
To go deep or wide in learning?

Gaurav Pandey and Ambedkar Dukkipati
Department of Computer Science and Automation

Indian Institute of Science, Bangalore 560012, India

Abstract

To achieve acceptable performance for AI
tasks, one can either use sophisticated feature
extraction methods as the first layer in a two-
layered supervised learning model, or learn
the features directly using a deep (multi-
layered) model. While the first approach is
very problem-specific, the second approach
has computational overheads in learning mul-
tiple layers and fine-tuning of the model. In
this paper, we propose an approach called
wide learning based on arc-cosine kernels,
that learns a single layer of infinite width. We
propose exact and inexact learning strategies
for wide learning and show that wide learn-
ing with single layer outperforms single layer
as well as deep architectures of finite width
for some benchmark datasets.

1 INTRODUCTION

In spite of the vast research on machine learning and
AI in the past many decades, we still do not have sys-
tems that can perform as well as humans for many
real world tasks. For instance, for the task of scene
labelling, human performance far exceeds the perfor-
mance of all known learning algorithms [Xiao et al.,
2010]. One reason often cited for this difference in per-
formance is the insufficient depth of the architecture
used by the learning algorithms [Bengio, 2009]. Typ-
ically, supervised learning algorithms can be thought
to have 2 layers (i.e., depth = 2), whereby, in the first
layer, the data is mapped to a feature space (either
using the kernel trick or by feature extraction [Lowe,
2004, Dalal and Triggs, 2005]), followed by learning a
linear classifier in the feature space. Though the aim is

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

to map the data into a feature space, where the classes
become linearly separable, these two stages of learning
are often kept independent of each other, with notable
exceptions being metric learning [Blitzer et al., 2005]
and multiple kernel learning [Bach et al., 2004]. Such
architectures are called shallow architectures [Bengio,
2009].

In recent years, architectures with multiple layers have
been shown to achieve state-of-the-art results for many
AI tasks such as image and speech recognition, often
outperforming other shallow architectures by a huge
margin [Ciresan et al., 2012, Wan et al., 2013]. Most
of these architectures are minor modifications of multi-
layer neural networks (MLNN). Though MLNN have
been around for more than 2 decades, architectures
with more than 2 hidden layers were seldom used for
learning [Utgoff and Stracuzzi, 2002]. It was argued
that multi-layered neural networks get stuck in bad
local optima, thereby giving bad generalization perfor-
mance. This trend was broken in 2006, when Hinton
et al. [Hinton et al., 2006] showed that a multi-layered
neural network can be effectively trained to achieve
good generalization performance, if the weights of con-
nections between various hidden layers were initialized
by using the data only and not their labels in a purely
unsupervised fashion using restricted Boltzmann ma-
chines (RBMs). He called such models as deep belief
nets (DBN).

The success of deep learning methods over shallow
architectures have caused the revival of multi-layer
neural networks in machine learning literature. For
most AI tasks, multi-layer neural networks (that may
be initialized with unsupervised pre-training) tend to
outperform most other learning algorithms. Unfortu-
nately, the algorithms used for multi-layered neural
networks are often non-convex and rely on a number
of heuristics, such as number of epochs, learning rate,
momentum, batch size etc. Incorrect tuning of these
hyper-parameters often results in decrease in perfor-
mance [Bergstra et al., 2011]. Generally, computa-
tionally costly grid searches are used to get a suitable
value for the hyper-parameters. Furthermore, the al-

724

To go deep or wide in learning?

gorithms themselves are computationally complex and
often rely on the processing power of GPUs [Ciresan
et al., 2012,Krizhevsky et al., 2012].

Due to the above mentioned deficiencies in neural net-
works, one may wonder whether one can achieve the
same performance as in deep learning without ever re-
sorting to neural networks? Ideally, a good feature
learning algorithm should be able to learn features
from the data that disentangle the factors of varia-
tion [Bengio, 2009]. In such a case, no fine-tuning of
the model using multi-layer neural networks would be
necessary. In other words, we can directly take the
learnt features as input and feed it to a classifier to
get the labels as output. However, results tend to sug-
gest that models that have not been fine-tuned tend
to perform poorly. This has led many researchers to
believe that restricted Boltzmann machines (RBMs)
are not doing a good job at capturing the invariances
and disentangling the underlying factors of variation
present in data [Lamblin and Bengio, 2010].

