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Abstract

We present the FuSSO, a functional analogue
to the LASSO, that efficiently finds a sparse
set of functional input covariates to regress
a real-valued response against. The FuSSO
does so in a semi-parametric fashion, making
no parametric assumptions about the nature
of input functional covariates and assuming a
linear form to the mapping of functional co-
variates to the response. We provide a statis-
tical backing for use of the FuSSO via proof of
asymptotic sparsistency under various condi-
tions. Furthermore, we observe good results
on both synthetic and real-world data.

1 Introduction

Modern data collection has allowed us to collect not
just more data, but more complex data. In particular,
complex objects like sets, distributions, and functions
are becoming prevalent in many domains. It would
be beneficial to perform machine learning tasks us-
ing these complex objects. However, many existing
techniques can not handle complex, possibly infinite
dimensional, objects; hence one often resorts to the
ad-hoc technique of representing these complex object
by arbitrary summary statistics.

In this paper, we look to perform a regression task
when dealing with functional data. Specifically, we
look to regress a mapping that takes in many func-
tional input covariates and outputs a real value. More-
over, since we are considering many functional covari-
ates (possibly many more than the number of instances
of one’s data), we look to find an estimator that per-
forms feature selection by only regressing on a sub-
set of all possible input functional covariates. To this
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end we present the Functional Shrinkage and Selection
Operator (FuSSO), for performing sparse functional
regression in a principled, semi-parametric manner.

Indeed, there are a multitude of applications and do-
mains where the study of a mapping that takes in a
functional input and outputs a real-value is of interest.
That is, if I is some class of input functions with do-
main Ψ ⊆ R and range R, then one may be interested
in a mapping h : I 7→ R: h(f) = Y (Figure 1(a)).
Examples include: a mapping that takes in the time-
series of a commodity’s price in the past (f is a func-
tion with the domain of time and range of price) and
outputs the expected price of the commodity in the
nearby future; also, a mapping that takes a patient’s
cardiac monitor’s time-series and outputs a health in-
dex. Recently, work by [8] has explored this type of
regression problem when the input function is a distri-
bution. Furthermore, the general case of an arbitrary
functional input is related to functional analysis [2].

However, often it is expected that the response one
is interested in regressing is dependent on not just
one, but many functions. That is, it may be fruit-
ful to consider a mapping h : I1 × . . . × Ip 7→ R:
h(f1, . . . , fp) = Y (Figure 1(b)). For instance, this is
likely the case in regressing the price of a commodity
in the future, since the commodity’s future price is not
only dependent on the history of it own price, but also
the history of other commodities’ prices as well. A
response’s dependence on multiple functional covari-
ates is especially common in neurological data, where
thousands of voxels in the brain may each contain a
corresponding function. In fact, in such domains it is
not uncommon to have a number of input functional
covariates that far exceeds the number of training in-
stances one has in a data-set. Thus, it would be benefi-
cial to have an estimator that is sparse in the number
of functional covariates used to regress the response
against. That is, find an estimate, ĥs, that depends
on a small subset {i1, . . . , iS} ⊂ {1, . . . , p}, such that

ĥ(f1, . . . , fp) = ĥs(fi1 , . . . , fiS ) (Figure 1(c)).

Here we present a semi-parametric estimator to per-
form sparse regression with multiple input functional
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Figure 1: (a) Model where mapping takes in a function f and produces a real Y . (b) Model where response Y is
dependent on multiple input functions f1, . . . , fp. (c) Sparse model where response Y is dependent on a sparse
subset of input functions f1, . . . , fp.

covariates and a real-valued response, the FuSSO:
Functional Shrinkage and Selection Operator. No
parametric assumptions are made on the nature of in-
put functions. We shall assume that the response is
the result of a sparse set of linear combinations of in-
put functions and other non-paramteric functions {gi}:
Y =

∑
j〈fj , gj〉. The resulting method is a LASSO-

like [10] estimator that effectively zeros out entire func-
tions from consideration in regressing the response.

Our contributions are as follows. We introduce the
FuSSO, an estimator for performing regression with
many functional covariates and a real-valued response.
Furthermore, we provide a theoretical backing of the
FuSSO estimator via proof of asymptotic sparsistency
under certain conditions. We also illustrate the esti-
mator with applications on synthetic data as well as
in regressing the age of a subject when given orien-
tation distribution function (dODF) [14] data for the
subject’s white matter.

2 Related Work

As previously mentioned, recently [8] explored regres-
sion with a mapping that takes in a probability density
function and outputs a real value. Furthermore, [7]
studies the case when both the input and outputs are
distributions. In addition, functional analysis relates
to the study for functional data [2]. In all these works,
the mappings studied take in only one functional co-
variate. Based on them, it is not immediately evident
how to expand on these ideas to develop an estimator
that simultaneously performs regression and feature
selection with multiple function covariates.

