Active Learning With Uniform Feature Noise : Appendix

1 Justifying Claims in the Lower Bounds

Approximations:
L (z+y)* =21 +y/2)* =~ 2% + ka*~1y when y < 2. Even when y < z, both terms are the same order.
2. (x —y)k =2F(1 — y/z)* ~ 2% — ka*~'y when y < . Even when y < z both terms are the same order.

3. When y < x but not y < z, by Taylor expansion of (1+z)* around z = 0, we have (z+y)* = 2*(1+y/x)* =
2*[1+ (1+¢)F 1ty /x] = 2% + CxF~1y for some 0 < ¢ < y/x < 1 and some constant C. Similarly for (x —y)*.

Let’s assume the boundary is at —o for easier calculations. (we denote ay, 0y, as a,o here). Remember
mi(x) =1/2 + calz|F 2 if 2 > —0
1/2+c(x—a)|lz—alf? ifx<pBato
ma(x) = )
ma (z) ifx>pfa+o

where 3 = > 1 is such that mg € P(k,¢,C, o). Clearly, when z < Ba + o, my satisfies condition

1
T (c/C) /=D
(T). So, we only need to verify that whenever > Sa + o we have

mo(x) —1/2 = a1 < Cz—a)* ! (1)

This statement holds iff (c/C)Y/* Y <1—a/z < a/z <1—(c/OC)Y*V & x> Ba, which holds for all
o > 0, and hence my satisfies condition (T).

Proposition 1. When o < a, max,, |F} (w) — Fp(w)| < a*~!

Proposition 2. When o = a max,, |F;(w) — Fa(w)| < oc8~2a

Let us now prove these two propositions, with detailed calculations in each case (note that when o =< a, then
max,, |F) (w) — Fo(w)| < a*~! < 6~2a, and can be checked using our approximations 1,2,3).

1. When o < a, we will prove proposition 1. Remember that we can’t query in —o < w < 0.

(a) When 0 < w < g, we have

Fi(w) = (my xU)(w)

0 w—+o
/ (1/2 — cale|*2)dz /20 + / (1/2 4+ czbVydz/20  (2)
0

= 124 5 [w+0) — (0 w)"] (3)
- 124 ﬁok[(l—kw/o’)k (1 —w/o)¥] (4)
~ 1/24co* 2w (5)

Fy(w) = (maxU)(w)

w+o
/ (1/2 — c(z — a)|z — a|*~?)dz /20 (6)

)—O

- 1/2—%[(a—w—0)k—(a+a—w)k] (7)
~ 1/2—cla—w)k! (8)

[Boundaries: F1(0) — 2 =0, Fi(0) — 3 < o"1, F5(0) —

i x—ad"1 Fy(o) - 3 < —ad1].
Fi(w) — Fy(w) =< ! (10)
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(b) Wheno <w<a-o

w—+o

Fi(w) = (my xU)(w) = /7 (1/2 + ca*Vda /20 (11)
- 1/2+ﬁ[w+a)k—(w—a)k] (12)
~ 1/2+ cwt ! (13)

w—+Ho
Fo(w) = (mo % U)(w) = /7 (1/2 = e(z — a)|z — a|*~2)dz /20 (14)
- 1/2—%[(a—w—a)k7(a+07w)k] (15)
~ 1/2—cla—w)F! (16)

[Boundaries: Fy(0) — 4 <" 1 Fi(a—0) — 3 <d" ' F(0) — 4 < —a" ! Fa(a—0) — 3 < —oF71].

Fi(w) — Fy(w) = cw '+ c(a—w)F? (17)
< cla—o)f 4 ela—o)? (18)
< aF? (19)
(¢) Whena—o<w<a

Filw) =~ 1/2+cw™ ! (20)

a w—+o
Bw) = [ 02-co-al-a o2+ [ 124 clo- a0 ldej2e (@)
= 1/2—ﬁ[(a—w+0)k—(w+a—a)k] (22)
~ 1/2—co" 2% (a —w) (23)

[Boundaries: Fi(a—o0) — 1 <a* 1 Fi(a) — 3 <a*" !, Fo(a—0) — 3 < —o* 1 Fy(a) — 3 = 0]

Fi(w) = F(w) ~ cw" ' +cof2(a —w) (24)
< ca” 4ot 0 (25)
< aF! (26)
(d) Whena <w<a+o
Fi(w) =~ 1/2+ cw*! (27)
Fy(w) ~ 1/2+co"%(a —w) (28)

[Boundaries: Fi(a) — 3 < a*" !, Fi(a+0)— 3 =<a""1, Fy(a) — 1 =0, Fa(a+o0)— 5 < o0F1]

Fi(w) — Fy(w) < af!