It is in this light that we present our paper. We in-
troduce wide-learning using covariance arc-cosine ker-
nels (based on arc-cosine kernels introduced in [Cho
and Saul, 2010]), that builds upon the existing RBM
model. We give exact as well as non-exact methods
for learning in such models. In particular, we show
that output of the RBM can be directly used to learn
the covariance matrix in a covariance arc-cosine ker-
nel. We show that the model is actually capable of
learning features, that makes the fine-tuning stage re-
dundant. Secondly, we also show that for the datasets
considered, a single wide layer (that is, a single layer of
covariance arc-cosine kernel) is sufficient to generate a
representation that helps to capture invariances in the
data, since preliminary results suggest that stacking
multiple wide layers leads to decrease in performance.
Using a single RBM to learn a wide layer, we are able
to obtain better results for many classification tasks
than obtained by multi-layer neural network initial-
ized using a deep belief network and fine-tuned using
backpropagation.

2 PRELIMINARIES AND
BACKGROUND

2.1 Restricted Boltzmann Machine (RBM)

An RBM [Hinton, 2002] is a complete bipartite Markov
random field with a layer of visible units (x) and an-
other layer of finitely many latent units (h). The
visible units correspond to the features of the ob-
served sample, for instance, pixels in an image. Ev-
ery visible unit is connected to every hidden unit by
an edge. Since the graph is bipartite, the cliques of

the model correspond to the edges and have size 2.
The potential function of an edge (vi, hj) is given by
−(wijvihj + aivi + bjhj), where wij , ai, bj , 1 ≤ i ≤
d, 1 ≤ j ≤ K from the parameters of the model. The
energy function which is the sum of potential function
across all edges, is given by

E(x,h) = −
∑
i,j

wijvihj + aivi + bjhj (1)

= −(xTWh + aTx + bTh) (2)

The corresponding marginal probability of an instance
x is given by

p(x) =

∑
h exp(−E(x,h))∑

x′,h exp(−E(x′,h))
. (3)

In order to maximize the log-likelihood of an RBM
for a sequence of observations, one can use stochastic
gradient descent techniques. The gradient of the log-
likelihood for a fixed observation x with respect to the
weight matrix W is given by

∇WL =
1

N

N∑
n=1

Ep(h|x(n))x(n)h
T − Ep(x,h)xh

T . (4)

The gradient with respect to other parameters can be
computed similarly. The first quantity in the RHS is
straightforward to compute from the following equa-
tions.

Ep(h|x)hj =

∑
h exp(xTWh + aTx + bTh)hj∑
h exp(xTWh + aTx + bTh))

(5)

=
1

1 + exp(−(xTwj + bj))
, (6)

where wj is the kth column in W . In order to compute
the second quantity, we need the expected value of xhT

for the current choice of W . This can be obtained by
using Gibbs sampling. In practise, a small number (p)
of iterations of Gibbs sampling is run to get xp and
hp and plugged in equation (4). This method, also
known as Contrastive Divergence (CD) [Hinton, 2002],
has been shown to give a good approximation to the
actual gradient. The corresponding update equation
is given by

W t+1 = W t + η(x0h
T
0 − xph

T
p) , (7)

where η is the learning rate. For more details about
training an RBM, we encourage the reader to refer to
Fischer et al. [Fischer and Igel, 2012].

A commonly used variant of RBM has rectified linear
units rathar than stochastic binary units. Training of
RBMs with rectified linear units is very similar to that
with stochastic binary units [Nair and Hinton, 2010].

725

Gaurav Pandey and Ambedkar Dukkipati

The update equation for an RBM with rectified lin-
ear units is exactly similar to that of an RBM with
stochastic binary units except that the hidden units
are sampled uniformly from the normal distribution
with mean max(0,WTx) and identity covariance ma-
trix. In the rest of the paper, we will refer both these
Markov random fields as RBM.

2.2 Single Layer Threshold Networks And
Corresponding Kernels

In deep learning, the weights of a multi-layered neu-
ral network (excluding those that connect the output
units) are initialized using RBMs, and fine-tuned using
backpropagation algorithm. Rather than pre-training
the weights using RBM, it is possible to sample the
weights randomly from a fixed distribution and feed
the output of the hidden units directly to a linear clas-
sifier such as SVM. Contrary to intuition, it has been
observed that when the weights have been sampled
from standard normal distribution and the number of
hidden units is much greater than the number of visible
units, the resultant classifier gives good performance
on many classification tasks [Huang et al., 2004]. Fur-
thermore, the performance improves as the number of
hidden units increase.

It is possible to perform learning tractably, when the
number of hidden units in a randomly weighted neural
networks tend to ∞ by using the kernel trick. Cho et
al. [Cho and Saul, 2010] showed that for threshold neu-
ral networks, inner products of the randomly sampled
hidden units for two instances becomes deterministic
as the number of hidden units tend to ∞. The cor-
responding kernels are termed as arc-cosine kernels.
Hence, learning a linear classifier in the original in-
finite dimensional space is same as learning a kernel
machine using the arc-cosine kernel.

