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Abstract

Many problems involve the prediction of mul-
tiple, possibly dependent labels. The struc-
tured output prediction framework builds
predictors that take these dependencies into
account and use them to improve accuracy.
In many such tasks, performance is evalu-
ated by the Area Under the ROC Curve
(AUC). While a framework for optimizing the
AUC loss for unstructured models exists, it
does not naturally extend to structured mod-
els. In this work, we propose a representa-
tion and learning formulation for optimizing
structured models over the AUC loss, show
how our approach generalizes the unstruc-
tured case, and provide algorithms for solv-
ing the resulting inference and learning prob-
lems. We also explore several new variants
of the AUC measure which naturally arise
from our formulation. Finally, we empirically
show the utility of our approach in several do-
mains.

1 Introduction

Many learning problems require the simultaneous pre-
diction of multiple related variables. For example, la-
beling the pixels of an image with their corresponding
objects or labeling words with their parts of speech.
The framework of structured output prediction has
proven very useful for such tasks (Bakir et al., 2007;
Taskar et al., 2003; Tsochantaridis et al., 2004; Laf-
ferty et al., 2001). The main insight of this approach
is that it is better to jointly predict the labels, rather
than to learn individual classifiers for each label.
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As with any learning problem, a key decision is which
loss to minimize. A common choice is the Hamming
loss, namely the number of labels which the classi-
fier errs on. While the Hamming loss is sometimes
appropriate, often it is chosen for computational sim-
plicity rather than for its appropriateness for the task
at hand.

For example, consider a link prediction task where one
wishes to predict which links in a social network will
be realized within some time window. Friendship net-
works are known to exhibit a high degree of cluster-
ing, so modeling inter-link dependencies with struc-
tured output models should be advantagous. What
loss function is appropriate? In this scenario, it is
less likely that we require knowing exactly which links
will appear at some specific time point in the future.
Rather, we might be satisfied if a model ranks poten-
tial links by the likelihood of their future formation.
In this case, training under Hamming loss is inappro-
priate, and may significantly hurt performance. It will
encourage the model to focus on aspects that are unim-
portant (what links will appear exactly) at the expense
of aspects that we care about (the relative order).

Many other problems — such as document retrieval,
multi-label categorization and medical diagnostics —
are structured and exhibit the above characteristics. A
natural objective for such tasks is the area under the
receiver operator characteristic (ROC) curve, or AUC
(Provost et al., 1997; Fawcett, 2006). The AUC mea-
sures to which degree a ranked list is consistent with
the ground truth. It will be higher when variables
that are highly ranked are within the ground truth
set. While the AUC can be interpreted as a proba-
bilistic measure for the accuracy of binary classifiers,
it can also be thought of as an accuracy measure for
predictors of multi-labeled instances. In this paper we
focus on the latter and apply an Empirical Risk Min-
imization (ERM) methodology, where our goal is to
minimize the AUC loss over a set of examples.

Ideally, we would like to be able to take the same
model that we developed for learning under a Ham-
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ming loss objective, replace the Hamming loss with
AUC, then proceed to learn. This is possible with
many other losses that have been studied recently for
structured prediction (e.g., all of those discussed in
Tarlow and Zemel (2012)). However, for the AUC
loss, this is not possible with existing methods, and
developing a method capable of this is the main goal
of the current paper. As we show, it is not imme-
diately clear how to naturally extend standard struc-
tured output predictors to incorporate the AUC loss
because standard structured predictors return a single
structured labeling, and not a ranked list. While there
have been works on structured prediction for ranking,
these have not addressed the AUC loss, nor do they
use features which are natural in the context of the
problems we consider. Furthermore, while methods
for optimizing the AUC loss for unstructured models
exist (e.g. Joachims, 2005), extending them to handle
structured models is non-trivial.

Our approach relies on a representation of the space
of rankings under which (a) the AUC can be effec-
tively optimized, and (b) structured prediction mod-
els can be easily extended to handle rankings. This
representation allows us to incorporate features which
one would use in standard structured prediction, as
opposed to features arising in the context of ranking.
This is a desirable property since in most cases the
available data is labeled rather than ranked. We then
prove that our method is in fact a generalization of the
AUC optimization framework for unstructured predic-
tion previously proposed by Joachims (2005). More-
over, since the resulting inference problems are hard,
we show how to approximate them, by applying the
typical local linear programming (LP) relaxation to
the problem. Finally, we consider several novel gener-
alizations to the AUC which arise naturally under this
representation.