() Whena+o<w<fa—o

Fi(w) =~ 1/2+ cw* ! (29)
Fy(w) = /w+01/2+c(m—a)k1dx/20 (30)
- 1/2+ﬁ[(w+a—a)k—(w—a—a)k] (31)

~ 1/2+ c(w —a)*! (32)



B: Fi(a+o)—1

=< ab1, Fi(Ba— o) — 3

Fi(w) — F(w) ~ cw ™t —clw—a)k! (33)
< cfa—o)t feoht (34)
< B+ 1)ek ! (35)
< a! (36)
(f) When fa—oc <w< fa+o
Fi(w) =~ 1/2+ cwt! (37)
Ba wHo
F(w) = / 1/2+C(m—a)k71dac/2a—|—/ 1/2 + 2* dx /20 (38)
= 124 =—[(Ba—a)* — (w -0 — a)* + (w+0)* — (Ba)"] (39)
20k
[Fi(Ba—0)— 3 =<a " Fi(fa+o)— 3 =<a" 1 F(Ba—0)—i=<d ™ F(Ba+o)—F=<a"!

Fl(w) — FQ(’LU)

IN

%

(B=1")a" + (w =0 —a) = (w=0)

(Ba)* = (Ba = 20)*] = 5 [(B = 1)"a" — (B~ L)a—0)"]
c(B+ 1) tak1 4 ﬁ[k(ﬁa)k712a] — g[k(ﬁ — 1) 1gh g

cd B+ DM+ = (8- 1)
alcfl

c k
ﬂ[(ﬁ -

_ _ C
C(ﬁ-ﬁ-l)k 1ak ! + ﬁ

cwh1 4

(g) When fa+o0 <w < fa+20

Fy(w)

[Fl(ﬁa—i—a) — %

Fi(w) -

(h) When w > fa + 20

= a* 1 Fy(Ba+20) -1

Fi(w) = 1/24 =—[(w+0)" - (w—0)"]

20k (40)

1/2 + ca*tdz /20

Ba+o w+o
/ 1/2+c(x—a)k_ldx/20+/

w—o Ba+o

124 5 —l(Ba+o—a)f — (w—0—a) + (w+0)" — (Ba+0)"]

1< Fy(Ba+o)— 3 =<ad" 1 F(Ba+20) — § < ab

c

Byw) = 5 —[(Ba+0)~(Bato—a)+w-0-a)F - (w-0) (41)
~ ﬂ[(ﬁa +0) " ka — (w — )" ka) (42)
< Sol(Ba+ o) = (Ba) ] (43)
Sl COLSTIERL SPERES (44)
= B2k —1)/2) (45)
= ot (46)
Fl(w) = FQ(’U))

That completes the proof of the first claim.
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2. When o > a, we will prove the second prop

(a) When —o < w < 0, we are not allowed

(b) When 0 < w < fa

w—+o
Fu(w) = (m1 +U)(w) = / (1/2 — cala|*~2)dz /20 +/ (1/2 4+ czbVydz /20 (47)
w—o 0
= 124 5 lw+0) — (0 w)"] (48)
= 124 5ot 1+ w/0) — (1 - w/o)"] (49)
~ 1/24co* 2w (50)
Similarly Fy(w) ~ 1/2 + co*~2(w — a)
[Boundaries: F(0) — 1 =0, F1(Ba) — § < 08724, F5(0) — & < —0"2a, F5(Ba) < 0¥~ 2d]
Fi(w) — Fy(w) < 0" 2a.
(¢) When fa<w <o
0 w+o
F(w)= = / (1/2—cx|x\k_2)d:r/2a+/ (1/2 4 ca* 1) dx /20 (51)
w—0o 0
= 12+ 5w+ o) — (0 - w)"] (52)
= 124 5 oM+ w/o)t — (1 —w/o)" (53)
~ 1/24co w0 (54)
F(w) = /a (1/2 = c(z — a)|z — a\kiQ)dj + /5‘1+U(1/2 + c(x — a)kil)dj + /erU 1/2 + cxkfl@
2 Y 20 a 20 Bato 20
= 124 g2l ta-w) + (Bato—a) + (Wt o)~ (fato)]
~ 1/2+ ﬁ[—ak(l — @) +oM(1+ @) +oh(1+ %w) —o"(1+ %ﬁa)]
= 1/2+ gak_Q[w —a+ (B—1)a+w— Ba]
= 1/24co"2%(w—a)
[Boundaries: Fi(B8a) — 3 < 0872a, F1(0) — & < o"!, F3(Ba) < 0% 2a, F3(0) — 5 < —c*724]
Fi(w) — Fy(w) < 0" %a
Specifically, verify the boundary at o
Fi(o) = Fo0) = 5"~ (Bato—a)* +(Ba+ o) (55)
R O pa—a k @
= 2Uk[a U(1+k70_ )+0’(1—|—]<10_)] (56)
_ _C 1k k—1
= 5or [a® 4+ ko "a] (57)
< "% (58)

osition.