In particular, when the hidden units are given by

h(x) = H(wTx)(wTx)n, w ∼ N (0, 1) (8)

where H is the Heavyside step function, the corre-
sponding kernel [Cho and Saul, 2010] is given by

Kn(x,y) =
1

2π
‖x‖n‖y‖nJn(θ) , (9)

where θ is the angle between x and y and Jnθ is given
by

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n(
π − θ
sin θ

)
, n ∈ N

(10)

As a spacial case, when n = 1, the hidden units are
termed as rectified linear units and the corresponding

kernel function is given by

K1(x,y) =
1

2π
‖x‖‖y‖(sin θ + (π − θ) cos θ) . (11)

3 COVARIANCE ARC-COSINE
KERNELS

Instead of sampling the entries of the matrix W
from standard normal distribution, if we sample the
columns from a multivariate Gaussian distribution
with zero mean and covariance Σ, we get a modified
arc-cosine kernel of the form

KΣ,n(x,y) =
1

(2π)
d
2 |Σ| 12

∫
w∈Rd

H(wTx)H(wTy)(wTx)n..

..(wTy)n exp

(
−w

T Σ−1w

2

)
dw ,

which we term as covariance arc-cosine kernel. Ap-
plying a change of variables u = Σ−

1
2w in the above

equation, we get

KΣ,n(x,y) =
|Σ| 12

(2π)
d
2 |Σ| 12

∫
u∈Rd

H(uT Σ
1
2x)H(uT Σ

1
2y)..

..(uT Σ
1
2x)n(uT Σ

1
2y)n exp

(
−‖u‖

2

2

)
dw ,

=
1

(2π)
d
2

∫
u∈Rd

H(uTa)H(uTb)..

..(uTa)n(uTb)n exp

(
−‖u‖

2

2

)
du ,

= Kn(a,b) ,

where a = Σ
1
2x and b = Σ

1
2y respectively. We state

the above result below:

Proposition 3.1 Let the columns of the matrix W
be sampled from a multivariate normal distribution
N (0,Σ), and let h(x) = H(WTx)(WTx)n be the rep-
resentation of x in the feature space. Here both the
Heavyside step function and the polynomial function
is applied pointwise on the vector. As the number
of columns in the weight matrix W tend to infinity,
the inner product between the feature representation is
given by

KΣ,n(x,y) = Kn(a,b) (12)

where a = Σ
1
2x and b = Σ

1
2y respectively and Kn is

defined as in (9).

4 WIDE LEARNING

It is known [Bengio, 2009] that in case of natural image
patches, the features learnt by an RBM are Gabor-like,

726

To go deep or wide in learning?

that is, they correspond to the output of a Gabor filter
with some fixed frequency and orientation. Since the
set of all possible frequencies and orientations has un-
countably many elements, an RBM tries to extract a
subset of these frequencies/orientations that best cap-
ture the invariances present in the data. A covariance
arc-cosine kernel, on the other hand, tries to find a
distribution over the weight vectors that best capture
the invariances in the data, thereby allowing one to
use infinitely many features for any given data. This
is also the reason why we call distribution learning for
arc-cosine kernels as wide learning.

In the rest of the paper, whenever we refer to an arc-
cosine kernel, we imply the kernel with rectified linear
units, that is, the kernel corresponding to n = 1 given
by (11)

4.1 Exact Wide Learning

In order to derive an algorithm for training the ker-
nel to learn the covariance matrix Σ, we rewrite the
update equation for rectified linear units mentioned in
equation (7) as

W t+1 = W t + η(x0h
T
0 − xph

T
p) , (13)

where x0 and h0 are the initial values for the visi-
ble and hidden units and xp and hp are the values for
visible and hidden units after p iteration of Gibbs sam-
pling. In our case, we assume that W t has infinitely
many columns sampled from some distribution with
covariance matrix Σt, and we are interested in com-
puting the covariance matrix Σt+1 of the columns of
W t+1, which is given by

Σt+1 = lim
M→∞

1

M

M∑
k=1

wt+1
k wt+1

k

T
(14)

= lim
M→∞

1

M
W t+1W t+1T , (15)

Hence, if we multiply equation (13) by its transpose
and use (15) in the resultant equation, we get

Σt+1 = Σt+ lim
M→∞

1

M

[
η(W th0x

T
0 −W thpx

T
p))
]

+ lim
M→∞

1

M

[
η(x0h

T
0 W

tT − xph
T
pW

tT))
]