We apply our approach to multiple problems: link pre-
diction, document retrieval, and multi-label classifica-
tion. In all these we observe performance gains with
respect to unstructured prediction that optimizes the
AUC loss.

2 Structured Output Prediction

We begin by presenting the standard prediction setting
and in the next section extend the model to perform
ranking.

In structured output prediction we are given an input
vector x, and the goal is to predict a discrete out-
put vector y. Here we are interested in binary vectors
y ∈ {0, 1}n. For example, in a link prediction task
the input x may represent the network at time t, and
the goal is to predict which of a set of potential links

will form at time t + 1. In this framework it is com-
mon to assume that inputs map to outputs via a linear
discrimination rule: y(x;w) = argmaxy′ w

>φ(x, y′),
where φ(x, y) is a function mapping input-output pairs
to feature vectors, and w is the corresponding weight
vector. Since the output space may be large, enu-
merating all possible outputs is usually prohibitive.
Therefore, in many applications the score function is
assumed to decompose over single variables. That
is, w>φ(x, y) =

∑
i w
>
i φi(x, yi). In this fully-factored

model each output variable is predicted independently
of the others. However, modeling dependencies be-
tween multiple variables increases expresiveness and
may often improves performance (Bakir et al., 2007;
Taskar et al., 2003; Tsochantaridis et al., 2004; Laf-
ferty et al., 2001). For example, in many applications
the model naturally decomposes over nodes and edges
of a graph G:

w>φ(x, y) =
∑

i∈V (G)

w>i φi(x, yi) +
∑

ij∈E(G)

w>ijφij(x, yi, yj)

≡s(y;x,w) (1)

Unfortunately, introducing such dependencies between
variables makes the prediction task intractable in gen-
eral (Shimony, 1994), so in practice approximations
are often used (Finley and Joachims, 2008).

In the learning task for structured outputs we have
a training set consisting of M labeled examples
{(xm, ym)}Mm=1, and we wish to learn w. In this work
we use structured SVM, an elegant generalization of
binary SVM to structured outputs (Taskar et al., 2003;
Tsochantaridis et al., 2004). In particular, w is learned
by minimizing the regularized structured hinge loss:

min
w

λ

2
‖w‖2 +

1

M

∑
m

max
y

[
w>φ(xm, y) + ∆(y, ym)

]
− w>φ(xm, ym) (2)

where λ is the regularization constant, and ∆(y, ym)
is a label-loss function which determines the cost of
predicting y when the true label is ym. Notice that
evaluating this objective involves solving a so called
loss-augmented prediction problem for each training
example.

3 Structured Ranking

Our focus in this work is on prediction of binary vec-
tors (y1, . . . , yn) where it is hard (or unnecessary) to
exactly predict which yi-s have the value 1. Instead the
goal is to rank the items 1, . . . , n such that elements
with yi = 1 are ranked high.

To obtain a numerical measure for the goodness of a
ranking, we need to understand how it will be used in
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practice. One option is that a user considers the top K
elements of the ranking, in which case the natural loss
is the number of mistakes within this list (or other nor-
malized measures such as precision at K). However,
it is often more likely that users do not have a fixed
K, and we cannot say in advance how many items a
users will consider. As an example, in recommender
systems, some users may sift through many recommen-
dations, while others may consider just a few.

The above setting suggests that we should use a mea-
sure that spans all possible thresholds employed by
users. This is precisely what is achieved by the AUC
measure, as explained next. The ROC curve is a plot
used for depicting the tradeoff between the false pos-
itive rate (FPR) and the true positive rate (TPR)
(Metz, 1978). It can be obtained by gradually ‘turning
on’ variables according to their rank. If the variable
which has just been turned on corresponds to a true
label, the TPR increases by one; if the corresponding
label is false, the FPR increases by one. Therefore,
the ROC is a non-decreasing step function. In the
best case, all the true labels have been turned on first,
and the curve quickly saturates. Alternatively, if the
correct labels are turned on last the curve grows more
slowly. This suggests that the quality of the curve
can be measured using the area under it. This area,
known as the AUC, is a common performance measure
(Provost et al., 1997; Fawcett, 2006), and is routinely
used in many machine learning applications. The AUC
has several other intuitive interpretations. For exam-
ple, it can be understood as the probability of correctly
discriminating between randomly drawn positive and
negative samples (e.g., see Joachims, 2005).