To the best of our knowledge, there has been no prior
work in studying sparse mappings that take multiple
functional inputs and produce a real-valued output.

LASSO-like regression estimators that work with func-
tional data include the following. In [6], one has a func-
tional output and several real-valued covariates. Here,
the estimator finds a sparse set of functions to scale by
the real valued covariates to produce the functional re-
sponse. Also, [17, 3] study the case when one has one
functional covariate f and one real valued response
that is linearly dependent on f and some function g:
Y = 〈f, g〉 =

∫
fg. In [17] the estimator searches

for sparsity across wavelet basis projection coefficients.
In [3], sparsity is in achieved in the time (input) do-
main of the dth derivative of g; i.e. [Ddg](t) = 0 for
many values of t where Dd is the differential opera-
tor. Hence, roughly speaking, [17, 3] look for spar-
sity across frequency and time domains respectively,
for the regressing function g. However, these methods
do not consider the case where one has many input
functional covariates {f1, . . . , fp}, and needs to choose
among them. That is, [17, 3] do not provide a method
to select among function covariates in an analogous
fashion to how the LASSO selects among real-valued
covariates.

Lastly, it is worth noting that in our estimator we will
have an additive linear model,

∑
j〈fj , gj〉 where we

search for {gi} in a broad, non-parametric family such
that many gj are the zero function. Such a task is
similar in nature to the SpAM estimator [9], in which
one also has an additive model

∑
j gj(Xj) (in the di-

mensions of a real vector X) and searches for {gi} in
a broad, non-parametric family such that many gj are
the zero function. Note though, that in the SpAM
model, the {gi} functions are applied to real covari-
ates via a function evaluation. In the FuSSO model,
{gi} are applied to functional covariates via an inner
product; that is, FuSSO works over functional, not
real-valued covariates, unlike SpAM.
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3 Model

To better understand FuSSO’s model we draw several
analogies to real-valued linear regression and Group-
LASSO [16]. Note that although for simplicity we fo-
cus on functions working over a one dimensional do-
main, it is straightforward to extend the estimator and
results to the multidimensional case. Consider a model
for typical real-valued linear regression with a data-set
of input-output pairs {(Xi, Yi)}Ni=1:

Yi = 〈Xi, w〉+ εi,

where Yi ∈ R, Xi ∈ Rd, w ∈ Rd, εi
iid∼ N (0, σ2),

and 〈Xi, w〉 =
∑d
j=1Xijwj . If instead one were work-

ing with functional data {(f (i), Yi)}Ni=1, where f (i) :
[0, 1] 7→ R and f (i) ∈ L2[0, 1], one may similarly con-
sider a linear model:

Yi = 〈f (i), g〉+ εi,

where, g : [0, 1] 7→ R, and 〈f (i), g〉 =
∫ 1

0
f (i)(t)g(t)dt.

If Φ = {ϕm}∞m=1 is an orthonormal basis for L2[0, 1]
[11] then we have that

f (i)(x) =
∞∑
m=1

α(i)
m ϕm(x), (1)

where, α
(i)
m =

∫ 1

0
f (i)(t)ϕm(t)dt. Similarly, g(x) =∑∞

m=1 βmϕm(x) where βm =
∫ 1

0
g(t)ϕm(t)dt. Thus,

Yi = 〈f (i), g〉+ εi

= 〈
∞∑
m=1

α(i)
m ϕm(x),

∞∑
k=1

βkϕk(x)〉+ εi

=
∞∑
m=1

∞∑
k=1

α(i)
m βk〈ϕm(x), ϕk(x)〉+ εi

=

∞∑
m=1

α(i)
m βm + εi,

where the last step follows from orthonormality of Φ.

Going back to the real-valued covariate case, if instead
of having one feature vector per data instance: Xi ∈
Rd, one had p feature vectors associated to each data
instance: {Xij | 1 ≤ j ≤ p, Xij ∈ Rd}, an additive
linear model may be used for regression:

Yi =

p∑
j=1

〈Xij , wj〉+ εi,where w1, . . . , wp ∈ Rd.

Similarly, in the functional case one may have p func-

tions associated with data instance i: {f (i)
j | 1 ≤ j ≤

p, f
(i)
j ∈ L2[0, 1]}. Then, an additive linear model

would be:

Yi =

p∑
j=1

〈f (i)
j , gj〉+ εi =

p∑
j=1

∞∑
m=1

α
(i)
jmβjm + εi, (2)

where g1, . . . , gp ∈ L2[0, 1], and α
(i)
jm and βjm are pro-

jection coefficients for f
(i)
j and gj respectively.