+ lim
M→∞

1

M

[
η2(x0h

T
0 h0x

T
0 + xph

T
p hpx

T
p−

−x0h
T
0 h

T
p x

T
p − xph

T
p h

T
0 x

T
0)
]
,

(16)

If we assume that the kth unit in the hidden layer is
sampled from a normal distribution with unit variance
and mean (xTwk)+ (as is commonly done for train-
ing RBMs with rectified linear units [Nair and Hinton,

2010]), then

lim
M→∞

1

M
Wh

= lim
M→∞

1

M

M∑
k=1

wk((wT
k x)+ + εk), εk ∼ N (0, 1)

=

∫
w∈Rd

w(wTx)+p(w) dw + lim
M→∞

1

M

M∑
k=1

εkwk

=
Σx

2

Here, we have omitted the superscript t denoting the
iteration number from all variables for ease of presen-
tation. For the first equation, we use the fact that h
has been sampled from normal distribution with unit
variance and mean (xTwk)+. The second equation fol-
lows from the law of large numbers and for the third
equation we use the fact that εk and wk are indepen-
dent random variables each with zero mean and the
random vector w has been sampled from a distribu-
tion with covariance matrix Σ.

In order to further simplify equation (16), we need the
values for hT

0 h0, hT
0 hp and hT

p hp. However, this is ex-
actly the inner product between the feature represen-
tation for the input data, and hence is equivalent to the
covariance arc-cosine kernel between the correspond-
ing visible input. Combining all the above results, we
get

Σt+1 =Σt +
η

2
(Σtx0x

T
0 − Σtxpx

T
p + x0x

T
0 Σt − xpx

T
p Σt)

+ η2(KΣt(x0,x0)x0x
T
0 +KΣt(xp,xp)xpx

T
p

−KΣt(x0,xp)x0x
T
p −KΣt(xp,x0)xpx

T
0)

(17)

Here, KΣt denotes the covariance arc-cosine kernel
function with covariance matrix set to Σt. In order
to sample xp from x0, we run a Markov chain with the
following transition matrix

p(xq+1,i = 1|xq;W t) =
1

1 + exp(−hT
q W

t
i)

=
1

1 + exp(−xT
q Σt

i

2)
,

where Σt
i is the ith column of the covariance matrix

and W t
i is the ith row of matrix W t. It is easy to see

that the above Markov chain sampling technique is the
same as Gibbs sampling in RBM if the weight matrix
is assumed to have infinite number of columns sampled
independently from a multivariate Gaussian distribu-
tion. The above update gives a stochastic gradient
descent method for learning the covariance matrix of
the covariance arc-cosine kernel. It is easy to see that

727

Gaurav Pandey and Ambedkar Dukkipati

after every update the covariance matrix remains pos-
itive definite. This is necessary for the resultant kernel
to be a valid kernel.

4.2 Inexact Wide Learning

Instead of learning the covariance matrix from the
data, one can use an RBM to learn the weight matrix
W . Then assuming the columns of the weight ma-
trix have been sampled from a multivariate Gaussian
distribution with zero mean, one can use maximum
likelihood to estimate the covariance matrix W. The
corresponding covariance matrix is given by

Σ =
1

M
WWT , (18)

where W is the weight matrix learnt by the RBM and
M is the number of columns in W .

In our experiments, we found that training the covari-
ance matrix using the first approach took much more
time than training an RBM. Secondly, for exact train-
ing we had to perform kernel computations and ma-
trix products as mentioned in equation (17) that made
each iteration of exact training much slower than the
iterations of RBM. It is for this reason, that we use
inexact training in the rest of the paper.

5 DEEP-WIDE LEARNING

In deep learning, one stacks multiple RBMs one on
top of the other such that the output of the previous
layer RBM is fed as input to the next layer RBM.
Thus, the weight matrix in the second layer is learnt
based on the output of the first layer. Similarly, one
can stack multiple covariance arc-cosine kernels one on
top of the other. However, as mentioned earlier, the
feature representation learnt by an arc-cosine kernel
has infinite width. Hence, the covariance matrix to
be learnt will have infinite number of rows as well as
columns. Hence, for learning the covariance matrix in
the second layer, one cannot directly use equation (17).
At first glance, it appears that exact learning of the
covariance matrix in the second layer is not possible.

It is here, that kernels come to our rescue. However,
when learning multiple layers of kernels notations can
become complicated. Hence, it is important to fix the
notation. We will use uppercase alphabets to denote
both the kernel function and kernel matrices and vec-
tors.

1. For a given layer, we use K̃ to denote the in-
ner product between the feature representation of
the previous layer. That is, for the first layer,
K̃(x,y) = xTy. For the second layer K̃(x,y) =
h(x)Th(y).

