
Supplementary Material for: Learning Structured Models with the
AUC Loss and Its Generalizations

Nir Rosenfeld Ofer Meshi Danny Tarlow Amir Globerson
Hebrew University
Jerusalem, Israel

Hebrew University
Jerusalem, Israel

Microsoft Research
Cambridge, UK

Hebrew University
Jerusalem, Israel

1 Proof of Proposition 3.1

We have shown that with our enhanced representation,
the ranking problem for given weights w reduces to the
one in Joachims (2005) in the case of a fully-factored
model. Here we show a similar result for the learning
problem. Recall that our learning objective is defined
as:

min
w

λ

2
‖w‖2 +

1

M

∑
m

max
z∈Z

[
w>ϕ(xm, z) + ∆AUC(z, ym)

]
− max

ẑ∈Z
ẑ∼ym

w>ϕ(xm, ẑ) (1)

We would like to consider this objective in the case of a
fully-factored model, where the single element scores
are simply: w>xi ≡ ai, and therefore: w>ϕ(x, z) =∑
i ai
∑
k zki.

Our goal is to show that the loss in this case is a sim-
pler function of w. For a specific training example, we
denote:

z∗ = argmax
z∈Z

[
w>ϕ(xm, z) + ∆AUC(z, ym)

]
(2)

ẑ∗ = argmax
ẑ∈Z,ẑ∼ym

w>ϕ(xm, ẑ) (3)

Due to the decomposition of the score and the AUC
loss, z∗ is obtained by sorting a vector which consists
of elements ai − c for i ∈ pos and aj for j ∈ neg, with
c = 1/(|pos| · |neg|). On the other hand, ẑ∗ is obtained
by sorting the elements ai for all i ∈ pos, then sorting
the elements aj for j ∈ neg, and then concatenating
the results with pos before neg.

W.l.g. assume that the elements are indexed according
to the ranking ẑ∗. We next define indicator variables
for all pairs i ∈ pos, j ∈ neg:

y∗ij =

{
1 ai − c < aj

0 otherwise

By construction, we know that i comes before j in ẑ∗.
The variable y∗ij represents whether i and j swapped

positions (j is ranked before i) in z∗. We can now
express the loss in this pairwise representation:

D(w) =
∑
i∈pos

∑
j∈neg

y∗ij(w
>(xj − xi) + c)− c

∑
i∈pos

(n− i+ 1)

=max
y

∑
i∈pos

∑
j∈neg

yij(w
>(xj − xi) + c) + const

which is the same as Joachims (2005), up to additive
constants (see proof of Lemma 2 therein).

2 LP Relaxation

In this section we show how to perform approximate
inference in our model using LP relaxation. Recall
that the problem we are interested in solving is:

max
z∈Z

∑
ki

θi(zki) +
∑
kf

θf (zkf) (4)

Equivalently, we can decompose the constraints Z into
row and column constraints:

max
z∈{0,1}n×n

∑
ki

θi(zki) +
∑
kf

θf (zkf)

+
∑
k

Rk(zk·) +

n−1∑
k=1

∑
i

C(zki, zk+1,i)

where Rk(zk·) = 0 if
∑
i zki = k and −∞ otherwise,

and C(zki, zk+1,i) = 0 if zki ≤ zk+1,i and −∞ other-
wise. The natural LP relaxation is obtained by intro-
ducing marginal variables and relaxing the integrality
constraints:

max
µ∈L̂(G)

∑
k,i

∑
zki

µki(zki)θi(zki)

+
∑
k,f

∑
zkf

µkf (zkf)θf (zkf)

+
∑
k

∑
zk·

µRk (zk·)Rk(zk·) (5)

+

n−1∑
k=1

∑
i

∑
zki,zk+1,i

µCki(zki, zk+1,i)C(zki, zk+1,i)

Supplementary Material for: Learning Structured Models with the AUC Loss and Its Generalizations

where L̂(G) is the appropriate local polytope enforcing
consistency between the different marginals µ on vari-
ables in their overlap (e.g., see Sontag et al., 2010)).

One difficulty with the above formulation is that it
involves an exponential number of variables µR corre-
sponding to the row constraints. Instead, we propose
to solve the more concise LP relaxation:

max
µ∈L(G)

∑
k,i

∑
zki

µki(zki)θi(zki)+∑
k,f

∑
zkf

µkf (zkf)θf (zkf)

s.t.
∑
i

µki(1) = k; µk+1,i(1) ≥ µki(1)

(6)

We next show that this compact LP is in fact equiva-
lent to the more expensive one.

To prove this, we show that the constraint matrix in
Eq. (6) is totally unimodular (TUM), which guaran-
tees that all vertices of the corresponding polytope are
integral. Since it is clear that any (integral) solution of
the full representation is also a solution in the compact
representation, proving unimodularity will guarantee
that they are in fact equivalent.

Consider the constraint set on µ:∑
i

µki(1) = k, µk+1,i(1) ≥ µki(1) (7)

These linear constraints can be expressed in matrix
form by Aµ ≤ b for the appropriate A, b. By rearrang-
ing rows and columns (to which TUM is invariant), A
can be written as:

A =

I I · · · I
−I −I · · · −I
G 0 · · · 0
0 G · · · 0
...

