
can bound error by

TVD <
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Since the integrand exp(−β(τ)Nγ) is bounded in
(0, 1), and β(τ) is increasing, Equation 2 holds if
T is chosen large enough that exp(−β(ε/2) > 1, for
example if
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or more conservatively, for any K > 1, and suffi-
ciently large N ,
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whence the asymptotic bound.
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