2. For a given layer, we use K̃Σ to denote the in-
ner product between the feature representation of
the previous layer using the covariance matrix Σ.
That is, for the first layer, K̃Σ(x,y) = xT Σy. For
the second layer K̃(x,y) = h(x)T Σh(y).

3. For a given layer, we use KΣ to denote the covari-
ance arc-cosine kernel over the feature represen-
tation of the previous layer using the covariance
matrix Σ. .

5.1 Exact Deep-Wide Learning

Given the kernel matrix between the feature represen-
tation of the previous layer using the covariance matrix
Σ, that is, K̃Σ, we compute the covariance arc-cosine
kernel matrix KΣ as follows.

KΣ(x,y) =
1

2π
[m(x)m(y)(sin θ+(π−θ) cos θ)] , (19)

where

m(x) = K̃Σ(x,x)

m(y) = K̃Σ(y,y)

θ = cos−1

 K̃Σ(x,y)√
K̃Σ(x,x)K̃Σ(y,y)

 .

In order to compute the covariance arc-cosine kernel
matrix over the features learnt by the previous layer,
we make use of equation (17). Let h(a) and h(b) be
the infinite dimensional feature representation learnt
by the previous layer. We pre-multiply equation (17)
by h(a)T and post-multiply it by h(b) to get

K̃Σt+1(a, b) = K̃Σt(a, b)

+
η

2
(K̃Σt(a,x0)K̃(x0, b)− K̃Σt(a,xp)K̃(xp, b))

+
η

2
(K̃(a,x0)K̃Σt(x0, b)− K̃(a,xp)K̃Σt(xp, b))

+ η2KΣt(x0,x0)K̃(a,x0)K̃(x0, b)

+ η2KΣt(xp,xp)K̃(a,xp)K̃(xp, b)

− η2KΣt(x0,xp)K̃(a,x0)K̃(xp, b)

− η2KΣt(xp,x0)K̃(a,xp)K̃(x0, b) .

(20)

The above equation updates each entry of the ker-
nel matrix in a sequential fashion. However, one can
choose to update the entire kernel matrix in one go by

728

To go deep or wide in learning?

using the following equation.

K̃Σt+1 =K̃Σt +
η

2
(K̃Σt,x0

K̃T
x0
− K̃Σt,xp

K̃T
xp

)

+
η

2
(K̃x0

K̃T
Σt,x0

− K̃xp
K̃T

Σt,xp
)

+ η2KΣt(x0,x0)K̃x0
K̃T

x0

+ η2KΣt(xp,xp)K̃xpK̃
T
xp

− η2KΣt(x0,xp)K̃x0
K̃T

xp

− η2KΣt(xp,x0)K̃xp
K̃T

x0
,

(21)

where K̃ and K̃Σt denote the kernel matrices corre-
sponding to the kernel functions K̃ and K̃Σt respec-
tively as defined above and K̃x0

and K̃Σt,x0
denote the

column in kernel matrices K̃ and K̃Σt
corresponding to

x0 respectively. It is interesting to note the similarity
between the above equation and equation (17).

This suggests the following steps for computing the
kernel matrix in the second layer based on the kernel
matrix of the previous layer.

1. Let K̃ be the kernel matrix corresponding to the
first layer. Initialize K̃Σ0 to be a random positive
definite matrix of size N ×N .

2. Update the kernel matrix K̃Σt using equation (21)
until convergence.

3. The kernel matrix K of the second layer can then
be computed from K̃Σt by composing the arc-
cosine kernel with the kernel matrix KΣt as given
in equation (19).

5.2 Inexact Deep-Wide Learning

Exact learning of the kernel matrix as given above
requires the entire matrix to be present in memory.
Since unsupervised feature learning only works when
the number of instances is huge, this means that the
kernel matrix will also be very huge. Hence, learning
using such a huge kernel matrix will be infeasible both
in terms of memory and processing time requirements.

Hence, we tried inexact approaches to extend the ar-
chitecture to multiple layers. In the first approach,
we learn a finite dimensional first layer using RBM.
Next, a covariance arc-cosine kernel is learnt on top
of the activities of the first level RBM as mentioned
in the previous section. However, we found that for
all datasets that we tried, this approach resulted in
reduction in accuracy. For instance, for MNIST digit
recognition task, the accuracy reduced from 99.05% to
97.85%.

We also tried to sample a subset of features by apply-
ing kernel PCA for the covariance arc-cosine kernel.

However, this method further resulted in reduction in
performance. Hence, for the rest of the experiments,
only the first layer is learnt using RBM.