Suppose that one has few observations relative to the
number of features (N � p). In the real-valued
case, in order to effectively find a solution for w =
(wT1 , . . . , w

T
p )T one may search for a group sparse so-

lution where many wj = 0. To do so, one may consider
the following Group-LASSO regression:

w? = argmin
w

1

2N
‖Y −

p∑
j=1

Xjwj‖2 + λN

p∑
j=1

‖wj‖,

(3)

where Xj is the N × d matrix Xj = [X1j . . . XNj ]
T ,

Y = (Y1, . . . , YN )T , and ‖ · ‖ is the Euclidean norm.

If in the functional case (2) one also has that N � p,
one may set up a similar optimization to (3), whose
direct analogue is:

g? = argmin
g

1

2N

N∑
i=1

Yi − p∑
j=1

〈f (i)
j , gj〉

2

(4)

+ λN

p∑
j=1

‖gj‖; (5)

equivalently,

β? = argmin
β

1

2N

N∑
i=1

Yi − p∑
j=1

∞∑
m=1

α
(i)
jmβjm

2

(6)

+ λN

p∑
j=1

√√√√ ∞∑
m=1

β2
jm, (7)

where g = {gi}pi=1 = {
∑∞
m=1 βimϕm, }

p
i=1.

However, it is unfeasible to directly observe functional

inputs {f (i)
j | 1 ≤ i ≤ N, 1 ≤ j ≤ p} . Thus, we

shall instead assume that one observes {~y (i)
j | 1 ≤ i ≤

N, 1 ≤ j ≤ p} where

~y
(i)
j =~f

(i)
j + ξ

(i)
j , (8)

~f
(i)
j =

(
f

(i)
j (1/n), f

(i)
j (2/n), . . . , f

(i)
j (1)

)T
, (9)

ξ
(i)
j

iid∼N (0, σ2
ξIn). (10)
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That is, we observe a grid of n noisy values for each

functional input. Then, one may estimate α
(i)
jm as:

α̃
(i)
jm =

1

n
~ϕTm~y

(i)
j =

1

n
~ϕTm(~f

(i)
j + ξ

(i)
j ) = ᾱ

(i)
jm + η

(i)
jm

(11)

where ~ϕm = (ϕm(1/n), ϕm(2/n), . . . , ϕm(1))
T

. Fur-
thermore, we may truncate the number of basis func-

tions used to express f
(i)
j to Mn, estimating it as:

f̃
(i)
j (x) =

Mn∑
m=1

α̃
(i)
jmϕm(x). (12)

Using the truncated estimate (12), one has:

〈f̃ (i)
j (x), gj〉 =

Mn∑
m=1

α̃
(i)
jmβjm, and

‖f̃ (i)
j (x)‖ =

√√√√ Mn∑
m=1

(α̃
(i)
jm)2.

Hence, using the approximations (12), (7) becomes:

β̂ = argmin
β

1

2N

N∑
i=1

Yi − p∑
j=1

Mn∑
m=1

α̃
(i)
jmβjm

2

(13)

+ λN

p∑
j=1

√√√√ Mn∑
m=1

β2
jm (14)

= argmin
β

1

2N
‖Y −

p∑
j=1

Ãjβj‖2 + λN

p∑
j=1

‖βj‖, (15)

where Ãj is the N×Mn matrix with values Ãj(i,m) =

α̃
(i)
jm and βj = (βj1, . . . , βjMn

)T . Note that one need
not consider projection coefficients βjm for m > Mn

since such projection coefficients will not decrease the

MSE term in (13) (because α̃
(i)
jm = 0 for m > Mn), and

βjm 6= 0 for m > Mn increases the norm penalty term
in (14). Hence we see that our sparse functional esti-
mates are a Group-LASSO problem on the projection
coefficients.

Extensions It is useful to note that there are sev-
eral straightforward extensions to the FuSSO as pre-
sented. First, we would like to note that it may
be possible to estimate the inner product of a func-

tion f
(i)
j , and gj as

∫
f

(i)
j gj ≈ 〈~y (i)

j , 1
n~gj〉, where

~gj = (gj(1/n), . . . , gj(1))T . This effectively allows one
to use a naive approach of simply using Group-LASSO

on the ~y
(i)
j feature vectors directly (we’ll refer to this

method as Y-GL). It is important to note, however,
that Y-GL will be less robust to noise, and adaptive

(and efficient) to smoothness than the FuSSO. Fur-
thermore, we note that it is not necessary to have ob-
servations for input functions that are on a grid for the
FuSSO, since one may estimate projection coefficients
in the case of an irregular design [11]. Moreover, we
may also estimate projection coeffincients for density
functions with samples drawn from the pdf. Note that
the Y-GL would fail to estimate our model in the irreg-
ular design case, and would not be possible in the case
were functions are pdf. Also, a two-stage estimator as
described in [5], where one first uses the regularization
penalty with a large λ to find the support, then solves
the optimization problem with a smaller λ on just the
estimated support to estimate the response, may be
more efficient at estimating the response. Further-
more, an analogous problem as (15) may be framed
to perform logistic regression and classification.