...
. . .

...
0 0 · · · G

G =

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 · · · 1 −1

Where I is of size n× n and G of size (n− 1)× n. To
show that A is TUM, we use the Ghouila-Houri suffi-
cient condition (see Schrijver, 2003). The condition is
as follows: A matrix A is TUM iff for every subset R
of rows, there is an assignment s : R → ±1 such that
σi =

∑
r∈RAris(r) ∈ {0,±1} for every column i.

Proof: Let R = (RI , R−I , RG1 , . . . , RGn) be a subset
of rows of A (we use the subscripts to relate rows to
their corresponding blocks in A). We start with σ = 0,
and sequentially add rows and update σ. First, we
set s(u) = (1, 1, . . . , 1) for every row u in RI , R−I ,
and compute the sum over these rows. Denote by v
the vector attained by this sum. Since each column
(constrained to these rows) contains zeros and either
1,-1 or both, all entries in v are in {0,±1}.

Notice that since the remaining part in A is block-
diagonal, the row sets RGi

are independent with re-
spect to σ. Hence, we focus on some arbitrary RG,
and show a choice of sG under which the entries in σ
corresponding to G’s columns are in {0,±1}.

Let i be the index of the first row in RG:

• If vi 6= 0, assume w.l.g that vi = 1. We set
sG(i) = −1 to ensure that σi = 0. For all adjacent
trailing rows i < j ∈ RG, we also set sG(j) = −1.
Consider adding row j to σ. If vj = 0, then after
the addition σj = 0. Otherwise, σj = −1. When
adding row j + 1, σj = 0, and σj+1 is either 0 or
−1, depending on vj+1. This invariant is true for
all sequentially added rows.

• Otherwise, if vi+1 6= 0, assume w.l.g. that vi+1 =
1. Similarly, we set sG(i) = +1 to ensure that
σi = 0. Again, adding rows j sequentially results
in σj ∈ {0, 1}.

• Otherwise, we are free to choose any sign for i.

Repeating this process for all of other G-block rows
results in σ ∈ {0,±1} as desired.

3 Experiments with AUC
Generalizations

We suggested three generalizations to the AUC -
Binned AUC, AUC@k, and Unnested AUC. Here
we present experiments which test their relation to
the standard AUC. In each task we compare models
trained with the standard AUC loss to models trained
with a generalized AUC loss. We then compare how
each model performs on both measures. Results are
presented in Table 3.

The binned AUC measure is suitable for tasks where
items can be grouped into bins, where inter-bin or-
dering is of little importance. Document retrieval is
a natural candidate since documents are often pre-
sented to end users in sequential pages. Hence, we
use the binned AUC measure on the first fold of the
OHSUMED dataset. As expected, binned AUC scores
are higher than standard AUC scores for both models

Nir Rosenfeld, Ofer Meshi, Danny Tarlow, Amir Globerson

Table 1: Performance on standard AUC and its gener-
alizations. Columns indicate which loss the model was
trained with, and rows indicate which measure was used
for evaluation. TOP: Binned AUC for factored models on
the OHSUMED dataset. CENTER: AUC@k for factored
models on the original NIPS dataset. BOTTOM: Unnested
AUC for pairwise models on the Yeast multilabel dataset.

Test\Train AUC Binned
AUC 63.1 62.4

Binned 68.9 68.6
OHSUMED

Test\Train AUC AUC@k
AUC 70.4 58.2

AUC@k 77.1 77.4
NIPS

Test\Train AUC Unnested
AUC 82.44 82.51

Unnested 82.35 82.59
Yeast

(some of the swapped pairs are not counted). Sur-
prisingly, binned AUC for the binned model is lower
than for the un-binned model. This may be due to the
non-convexity of the binned objective.

The AUC@k measure is suitable for tasks where only
the top k ranked items are of interest. In online so-
cial networks, users are often presented with a short
list of people whom they are likely to add as friends.
Hence, we test the AUC@k measure on the task of
link prediction in the original NIPS dataset1 (years
1987-2003). Optimizing over the binned loss results in
better binned AUC but worse standard AUC.

Unnested AUC is suitable for tasks where increasing
the number of ’on’ variables may result in changing
previous choices. We test the unnested AUC on the
Yeast multi-label dataset2, since many samples have
several labels. Our experiments show that in this set-
ting, allowing unnested outputs increased performance
only slightly.

References

T. Joachims. A support vector method for multivariate
performance measures. In ICML, pages 377–384.
ACM, 2005.

A. Schrijver. Combinatorial optimization: polyhedra
and efficiency, volume 24. Springer Verlag, 2003.

1http://ai.stanford.edu/~gal/data.html
2Taken from the Mulan collection: http://mulan.

sourceforge.net/datasets.html

D. Sontag, A. Globerson, and T. Jaakkola. Introduc-
tion to dual decomposition for inference. In S. Sra,
S. Nowozin, and S. J. Wright, editors, Optimization
for Machine Learning. MIT Press, 2010.

http://ai.stanford.edu/~gal/data.html
http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html

	Proof of Proposition 3.1
	LP Relaxation
	Experiments with AUC Generalizations