6 DISCUSSION

In order to understand why a covariance arc-cosine
kernel should work, we divert ourselves from feature
learning to feature extraction. It has been known for
a long time now that gradient (orientation as well as
magnitude) at every pixel location is a more natural
representation for an image then the actual pixel val-
ues. For instance, in SIFT [Dalal and Triggs, 2005], the
gradient orientation at each pixel is binned into one of
the finitely many bins available to get a finite dimen-
sional vector representation. In soft binning, multiple
bins are allowed to be non-zero. The feature represen-
tation of a patch is then computed by doing a weighted
sum of the gradient orientation vector at all pixels in
the patch. Finally a linear classifier is applied on the
resultant feature representation.

The above model is equivalent to defining a linear ker-
nel on the weighted sum of binned gradient orientation
vectors. However, instead of computing a linear kernel
between the binned orientation vectors, one can choose
to compute an RBF kernel over the gradient orien-
tation vectors themselves (without binning). This is
equivalent to computing an inner product between the
infinite dimensional representation of the orientation
vectors. As shown in [Bo et al., 2010], this very small
trick results in improved performance.

Here, our idea is very similar. When we learn the
weight matrix W using an RBM and apply the resul-
tant matrix on visible data, we get a finite dimensional
representation of the data. If we assume now that each
bin has been labelled by a column wj of the weight ma-
trix W , then this approach is equivalent to soft bin-
ning, where jth bin is non-zero, if and only if wT

j x is
positive (assuming rectified linear units). This creates
a finite dimensional vector representation of the data.

However, if we learn the distribution of the columns in
the weight matrix W , we can, in principle, project the
data to infinite dimensions by sampling infinitely many
vectors wj from the distribution, using the kernel trick.
A covariance arc-cosine kernel makes the additional as-
sumption that the distribution of the columns in W ,
is multivariate Gaussian. Hence, while an RBM can
only bin the data into finite many bins, use of covari-
ance arc-cosine kernel allows one to bin the data in
infinite number of bins by using the kernel trick. This
is also a reason why we term our proposed learning
method as wide learning. An important point to note
at this juncture is that though the final model has in-
finite width, the model learnt by RBM still has a finite

729

Gaurav Pandey and Ambedkar Dukkipati

small width. Hence, the number of parameters in the
model are much lesser than in a deep learning model.
This approach is very fast since only a single RBM is
trained and no fine-tuning needs to be done.

7 EXPERIMENTS

We tested the covariance kernel so obtained for many
datasets commonly used for comparing deep learning
architectures.

7.1 MNIST

The MNIST dataset [LeCun et al., 1998] consists of
grayscale images of handwritten digits from 0 to 9 with
50, 000 training and 10, 000 test examples. We nor-
malize the pixel values to be between 0 and 1. Except
that, we do not use any preprocessing for the dataset.
A standard Bernoulli RBM with 1000 hidden units is
trained on the raw pixel values using stochastic gra-
dient descent with a fixed momentum of 0.5. In our
experiments for MNIST dataset, we found that fixing
the bias to zero doesn’t affect the performance of the
final model.

Finally, we use the weight matrix W learnt by RBM to
compute the kernel matrix. The kernel matrix is fed
into a regularized least square kernel classifier. We use
one-vs-one classification to classify the MNIST images.
Using a single layer, we were able to achieve an error
rate of 0.95% after 20 epochs, which is quite better
compared to the 1.25% error rate obtained by a deep
belief network [Hinton et al., 2006]. This is surpris-
ing since a deep belief network uses multiple stacked
RBMs, while we used a single RBM in our model. Fur-
thermore, both the RBMs were trained similarly. This
suggests that a single RBM might be enough to learn
the invariances in the data.

In order to show the advantage of having a representa-
tion of infinite width (that is, by using the kernel), we
compare the performance of the covariance arc-cosine
kernel against a neural network with 1 hidden layer
with number of epochs of training in Figure 1. The
network has 1000 hidden units. The parameters of
both the neural network and the covariance arc-cosine
kernel are obtained using a restricted Boltzmann ma-
chines with 1000 hidden units. No fine tuning is done
for either of the models. There are two important ob-
servations that can be made from the figure. Firstly,
the infinite width model reaches an acceptable perfor-
mance in a very few number of epochs. Secondly, even
after running the unsupervised learning algorithm for
20 epochs, the accuracy of the finite width model never
comes any close to the accuracy of the infinite width
model after 2 epochs. In fact, when we ran the train-

Figure 1: Comparison of finite width model learnt
by an RBM (not fine-tuned) against the infinite
width model obtained by a covariance arc-cosine ker-
nel. An infinite width model gives acceptable perfor-
mance (around 98.9% accuracy) even after 2 epochs.

ing algorithm for 300 epochs, the accuracy of the finite
width model converged to 97.93%. This is in stark con-
trast with the accuracy achieved by the infinite width
model after 1 epoch (98.9%). This is a very surprising
result, which suggests that even if the training time for
deep learning is small, a covariance arc-cosine kernel
can still give acceptable performance.