4 Theory

Next, we show that the FuSSO is able to recover the
correct sparsity pattern asymptotically; i.e., that the
FuSSO estimate is sparsistent. In order to do so, we
shall show that with high probability there is an opti-
mal solution to our optimization problem (15) with the
correct sparsity pattern. We follow a similar argument
to [12, 9]. We shall use a “witness” technique to show

that there is a coefficient/subgradient pair (β̂, û) such

that supp(β̂) = supp(β∗), for true response generating
β∗. Let Ω(β) =

∑p
j=1‖βj‖2, be our penalty term (14).

Let S denote the true set of non-zero functions; i.e.
S = {j | β∗j 6= 0}, with s = |S|. First, we fix β̂Sc = 0,
and set ûS = ∂Ω(·)(β∗)S . Note that for a vector β′,
∂Ω(·)(β′) = {u} where: uj = β′j/‖β′‖2, if β′j 6= 0;
uj = ‖uj‖2 ≤ 1 if β′j = 0. We shall show that with high

probability, ∀j ∈ S, β̂j 6= 0 and ∀j ∈ Sc, ‖uj‖2 < 1,
thus showing that there is an optimal solution to our
optimization problem (15) that has the true sparsity
pattern with high probability.

First, we elaborate on our assumptions.

4.1 Assumptions

Let Φ be the trigonometric basis, ϕ1(x) ≡ 1, k ≥ 2:

ϕ2k(x) ≡
√

2 cos(2πkx), ϕ2k+1(x) ≡
√

2 sin(2πkx).

Let D = {({~y (i)
j }

p
j=1, Yi)}Ni=1, where ~y

(i)
j is as (8), and

Yi =
∑p
j=1

∑∞
m=1 α

(i)
jmβ

∗
jm + εi as in (2). Assume that

∀ 1 ≤ i ≤ N, 1 ≤ j ≤ p: α(i)
j ∈ Θ(γ,Q), where:

Θ(γ,Q) ={θ :
∞∑
k=1

c2kθ
2
k ≤ Q},

ck =kγ if k even or one, (k − 1)γ otherwise,
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α
(i)
j ={α(i)

jm ∈ R | α(i)
jm =

∫ 1

0

f
(i)
j ϕm, m ∈ N+}

for 0 < Q < ∞ and 1
2 < γ < ∞. Furthermore, as-

sume that that for the true β generating the observed
responses Yi, β

∗, ∀ 1 ≤ j ≤ p: β∗j ∈ Θ(γ,Q).

Let Aj be the N ×Mn matrix with entries Aj(i,m) =

α
(i)
jm. Let AS denote the matrix made up from hori-

zontally concatenating the Aj matrices with j ∈ S; i.e.
AS = [Aj1 . . . Ajs ], where {j1, . . . , js} = S and ji < jk
for i < k. Suppose the following:

Λmax

(
1
NA

T
SAS

)
≤ Cmax <∞ (16)

Λmin

(
1
NA

T
SAS

)
≥ Cmin >0. (17)

Also, suppose ∃δ ∈ (0, 1] s.t. ∀j ∈ Sc

Λmax

(
1
NA

T
j Aj

)
≤ Cmax <∞ (18)∥∥( 1

NA
T
j AS)( 1

NA
T
SAS)−1

∥∥
2
≤1− δ/

√
s (19)

Let Āj be the N ×Mn matrix with entries Āj(i,m) =

ᾱ
(i)
jm = 1

n ~ϕ
T
m
~f

(i)
j . Let Hj be the N ×Mn matrix with

entries Hj(i,m) = η
(i)
jm = 1

n ~ϕ
T
mξ

(i)
j . Thus, Ãj = Āj +

Hj . Furthermore, let Ej = Āj − Aj . Then, Ãj =
Aj + Ej +Hj .