to query here.
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(d) Wheno <w<a+o

w—+o
Fi(w) = /_ (1/2 4 ca*~1)dx /20 (59)
= 12+ Wt o) — (- 0)"] (60)
(61)

FQ(’U})

a d Ba+o d wHo d
/ (1/2 — el — a)la — a2 2 ¢ / (1/2+ e(x — ) 2 4 / 12 + et~ 9%
20’ a /8 20'

w—o 20 a+to

1/2—&—2 k[ (a—i—a—w)k—i—(ﬁa—&-o—a)k+(w+0)k—(5a+0)k]

Fi(w) = By(w) = s—l@+a-w)=(Ba+o—a) = (w=0)+(Ba+o0)] (62)
Differentiating the above term with respect to w, gives 55 [— (o +a —w)F~! — (w — 6)*7!] < 0 because
o0 < w < a+o and hence F; (w) — Fy(w) is decreasing with w. We already saw I (o) — Fa(0) < co*2a.
We can also verify that at the other boundary,

Fila+0)— Fya+o) = 7[ (Ba+ 0 —a)f —a" + (Ba+ 0)F] (63)
= %[ - (1+k6 a)—&-ok(l—i—k%)} (64)
= ﬁ[ a* + ko"1q) (65)
< ot (66)
() Wheno+a<w<fa+o
w—+o
Fi(w) = / (1/2 + ca*Vdx /20 (67)
= 1/2+2 k[(erJ)kf(wa)k] (68)
(69)
Ba+o 3 dx w+o B
Fy(w) = /wia (1/2 + c(z — a)* 1)20+/ﬁa+0 1/2 4 ca® 120
= 124 5 l(Bato—a) — (w0~ a) + (wt o) — (Bato)]

Fi(w) = Fy(w) = ﬁ[(wﬂf*a)k*(ﬂaJrU*a)k*(’w*U)kﬂL(ﬁaJrU)k] (70)

Differentiating with respect to w gives 5= [(w — o —a)* ™1 — (w — 0)*~1]
and so Fy — Fy is decreasing with w. We know F(a 4 o) — Fa(a + o)
the other boundary that

be ausew—a—agw—o
k—

<0
< 24, and we can verify at

o
20

Fi(fat o)~ Fy(fato) = orl(Ba—a)* — (Bato—a) —(8a)* + (Bato)] (72)
~ ﬁ[(ﬁa—a)k—(5a)k—0k(1+k@)+ak(l+k%” (73)
= S {(Ba - a)f — (B0)* + ko*a] ™
< Coh=2g (75)
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(f) When Ba+ o0 <w < fa+ 20

Fi(w )—1/2—|—2 (w4 o)* = (w—0o)¥]

k
Bato w+o
w) = c(z —a)*tdz /20 cx*Vdx /20
Fy(w) /w_o 1/2 4 e(x — a)*da/2 +/6W 1/2 + da)2 (76)
= 1/2+7[(ﬁa+o*—a)’~c (w—0—a) + (w+0)" = (Ba+0)"] (77)
Hence
Fi(w) = Fa(w) = 7[(ﬁa+0) —(Bato—a)f +(w—0—-a)—(w-0) (78)
~ Gopl(Bat o>k tha — (w— o) kal (79)
< g—“wa +0)* 7t = (Ba)* ] (80)
/ (81)
ot~ (82)

Alternately, by the same argument as in the previous case, differentiating with respect to w gives
=l(w—0—a)*"t - (w—0)*"1] <0 because w — 0 —a < w— o and so Fy — F; is decreasing with w.
We know Fy(Ba+ o) — Fo(Ba+ o) < $6%2a, and we can verify at the other endpoint that

Fi(Ba+20)— Fy(fa+20) = 0 (83)

(g) When w > fa + 20, Fi(w) = Fa(w)

That completes the proof of the second proposition.



2 “Linear” Convolved Regression Function, Justifying Eq.(8,9,10,11)
For ease of presentation, let us assume the threshold is at 0, and define m € P(¢,C, k, o) as

m(z) = 1/2+ f(z) + Az) ifz>0
12— f@)ifz <0

Due to assumption (M), A(z) must be 0 when 0 < x < 0. Hence, the Taylor expansion of A(x) around z = o
looks like
A(z) = (z — 0)A'(0) + (z — 0)*A"(0) + ...