Finally, we will briefly mention about the time re-
quired for training and testing for finite and infinite
width models compared in the previous paragraph.
The unsupervised learning phase in both the models
comprises of learning a weight matrix from the data
by defining a restricted Boltzmann machine. In infi-
nite width model, the weight matrix is used to learn
a covariance matrix Σ. The covariance arc-cosine ker-
nel is then computed for the data using the covariance
matrix. Finally, an algorithm based on kernel methods
(such as SVM), is then used to compute the param-
eters for the last layer. On the other hand, for the
finite width model, a linear classifier is learnt on top
of the activities of the hidden layer. Thus, the only
difference in computation cost for finite and infinite
width model lies in time taken to learn the last layer.
Kernel methods can be more computationally costly,
when the number of instances is huge, because of their
quadratic (at least) dependence on the number of in-
stances.

Two variants of MNIST are also considered for com-
parison as listed below:

730

To go deep or wide in learning?

Table 1: Comparison of covariance arc-cosine kernel learnt by our model against other classifiers. Some of the
results have been borrowed from [Larochelle et al., 2007], but only the best results are kept. The best results
for each dataset is indicated in bold. The numbers in parenthesis indicate the number of unlearnt layers in the
model. The default number of unlearnt layers is 0.

MNIST MNIST MNIST Rectangles Convex

original rotated random backgd.
SVM-rbf 1.6% 10.38% 14.58% 2.15% 19.13%

SVM-poly [Decoste and Schölkopf, 2002] 1.22% 13.61% 16.62% 2.15% 19.82%
Neural network (one hidden layer) 1.9% 17.62% 20.04% 7.16% 32.25%

DBN [Hinton et al., 2006] 1.25% 12.30% 6.73% 2.60% 18.63%
Stacked Autoencoder [Bengio et al., 2007] 1.4% 11.43% 11.28% 2.41% 18.41%

Arc-cosine kernel [Cho and Saul, 2010] 1.38%(5) 11.22%(5) 16.14%(5) 2.27%(15) 17.15%(5)
Covariance arc-cosine kernel 0.95% 8.11% 8.9% 1.49%(25) 17.02%

1. Rotated MNIST data set: This is a modified
version of MNIST dataset, where the digits are ro-
tated by an angle generated uniformly between 0
and 2π. This dataset is one of the several MNIST
variations generated for comparing deep vs shal-
low architectures in [Larochelle et al., 2007]. The
dataset has 12, 000 training samples and 50, 000
test samples.

2. MNIST with random background: This is
also a modified version of the MNIST dataset
where the background pixels have been sampled
randomly between 0 and 255. This dataset also
has 12, 000 training and 50, 000 test samples.

7.2 Tall and wide rectangles

This dataset [Larochelle et al., 2007] consists of rect-
angles of varying widths and heights. The aim is to
classify the rectangles into classes, where the rectan-
gles in one class have more height than width, while
the rectangles in the other class have more width than
height. We trained an RBM over the pixel values and
computed the covariance matrix from the learnt weight
matrix W . This covariance matrix was used in the co-
variance arc-cosine kernel in the first layer.

For this dataset, we found that using a first layer of
covariance arc-cosine kernel, followed by multiple lay-
ers of arc-cosine kernels where the covariance matrix
is set to identity, resulted in improvement in perfor-
mance. Note that, this is still not a case of deep learn-
ing since only a single layer is learnt. In fact, this
approach can be shown as equivalent to learning the
covariance matrix of a different kernel which is ob-
tained by composing multiple arc-cosine kernels with
identity covariance matrix. For more details, we en-
courage the reader to refer to [Cho and Saul, 2010],
where composition of arc-cosine kernels is discussed
in further detail. The result for covariance arc-cosine

kernel against other standard classifiers is given in Ta-
ble 1. Clearly, the best results are obtained when the
first layer is learnt using a covariance arc-cosine kernel.

This dataset [Larochelle et al., 2007] consists of black
and white images of convex and concave sets. The task
is to separate the concave sets from convex sets. The
results are given in Table 1.

8 Conclusion

In this paper, we proposed the notion of wide learn-
ing, that makes the fine-tuning stage commonly used
in deep architectures redundant. We have given exact
as well as inexact methods for learning in such models.
We found that for the datasets considered, whenever
we replace a finite width layer by a layer of infinite
width, this results in drastic improvement in perfor-
mance. Furthermore, use of a single layer severely
reduces the number of hyper-parameters to be esti-
mated, thereby saving time in computationally costly
grid searches. Further experimentation on more com-
plicated datasets, such as natural image patches, is
needed to test its suitability for general AI tasks.