In addition to the aforementioned assumptions, we
shall further assume the following:

∃a < 1/2 s.t. pMnn
a−1/2e−n

1−2a

→ 0 (20)

ρ∗N ≡ min
j∈S
‖β∗j ‖∞ > 0 (21)√

sMn

(
n−γ+1/2 + n−a

)
→ 0 (22)

1

ρ∗N

(
s
3/2M

1/2−2γ
n +

√
log(sMn)/N

)
→ 0 (23)

λN

√
sMn/ρ

∗
N → 0 (24)

1

λN

(
s
√
Mnn

−γ+1/2 +

√
s log(N)

n

)
→ 0 (25)

1

λN

(
sMn

nγ+a−1/2
+

√
sMn log(N)

na+1/2

)
→ 0 (26)

1

λN

√
Mn log((p− s)Mn)/N → 0 (27)

s/(λNNM
2γ−1/2
n )→ 0, (28)

and we assume γ ≥ 1 for the sake of simplification. We
may further simplify our assumptions if we take n =
N1/2 and chooseMn optimally for function estimation:
Mn � n1/(2γ+1) = N1/(4γ+2). Furthermore, take s =
O(1), ρ∗N � 1, and γ = 2. Under these conditions, our
assumptions reduce to 1

10 < a and taking the follow to
go to zero:

pN
10a−3

20 e−N
1
2
−a
, λNN

1/20, N−
7
10 /λN,

1
λ2

N
N

1
2 log(N), 1

λ2
N
N−

9/10 log(pN).

4.2 Sparsistency

Theorem 1: P
(
ŜN = S

)
→ 1.

First, we state some lemmas, whose proofs may be
found in the supplementary materials.

4.2.1 Lemmata

Lemma 1 Let X be a non-negative r.v. and C be an
measurable event, then E [X|C]P(C) ≤ E [X].

Lemma 2 1
n

∑n
k=1 ϕm(k/n)ϕl(k/n) = I{l = m}, for

1 ≤ l,m ≤ n− 1.

Lemma 3 Let H
(i)
j be the rows of Hj , then H

(i)
j

iid∼

N (0,
σ2
ξ

n I), and H
(i)
S

iid∼ N (0,
σ2
ξ

n I).

Lemma 4 P (‖H‖max ≥ na) ≤ 2σξpMnn
a−1/2e

−n1−2a

2σ2
ξ

Lemma 5 ‖Ej‖max ≤ CQn−γ+1/2, where CQ ∈ (0,∞)
is a constant depending on Q.

Lemma 6 ‖β∗S‖22 ≤ Qs.

Lemma 7 ∃N0, n0, C̃min, C̃max, 0 < C̃min ≤ C̃max <
∞, 0 < δ̃ ≤ 1 s.t. if ‖H‖max < n−a, and N > N0,
n > n0 then

Λmax

(
1
N Ã

T
S ÃS

)
≤ C̃max <∞ (29)

Λmin

(
1
N Ã

T
S ÃS

)
≥ C̃min >0 (30)

∀j ∈ Sc,
∥∥∥( 1

N Ã
T
j ÃS)( 1

N Ã
T
S ÃS)−1

∥∥∥
2
≤1− δ̃√

s
(31)

4.2.2 Proof of Theorem 1

Proposition 1 P
(
∀j ∈ S β̂j 6= 0

)
→ 1.

Proof. Recall that by (21), ρ∗N = minj∈S‖β∗j ‖∞ > 0.

Thus to prove that ∀j ∈ S β̂j 6= 0, it suffices to

show that : ‖β̂S − β∗S‖∞ ≤
ρ∗N
2 . To do so we show

P
(
‖β̂S − β∗S‖∞ >

ρ∗N
2

)
→ 0. Let B be the event that

‖H‖max < n−a. Note that:

P
(
‖β̂S − β∗S‖∞ >

ρ∗N
2

)
≤ P

(
‖β̂S − β∗S‖∞ >

ρ∗N
2

∣∣∣B)P(B) + P (Bc) .

Furthermore,

P
(
‖β̂S − β∗S‖∞ >

ρ∗N
2

∣∣∣B) ≤ 2
ρ∗N

E
[
‖β̂S − β∗S‖∞

∣∣∣B] .
Then, looking at the stationarity condition for the sup-
port S:

1
N Ã

T
S

(
ÃS β̂S − Y

)
+ λNûS = 0. (32)
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Let V be the N × 1 vector with entries Vi =∑
j∈S

∑∞
m=Mn+1 α

(i)
jmβ

∗
jm; i.e. the error from trunca-

tion. Then, using (32) Y = ASβ
∗
S + V + ε =⇒

1
N Ã

T
S

(
ÃS β̂S −ASβ∗S − V − ε

)
+ λNûS = 0 =⇒

ÃTS
N

(
ÃS(β̂S − β∗S)− (AS − ÃS)β∗S − V − ε

)
= −λNûS

Thus,

1
N Ã

T
S ÃS(β̂S − β∗S) =− 1

N Ã
T
S (ES +HS)β∗S + 1

N Ã
T
SV

+ 1
N Ã

T
S ε− λNûS . (33)

Let Σ̃−1
SS = ( 1

N Ã
T
S ÃS)−1; we see that,

‖β̂S − β∗S‖∞ ≤ ‖Σ̃−1
SS( 1

N Ã
T
S )(ES +HS)β∗S‖∞

+ ‖Σ̃−1
SS( 1

N Ã
T
S )V ‖∞ + ‖Σ̃−1

SS( 1
N Ã

T
S )ε‖∞

+ ‖Σ̃−1
SSλNûS‖∞.

