6 Supplementary

Proof of Lemma 1:

Proof. In the 2-step procedure of Algorithm 1, S_{0} is obvious the optimal solution to the sub-problem with parameter $\left|S_{0}\right|$, that is, $S_{0}=S\left(\left|S_{0}\right|\right)$. Then for the second model selection step, $S_{0}=S^{*}$ due to global optimality of S_{0}.

To prove Thm.3, we need the following Finsler's lemma.
Lemma 8. (Finsler) Let $x \in \mathbb{R}^{n}, B \in \mathbb{R}^{m \times n}$ and $Q \in \mathbb{R}^{n \times n}$ such that $\operatorname{rank}(B)<n, Q$ symmetric and positive semi-definite. Then the following two statements are equivalent:

$$
\begin{equation*}
x^{\prime} Q x>0, \forall x \neq 0, B x=0 \Longleftrightarrow \exists \gamma>0: Q+\gamma B^{\prime} B \succ 0 \tag{19}
\end{equation*}
$$

Proof of Thm.3:

Proof. Assume w.l.o.g. that $S=\{1,2, \ldots, k\}$ consists of the first k nodes. Then $A \circ M$ exactly captures the adjacency matrix of the induced sub-graph:

$$
A \circ M=\left(\begin{array}{cc}
A_{S} & 0 \tag{20}\\
0 & 0
\end{array}\right)
$$

In the fashion, $\operatorname{diag}\left((A \circ M) \mathbf{1}_{n}\right)-(A \circ M)$ captures the Laplacian matrix of S :

$$
\operatorname{diag}\left((A \circ M) \mathbf{1}_{n}\right)-(A \circ M)=\left(\begin{array}{cc}
L_{S} & 0 \tag{21}\\
0 & 0
\end{array}\right)
$$

By Lemma 2 and Rayleigh-Ritz theorem, we want the following to hold on L_{S} :

$$
\begin{equation*}
x^{\prime} L_{S} x>0, \forall 0 \neq x \in \mathbb{R}^{k}, x^{\prime} \mathbf{1}_{k}=0 \tag{22}
\end{equation*}
$$

By Lemma 8, the above condition can be converted into:

$$
\begin{equation*}
L_{S}+\gamma \mathbf{1}_{k} \mathbf{1}_{k}^{\prime} \succeq \epsilon I_{k} \tag{23}
\end{equation*}
$$

where $\gamma k \geq \epsilon$. Now we place this LMI back to the large matrix and notice the fact that:

$$
\operatorname{diag}\left(M \mathbf{1}_{n}\right)=\left(\begin{array}{cc}
k I_{k} & 0 \tag{24}\\
0 & 0
\end{array}\right)
$$

the equivalent LMI for the large matrix is:

$$
\begin{equation*}
\operatorname{diag}\left((A \circ M) \mathbf{1}_{n}\right)-(A \circ M)+\gamma M \succeq \frac{\epsilon}{k} \operatorname{diag}\left(M \mathbf{1}_{n}\right) \tag{25}
\end{equation*}
$$

where $\gamma k \geq \epsilon$ should be satisfied. Let $\epsilon=\gamma k$, and the proof is done.

Proof of Corollary 4:

Proof. Let $\gamma=\lambda_{2}\left(\Lambda_{k}\right) / k$. Then every S satisfying $Q(M ; \gamma) \succeq 0$ and $\operatorname{diag}(M)^{\prime} \mathbf{1}_{n}=k$ is connected by Thm. 3 and of size k. So $S \in \Lambda_{k}$.

On the other hand, for any $S \in \Lambda_{k}, \lambda_{2}(S) \geq \lambda_{2}\left(\Lambda_{k}\right) \geq \gamma k$. From the proof of Thm.3, the indicator matrix M corresponding to S satisfies $Q(M ; \gamma) \succeq 0$ and $\operatorname{diag}(M)^{\prime} \mathbf{1}_{n}=k$. Proof is done.

Proof of Lemma 5:

Proof. If $M \in\{0,1\}^{n \times n}$, by constraints of Eq.(10), $M_{i j}=1$ if and only if $M_{i i}=1$ and $M_{j j}=1$. Thus $M=\operatorname{diag}(M) \operatorname{diag}(M)^{\prime}$ is rank-1.
On the other hand, if M is rank-1, or $M=f f^{\prime}$, Consider any two non-zero entries of $f: f_{i}=a \neq 0, f_{j}=b \neq 0$. Then by $M_{i j} \leq \min \left\{M_{i i}, M_{j j}\right\}$, we have $a=b$. So every non-zero entry of f is equal. The node with $M_{i i}=1$ ensures that all non-zero entries of f is 1 . Proof is done.