References

[Bach et al., 2004] Bach, F. R., Lanckriet, G. R., and
Jordan, M. I. (2004). Multiple kernel learning, conic
duality, and the SMO algorithm. In Proceedings of
the 21st International Conference on Machine learn-
ing, page 6. ACM.

[Bengio, 2009] Bengio, Y. (2009). Learning deep ar-
chitectures for AI. Foundations and trends® in Ma-
chine Learning, 2(1):1–127.

[Bengio et al., 2007] Bengio, Y., Lamblin, P.,
Popovici, D., and Larochelle, H. (2007). Greedy

731

Gaurav Pandey and Ambedkar Dukkipati

layer-wise training of deep networks. Advances in
Neural Information Processing Systems, 19:153.

[Bergstra et al., 2011] Bergstra, J., Bardenet, R.,
Bengio, Y., Kégl, B., et al. (2011). Algorithms for
hyper-parameter optimization. In Advances in Neu-
ral Information Processing Systems (NIPS 2011).

[Blitzer et al., 2005] Blitzer, J., Weinberger, K. Q.,
and Saul, L. K. (2005). Distance metric learning for
large margin nearest neighbor classification. In Ad-
vances in Neural Information Processing Systems,
pages 1473–1480.

[Bo et al., 2010] Bo, L., Ren, X., and Fox, D. (2010).
Kernel descriptors for visual recognition. In Ad-
vances in Neural Information Processing Systems,
pages 244–252.

[Cho and Saul, 2010] Cho, Y. and Saul, L. K. (2010).
Large-margin classification in infinite neural net-
works. Neural Computation, 22(10):2678–2697.

[Ciresan et al., 2012] Ciresan, D., Meier, U., and
Schmidhuber, J. (2012). Multi-column deep neural
networks for image classification. In Computer Vi-
sion and Pattern Recognition (CVPR), pages 3642–
3649. IEEE.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B.
(2005). Histograms of oriented gradients for human
detection. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 886–893. IEEE.

[Decoste and Schölkopf, 2002] Decoste, D. and
Schölkopf, B. (2002). Training invariant support
vector machines. Machine Learning, 46(1-3):161–
190.

[Fischer and Igel, 2012] Fischer, A. and Igel, C.
(2012). An introduction to restricted Boltzmann
machines. In Progress in Pattern Recognition, Im-
age Analysis, Computer Vision, and Applications,
pages 14–36. Springer.

[Hinton, 2002] Hinton, G. E. (2002). Training prod-
ucts of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800.

[Hinton et al., 2006] Hinton, G. E., Osindero, S., and
Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 18(7):1527–
1554.

[Huang et al., 2004] Huang, G.-B., Zhu, Q.-Y., and
Siew, C.-K. (2004). Extreme learning machine: a
new learning scheme of feedforward neural networks.
In International Joint Conference on Neural Net-
works, volume 2, pages 985–990. IEEE.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever,
I., and Hinton, G. E. (2012). Imagenet classifica-
tion with deep convolutional neural networks. In
NIPS, volume 1, page 4.

[Lamblin and Bengio, 2010] Lamblin, P. and Bengio,
Y. (2010). Important gains from supervised fine-
tuning of deep architectures on large labeled sets. In
NIPS* 2010 Deep Learning and Unsupervised Fea-
ture Learning Workshop.

[Larochelle et al., 2007] Larochelle, H., Erhan, D.,
Courville, A., Bergstra, J., and Bengio, Y. (2007).
An empirical evaluation of deep architectures on
problems with many factors of variation. In Proceed-
ings of the 24th International Conference on Ma-
chine Learning, pages 473–480. ACM.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio,
Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image
features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E.
(2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning
(ICML-10), pages 807–814.

[Utgoff and Stracuzzi, 2002] Utgoff, P. E. and
Stracuzzi, D. J. (2002). Many-layered learning.
Neural Computation, 14(10):2497–2529.

[Wan et al., 2013] Wan, L., Zeiler, M., Zhang, S.,
Cun, Y. L., and Fergus, R. (2013). Regularization
of neural networks using dropconnect. In Proceed-
ings of the 30th International Conference on Ma-
chine Learning (ICML-13), pages 1058–1066.

[Xiao et al., 2010] Xiao, J., Hays, J., Ehinger, K. A.,
Oliva, A., and Torralba, A. (2010). Sun database:
Large-scale scene recognition from abbey to zoo. In
Proceedings of IEEE conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3485–
3492. IEEE.

732