Thus, we proceed to bound each term on the LHS
in expectation. First, note that ‖Σ̃−1

SS( 1
N Ã

T
S )(ES +

HS)β∗S‖∞ ≤ ‖Σ̃−1
SS‖∞‖(

1
N Ã

T
S )(ES + HS)β∗S‖∞ =

‖Σ̃−1
SS‖∞‖

1
N (ATS + ETS + HT

S )(ES + HS)β∗S‖∞ ≤
‖Σ̃−1

SS‖∞
N

(
‖ATS (ES + HS)β∗S‖∞ + ‖(ES + HS)T (ES +

HS)β∗S‖∞
)

. Moreover, given that B occurs:

‖Σ̃−1
SS‖∞ ≤

√
sMn‖Σ̃−1

SS‖2 ≤
√
sMn

C̃min

.

Thus, E
[
‖Σ̃−1

SS‖∞
N ‖ATS (ES +HS)β∗S‖∞

∣∣B]P(B)

≤
√
sMn

C̃minN
‖ATS‖∞E

[
‖(ES +HS)β∗S‖∞

∣∣B]P(B)

≤ Q
√
sMn

C̃min

(
‖ESβ∗S‖∞ + E

[
‖HSβ

∗
S‖∞

∣∣B]P(B)
)
,

noting that ‖ATS‖∞ ≤ NQ. Moreover, by Lemma 1:

E
[
‖HSβ

∗
S‖∞

∣∣B]P(B) ≤ E [‖HSβ
∗
S‖∞] .

Also, HSβ
∗
S is normally distributed and Var[H

(i)T
S β∗S ]

=

sMn∑
j=1

Var[H
(i)
Sj β

∗
Sj ] =

σ2
ξ

n
‖β∗S‖22 ≤

σ2
ξQs

n
.

Hence, by a Gaussian inequality (e.g. [13]) we have:

E [‖HSβ
∗
S‖∞] ≤

√
2σ2

ξQs log(N)/n.

Unless otherwise specified, let X(i) be the ith row of
matrix X and Xj be the jth column. Also,

‖ESβ∗S‖∞ = max
1≤i≤N

|E(i)T
S β∗S | ≤ ‖β∗S‖2 max

1≤i≤N
‖E(i)

S ‖2

≤
√
Qs
(
CQ
√
sMnn

−γ+1/2
)

=
√
QCQs

√
Mnn

−γ+1/2

Thus, E
[
‖Σ−1

SS‖∞
N ‖ATS (ES +HS)β∗S‖∞

∣∣B]
= O

(√
sMn

(
s
√
Mnn

−γ+1/2 +

√
s log(N)

n

))
.

Furthermore, E
[
‖(ES +HS)T (ES +HS)β∗S‖∞

∣∣B]P(B)

= E
[

max
j≤sMn

|(ESj +HSj)
T ((ES +HS)β∗S) |

∣∣B]P(B)

≤ E
[

max
j≤sMn

‖ESj +HSj‖1‖(ES +HS)β∗S‖∞
∣∣B]P(B)

= E
[
‖ES +HS‖1‖(ES +HS)β∗S‖∞

∣∣B]P(B).

Then, given that B occurs ‖ES +HS‖1

≤ ‖ES‖1 + ‖HSj‖1 ≤ N(CQn
−γ+1/2 + n−a),

and, as before: E [‖(ES +HS)β∗S‖∞|B]

≤ C2s
√
Mnn

−γ+1/2 + C3

√
s log(N)

n
.

Hence, E
[
‖Σ̃−1

SS( 1
N Ã

T
S )(ES +HS)β∗S‖∞

∣∣∣B]P(B)

=O
(√

sMn

(
s
√
Mnn

−γ+1/2 +
√
s log(N)/n

)
(

1 + n−γ+1/2 + n−a
))

=O
(√

sMn

(
s
√
Mnn

−γ+1/2 +
√
s log(N)/n

))
The next terms are bounded as follows1.

Lemma 8 E
[
‖Σ̃−1

SS( 1
N Ã

T
S )V ‖∞

∣∣∣B]P(B) =

O
(

s3/2

M
2γ−1/2
n

)
.

Lemma 9 E
[
‖Σ̃−1

SS( 1
N Ã

T
S )ε‖∞

∣∣∣B]P(B) =

O
(√

log(sMn)/N
)

.