If one represents, as before, F'(x) = m x U, then directly from the definitions, it follows for 4 > 0 that
—o+0 dZ

o+d >
FO-FO = [ 02+ 1@+ 8@y - [ 2= 1@y

20 e

In particular, due to the form (T) of m, let f = ¢;|z|*~! for some ¢ < ¢; < C (we could also break f into parts
where it has different ¢;s but this is a technicality and does not change the behaviour). Then

PO~ FO) = Foi@ - [ N0+ o P e )
2ko “ - - 20
o C [(z — U)Q]Z—HS /
= ﬁ[( +0)f —oF 4 (0 + 0" — (—0)!] + F 2 A (o) + . (85)
~ o+ iA/(U) + 0(6%) (86)

4o
Thus we get behaviour of the form
F(t+h)>1/2+co"2n
One can derive similar results when § < 0.

The claims about WIDEHIST immediately follow from the above, but we can make them a little more explicit.
First note that F'(w) = 1/2+ £(w —t) for w close to t (in fact for w € [t — 0,t + ]), as seen in Section 1 of this
Appendix. Consider a bin just outside the bins ¢* — 1,7*,¢* + 1, for instance bin i = i* + 2 centered at b; (note
b; > t+ h), and let J be the set of points j that fall within b; & o/2. Define

1
AZ- = — ]I Y ==
=
where Y; € {£1} are observations at points j € J. Now, we have, since P(Y; = +) = F(j)

Bp) = g 3 F0)
JjeJ

_ F}QR ST /24 £(X; — 1)

jeJ

1 bqj—t—‘ro'/Q
1/2 + —/ Lzdz
b

0 Joi—t—0c/2

Q

24 5 [0 = t40/2) = (b —t = 0/2)’]

1/2+ (b — t)
1/2+ <h

Y%
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3 Justifying Claims in the Active Upper Bounds

Phase 1 (k = 1). In the first phase of the algorithm, it is possible that ¢ < R./n but > Ree™™ - in other

words the noise may be small enough that passive learning cannot make out that we are in the errors-in-variables

setting, and then the passive estimator will get a point error of Cl/% in each of those epochs (as if there is no

feature noise). This point error is to the best point in epoch e, which we can prove by induction is the true
threshold ¢ with high probability. Since it trivially holds in the first epoch (¢ € Dy = [—1,1]), we assume that
it is true in epoch e — 1. Then, in epoch e, the true threshold ¢ is still the best point if the estimator x._; of
epoch e — 1 was within R, of ¢, or in other words if |z,—1 — t| < R.. This would definitely hold if Cl];;; L <R,

ie. n > 2C1E = 2Cy[log(1/0)], which is true since o >~ exp{—n/2C1}. However, the algorithm cannot stay in
this phase of o < R./n this until the last epoch since ¢ > Rg11 = Rp/2.

Phase 2 (k = 1). When ¢ = R./n, WIDEHIST gets an estimation error of Cy, /2 o7 in epoch e. This error is

the distance to the best point in epoch e, which is ¢ by the following similar induction. In epoch e, t is still the
best point only if |z, —t| < R, i.e. C3 Reso < R?ie. nR, > 2C3Eo which holds since R, > o foralle < E

n/E

and since n > 2C32E (o = exp{—n/2C3} implies E < n/2C3).

The final error of the algorithm is is ,/% = O(ﬁ) since Rp < 20.

. oty . . . . .
Explanation for £ > 1 Assume o > n~ -2 otherwise active learning won’t notice the feature noise, and so

log(1/0) < (é‘;f T;) Choose total epochs E = [log( )] < (;’fg < Clogn for some C. In each epoch of length
)2k T,

n/E in a region of radius R, = 27°F1, we get a passive bound of C1 , /W/E wheneve o> (

By the same logic as for k = 1, we need to verify that |z._1 —t| < R, so that if ¢ was in the search space in epoch

e — 1 then it remains the in the search space in epoch e, i.e. we want to verify C? (72,?73”/}5 < R?2 & 0% 2R, >

201 EU which is true smc 2\R. >0 an 3l o2k=2 > 202E /n .

The final point error is given by the passive algorithm in the last epoch as ./ a%f{iSEn/E; since Rg < 20 and
E < Clogn, this becomes =< ﬁ\/g .

1
B+l « 20 < 00**2n since o = n~ 2k—2 and hence in

'This must happen at some e < E = [log(1)] because Rg = 2~
the last epoch o > ( )2’» T,

By choice of E = flog( )], Re > Re >0 > Re41 .

3Since o = n~ %7 we get 02*72 > 2C%E/n since E < Clogn .
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