Proof of Theorem 6:

Proof. For part (a), assume on the contrary that the support of $\operatorname{diag}(M)$ is disconnected: $S=C \cup \bar{C}$, where $\bar{C}=S-C$. Let $|S|=k,|C|=k_{1}, \bar{C}=k_{2}$. W.l.o.g. assume $M_{11}=1$, and C consists of nodes $\left\{1,2, \ldots, k_{1}\right\}$.

Consider the $k \times k$ sub-matrix Q_{S} of Q corresponding to S, since the rest part are all 0 . Now we use the vector $g=\left[\mathbf{1}_{k_{1}} ;-\mathbf{1}_{k_{2}}\right]$ to hit Q_{S} :

$$
\begin{equation*}
g^{\prime} Q_{S} g=g^{\prime}\left(\operatorname{diag}\left(\left(A_{S} \circ M_{S}\right) \mathbf{1}_{n}\right)-\left(A_{S} \circ M_{S}\right)\right) g-\gamma g^{\prime}\left(\operatorname{diag}\left(M_{S} \mathbf{1}_{n}\right)-M_{S}\right) g \geq 0 \tag{26}
\end{equation*}
$$

Note that A_{S} has the form:

$$
A_{S}=\left(\begin{array}{cc}
A_{C} & 0 \tag{27}\\
0 & A_{\bar{C}}
\end{array}\right)
$$

where the off-diagonal block is zero because by assumption C and \bar{C} is disconnected. Then:

$$
\operatorname{diag}\left(\left(A_{S} \circ M_{S}\right) \mathbf{1}_{n}\right)-\left(A_{S} \circ M_{S}\right)=\left(\begin{array}{cc}
\tilde{L}_{C} & 0 \tag{28}\\
0 & \tilde{L}_{\bar{C}}
\end{array}\right)
$$

where \tilde{L}_{C} is the Laplacian matrix of C weighted by M_{C}. Notice it still holds that $\tilde{L}_{C} \mathbf{1}_{k_{1}}=0$. This means $g^{\prime}\left(\operatorname{diag}\left(\left(A_{S} \circ M_{S}\right) \mathbf{1}_{n}\right)-\left(A_{S} \circ M_{S}\right)\right) g=0$.
On the other hand, let $\operatorname{diag}\left(M_{S} \mathbf{1}_{n}\right)-M_{S}$ be:

$$
\operatorname{diag}\left(M_{S} \mathbf{1}_{n}\right)-M_{S}=\left(\begin{array}{cc}
L_{1} & L_{3} \tag{29}\\
L_{3}^{\prime} & L_{2}
\end{array}\right)
$$

Using $g_{1}=\left[\mathbf{1}_{k_{1}} ; 0\right]$ and $g_{2}=\left[0 ; \mathbf{1}_{k_{2}}\right]$ to hit Q_{S} will yield: $\mathbf{1}_{k_{1}}^{\prime} L_{1} \mathbf{1}_{k_{1}}=0$ and $\mathbf{1}_{k_{2}}^{\prime} L_{2} \mathbf{1}_{k_{2}}=0$. Apparently $g^{\prime}\left(\operatorname{diag}\left(M_{S} \mathbf{1}_{n}\right)-M_{S}\right) g \geq 0$ due to positive semi-definiteness of Laplacian matrix. If it's strictly positive, proof is done. Otherwise this means $\mathbf{1}_{k_{1}}^{\prime} L_{3} \mathbf{1}_{k_{2}}=0$. Note that all entries of L_{3} are either 0 or negative due to nonnegativity of M_{S}. This means $L_{3}=0$, or equivalently $M_{i j}=0$ for any $i \in C, j \in \bar{C}$. But this can not happen, because $M_{11}=1$ and $M_{1 j} \geq 1+M_{j j}-1=M_{j j}>0$ for any $j \in \bar{C}$. Contradiction!
Part (b) is straightforward by using $g=\mathbf{1}_{C}-\mathbf{1}_{\bar{C}}$ to hit Q_{S}. Proof is done.

Proof of Proposition 7:

Proof. The proof is similar to the proof of Thm.6, by using $g=\mathbf{1}_{C_{1}}-\mathbf{1}_{C_{2}}$ to hit Q.