Lastly,

‖ûS‖∞ = max
j∈S
‖ûj‖∞ ≤ max

j∈S
‖ûj‖2 ≤ 1 =⇒

‖Σ̃−1
SSλNûS‖∞ ≤ λN‖Σ̃−1

SS‖∞‖ûS‖∞ ≤
λN

√
sMn

C̃min

.

Keeping only leading terms, E
[
‖β̂S − β∗S‖∞

∣∣∣B]P(B)

=O
(
s
3/2Mnn

−γ+1/2 + s
√
Mn log(N)/n

)
1See Supplemental Materials for proof.
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+O
(
s
3/2/M2γ−1/2

n +
√

log(sMn)/N + λN

√
sMn

)
.

Hence, by assumptions (20)-(24) we have

P
(
‖β̂S − β∗S‖∞ >

ρ∗N
2

)
→ 0

One may similarly look at the stationarity for j ∈ Sc

to analyze ûj : 0 = 1
N Ã

T
j

(
ÃSβS − Y

)
+ λNûj

=
ÃTj
N

(
ÃS(β̂S − β∗S)− (AS − ÃS)β∗S − V − ε

)
+ λNûj .

Thus,

ûj = 1
λNN

ÃTj ÃS(β∗S − β̂S) + 1
λNN

ÃTj (AS − ÃS)β∗S

+ 1
λNN

ÃTj (V + ε)

= 1
λN

Σ̃jSΣ̃−1
SS

(
1
N Ã

T
S (ES +HS)β∗S − 1

N Ã
T
SV

− 1
N Ã

T
S ε+ λNûS

)
− 1

λNN
ÃTj (ES +HS)β∗S

+ 1
λNN

ÃTj (V + ε),

where Σ̃jS = 1
N Ã

T
j ÃS and using (33). We wish to

show that ∀j ∈ Sc ûj satisfies the KKT conditions,
that is:

Proposition 2 P (maxj∈Sc‖ûj‖2 < 1)→ 1.

Proof. Let µHj ≡ E
[
ûj
∣∣H]. We proceed as follows:

P
(

max
j∈Sc
‖uj‖2 < 1

)
≥ P

(
max
j∈Sc
‖µHj ‖2 + ‖uj − µHj ‖2 < 1

)
≥ P

(
max
j∈Sc
‖µHj ‖2 +

√
Mn‖uj − µHj ‖∞ < 1

)
≥ P

(
max
j∈Sc
‖µHj ‖2 < 1− δ̃

2 ,max
j∈Sc
‖uj − µHj ‖∞ < δ̃

2
√
Mn

)
≥ 1− P

(
max
j∈Sc
‖µHj ‖2 ≥ 1− δ̃

)
− P

(
max
j∈Sc
‖uj − µHj ‖∞ ≥

δ̃

2
√
Mn

)
.

We obtain the following results:

Lemma 10 P
(

maxj∈Sc‖µHj ‖2 ≥ 1− δ̃
2

)
→ 0

Lemma 11 P
(

maxj∈Sc‖ûj − µHj ‖∞ ≥ δ̃
2
√
Mn

)
→ 0

Hence, we have that P (maxj∈Sc‖ûj‖2 < 1)→ 1.

5 Experiments

5.1 Synthetic Data

We tested the FuSSO on synthetic data-sets of D =

{({~y (i)
j }

p
j=1, Yi)}Ni=1 (where ~y

(i)
j as in (8)). The ex-

periments performed were as follows. First, we fix
N,n, p, and s. For i = 1, . . . , N , j = 1, . . . , p we create
random functions using a maximum of M projection

coefficients as follows: 1) Set ajm
iid∼ Unif[−1, 1] for

m = 1, . . . ,M ; 2) set ajm = aji/c
2
m, where cm = m

if m = 1 or is even, cm = m − 1 if m is odd; 3)

set ajm = ajm/‖aj‖; 4) set α
(i)
j = aj . (See Figures

2(b),2(c) for typical functions.) Similarly, we generate
β∗j for j = 1, . . . , s; for j = s+ 1, . . . , p, we set β∗j = 0.

Then, we generate Yi as Yi =
∑p
j=1〈β∗j , α

(i)
j 〉 + εi =∑s

j=1〈β∗j , α
(i)
j 〉 + εi, where ε

iid∼ N (0, .1). Also, a grid
of n noisy function evaluations were generated to make

~y
(i)
j as in (8), with σξ = .1. These were then used to

compute α̃
(i)
jm for m = 1, . . . ,Mn as in (11), Mn was

chosen by cross validation. (See Figures 2(b), 2(c) for
typical noisy observations and function estimates for
n = 5 and n = 25 respectively.)

