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Proof of Lemma 1:

Proof. In the 2-step procedure of Algorithm 1, S0 is obvious the optimal solution to the sub-problem with
parameter |S0|, that is, S0 = S(|S0|). Then for the second model selection step, S0 = S∗ due to global optimality
of S0.

To prove Thm.3, we need the following Finsler’s lemma.

Lemma 8. (Finsler) Let x ∈ R
n, B ∈ R

m×n and Q ∈ R
n×n such that rank(B) < n, Q symmetric and positive

semi-definite. Then the following two statements are equivalent:

x′Qx > 0, ∀x �= 0, Bx = 0 ⇐⇒ ∃γ > 0 : Q+ γB′B � 0. (19)

Proof of Thm.3:

Proof. Assume w.l.o.g. that S = {1, 2, ..., k} consists of the first k nodes. Then A ◦M exactly captures the
adjacency matrix of the induced sub-graph:

A ◦M =

(
AS 0
0 0

)
(20)

In the fashion, diag ((A ◦M)1n)− (A ◦M) captures the Laplacian matrix of S:

diag ((A ◦M)1n)− (A ◦M) =

(
LS 0
0 0

)
. (21)

By Lemma 2 and Rayleigh-Ritz theorem, we want the following to hold on LS :

x′LSx > 0, ∀0 �= x ∈ R
k, x′1k = 0. (22)

By Lemma 8, the above condition can be converted into:

LS + γ1k1
′
k 
 εIk, (23)

where γk ≥ ε. Now we place this LMI back to the large matrix and notice the fact that:

diag(M1n) =

(
kIk 0
0 0

)
, (24)

the equivalent LMI for the large matrix is:

diag ((A ◦M)1n)− (A ◦M) + γM 
 ε

k
diag(M1n), (25)

where γk ≥ ε should be satisfied. Let ε = γk, and the proof is done.

Proof of Corollary 4:

Proof. Let γ = λ2(Λk)/k. Then every S satisfying Q(M ; γ) 
 0 and diag(M)′1n = k is connected by Thm.3
and of size k. So S ∈ Λk.

On the other hand, for any S ∈ Λk, λ2(S) ≥ λ2(Λk) ≥ γk. From the proof of Thm.3, the indicator matrix M
corresponding to S satisfies Q(M ; γ) 
 0 and diag(M)′1n = k. Proof is done.

Proof of Lemma 5:
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Proof. If M ∈ {0, 1}n×n, by constraints of Eq.(10), Mij = 1 if and only if Mii = 1 and Mjj = 1. Thus
M = diag(M)diag(M)′ is rank-1.

On the other hand, if M is rank-1, or M = ff ′, . Consider any two non-zero entries of f : fi = a �= 0, fj = b �= 0.
Then by Mij ≤ min{Mii,Mjj}, we have a = b. So every non-zero entry of f is equal. The node with Mii = 1
ensures that all non-zero entries of f is 1. Proof is done.

Proof of Theorem 6:

Proof. For part (a), assume on the contrary that the support of diag(M) is disconnected: S = C ∪ C̄, where
C̄ = S − C. Let |S| = k, |C| = k1, C̄ = k2. W.l.o.g. assume M11 = 1, and C consists of nodes {1, 2, ..., k1}.
Consider the k × k sub-matrix QS of Q corresponding to S, since the rest part are all 0. Now we use the vector
g = [1k1 ;−1k2 ] to hit QS :

g′QSg = g′ (diag ((AS ◦MS)1n)− (AS ◦MS)) g − γg′ (diag (MS1n)−MS) g ≥ 0. (26)

Note that AS has the form:

AS =

(
AC 0
0 AC̄

)
, (27)

where the off-diagonal block is zero because by assumption C and C̄ is disconnected. Then:

diag ((AS ◦MS)1n)− (AS ◦MS) =

(
L̃C 0

0 L̃C̄

)
, (28)

where L̃C is the Laplacian matrix of C weighted by MC . Notice it still holds that L̃C1k1 = 0. This means
g′ (diag ((AS ◦MS)1n)− (AS ◦MS)) g = 0.

On the other hand, let diag (MS1n)−MS be:

diag (MS1n)−MS =

(
L1 L3

L′
3 L2

)
. (29)

Using g1 = [1k1 ; 0] and g2 = [0;1k2 ] to hit QS will yield: 1′
k1
L11k1 = 0 and 1′

k2
L21k2 = 0. Apparently

g′ (diag (MS1n)−MS) g ≥ 0 due to positive semi-definiteness of Laplacian matrix. If it’s strictly positive, proof
is done. Otherwise this means 1′

k1
L31k2 = 0. Note that all entries of L3 are either 0 or negative due to non-

negativity of MS . This means L3 = 0, or equivalently Mij = 0 for any i ∈ C, j ∈ C̄. But this can not happen,
because M11 = 1 and M1j ≥ 1 +Mjj − 1 = Mjj > 0 for any j ∈ C̄. Contradiction!

Part (b) is straightforward by using g = 1C − 1C̄ to hit QS . Proof is done.

Proof of Proposition 7:

Proof. The proof is similar to the proof of Thm.6, by using g = 1C1 − 1C2 to hit Q.