We fixed s = 5 and chose the following con-
figurations for the other parameters: (p,N, n) ∈
{(100, 50, 5), (1000, 500, 25), (20000, 500, 25)}. For
each tuple of (p,N, n) configurations, 100 random
trails were performed. We recorded, r, the fraction
of the trails that a λ value was able recover the cor-
rect sparsity pattern (i.e. that only the first 5 func-
tions are in the support). We also recorded the mean
length of the range of λ, ∆λ, that were able to recover

the correct support; i.e. ∆λ = 1
t

∑100
t=1 ∆

(t)
λ , where

∆
(t)
λ = (λ

(t)
f − λ

(t)
l )/λ

(t)
max, λ

(t)
f is the largest λ value

found to recover the correct support in the tth trails,

λ
(t)
l the smallest such λ, and λ

(t)
max is the smallest λ

to produce β̂ = 0 (∆
(t)
λ is taken to be zero if no λ

recovered the correct support). The results were as
follows:

(p,N, n) r ∆
(100,50,5) .68 .2125
(1000,500,25) 1 .4771
(20000,500,25) 1 .4729

Hence we see that even when the number of observa-
tions per function is small (5 or 25) and the number
of total number of input functional covariates is large
(we were able to test up to 20000), the FuSSO can re-
cover the correct support. Also, to illustrate this point

that running Group-LASSO on the ~y
(i)
j features (Y-

GL) is less robust to noise and adaptive to smooth-
ness, we ran noisier trails using the configuration of
(p,N, n) = (1000, 500, 25). We increased the standard
deviation of the noise on grid function observation and
on the response to be 5 and 1 respectively. Under these
conditions the FuSSO was able to recover the support
in 49% of the trails were as Y-GL recovered the sup-
port in 32% of the trails. Furthermore the FuSSO had
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(d) Reg. Path at p = 1000,

n = 500, n = 25 of ‖β̂j‖

Figure 2: (a)(c) Two typical functions, noisy obser-
vations, and estimates. (b)(d) Regularization paths

showing the norms of β̂j (in red for j in support, blue
otherwise) for a range of λ; rightmost vertical line in-
dicates largest λ able to recover the support, leftmost
line for smallest such λ

a ∆
(t)
λ = .0743 compared to ∆

(t)
λ = .0254 for Y-GL.

5.2 Neurological Data

We also tested the FuSSO estimator with a neurolog-
ical data-set, using a total of 89 subjects [14]. Sub-
jects ranged in age from 18 to 60 years old (Figure
3(b)). Our goal was to learn a regression that maps
the dODFs at each white matter voxel for each sub-
ject to the subject’s age. The dODF is a function rep-
resents the amount of water molecules, or spins, un-
dergoing diffusion in different orientations over the S2

sphere[15]. I.e., each dODF is a function with a 2d do-
main (of azimuth, elevation spherical coordinates) and
a range of reals representing the strength of water dif-
fusion at the given orientations (see Figure 3(a)). Data
was provided for each subject in a template space for
white-matter voxels; a total of over 25 thousand vox-
els’ dODFs were regressed on (i.e. p ≈ 25000). We also
compared regression using the FuSSO and functional
covariates to using the LASSO and real valued covari-
ates. We used the non-functional collection of quanti-
tative anisotropy (QA) values for the same white mat-
ter voxels as with dODF functions. QA values are
the estimated amount of spins that undergo diffusion
in the direction of the principle fiber orientation, i.e.,
the peak of the dODF; QAs have been used as a mea-
sure of white matter integrity in the underlying voxel
hence making for a descriptive and effective summary

statistic of an dODF function for age regression [15].

The projection coefficients for the dODFs at each voxel
were estimated using the cosine basis. The FuSSO es-
timator gave a cross-validated MSE of 70.855, where
the variance for age was 156.4265; selected voxels in
the support may be seen in Figure 3(c). The LASSO
estimate using QA values gave a cross-validated MSE
of 77.1302. Thus, one may see that considering the
entire functional data gave us better results for age
regression. We note that we were unable to use the
naive approach of Y-GL in this case because of mem-
ory constraints and the fact that function evaluation
points did not lie on a 2d square grid.

(a) Example ODF
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Figure 3: (a) An example ODF for a voxel. (b) His-
togram of ages for subjects. (c) Voxels in the support
of model shown in blue. (d) Histogram of held out
error magnitudes.

6 Conclusion

In conclusion, this paper presents the FuSSO, a func-
tional analogue to the LASSO. The FuSSO allows one
to efficiently find a sparse set of functional input co-
variates to regress a real-valued response against. The
FuSSO makes no parametric assumptions about the
nature of input functional covariates and assumes a
linear form to the mapping of functional covariates to
the response. We provide a statistical backing for use
of the FuSSO via proof of asymptotic sparsistency.
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