Our goal in this paper is to optimize the AUC loss
for structured prediction. Ideally, we would like to
be able to take a standard structured predictor for a
given problem, and optimize its AUC. In other words,
we would like to preserve a feature representation as
in Eq. (1) and just change the loss. However, it turns
out that this is not easy to do. The difficulty stems
from the fact that the ground truth y is a boolean
vector, whereas the actual output is a permutation
π. There are thus two options. One is to represent
the features in permutation space and translate the
ground truth to that space. Such an approach has
been suggested for the unstructured case in Chapelle
et al. (2007) and extended to the structured case in
Mensink et al. (2011) and Weston and Blitzer (2012).
However, this requires defining features in permuta-
tion space (such as a penalty for a distance within
the permutation) as well as several additional param-
eters that need to be set (the matrix D in Mensink
et al. (2011) and the weights w in Weston and Blitzer
(2012)), which are unnatural in our context.

Figure 1: The ranking matrix z in different settings,
where 1 is marked in red and 0 in blue. (A) In the basic
setting, each row k has k elements on, and nestedness
is enforced. The pictured matrix corresponds to the
ranking (1,4,2,3,5). (B) In the general setting, nested-
ness is dropped, allowing for independent predictions
at each rank. (C) A ranking matrix ẑ consistent with
an assignment y = (11100). (D) A binned ranking
matrix, with bins of sizes 1,3,5.

Another option is to use the function s(y;x,w) in
Eq. (1) to obtain a ranking on the parameters. For
example one could set si = maxy−i

s(y;x,w), namely
the max-marginal of yi, and rank according to it. How-
ever, this seems difficult to optimize, and would be
further complicated by the need to optimize the AUC
of the resulting ranking.

We propose a different solution to the above prob-
lem. The idea is to represent the ranking in a struc-
ture that is very closely related to the original label
space y1, . . . , yn. We illustrate this with an example.
Consider the ranking [1, 4, 2, 3, 5]. It is clearly equiva-
lent to the following lists of subsets of increasing size:
{1}, {1, 4}, {1, 4, 2}, {1, 4, 2, 3} and {1, 4, 2, 3, 5}. Note
that the subsets themselves are unordered, and the
ranking can be recovered by just noting which new
element appears between consecutive subsets.

Next, note that this subset representation is equiv-
alent to a set of variables zki ∈ {0, 1} where k, i ∈
[n] = {1, . . . , n} and zki = 1 means that the kth sub-
set contains the ith item. This is illustrated graphi-
cally in Fig. 1A. In this representation a permutation
is obtained by solving n standard structured prediction
problems, where the outputs of these problems must
be nested.

In order for z to faithfully represent a ranking, it must
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satisfy two constraints:

• Cardinality: At the kth level, exactly k items
can be chosen. Namely:

∑
i zki = k for all k.

Note that this is a cardinality constraint over the
variables in the kth row (Tarlow et al., 2010).

• Nestedness: Adjacent rows must be consistent,
in the sense that the (k + 1)th row includes
the kth one. Formally: zki ≤ zk+1,i for all
i ∈ [n], k ∈ [n− 1].

We denote the set of assignments satisfying these con-
straints by Z. By construction, each legal assignment
z ∈ Z corresponds to a ranking π, and vice versa.
We therefore sometimes refer to such assignments z as
“rankings”.

Each row zk· corresponds to a prediction problem
where one needs to set k variables out of y1, . . . , yn
to one. Thus, zk· have exactly the same meaning as
the original y variables. This is precisely what we set
out to achieve. In particular, it makes sense to apply
the original features to the z variables. The score for
a z assignment is then expressed as:

w>ϕ(x, z) = w>

(
n∑
k=1

φ(x, zk·)

)
(3)

where φ is the same feature used in Eq. (1). Out-
putting a ranking under this model is done by predict-
ing:

z(x;w) = argmax
z′∈Z

w>ϕ(x, z′) (4)

We notice that this is a generalization of the model in
Joachims (2005) since when the model fully factors,
then this reduces to: maxz∈Z

∑
i

∑
k w
>
i φi(x, zki),

which can be calculated by sorting the individual
scores. On the other hand, when the model has ad-
ditional structure, this problem is no easier than the
original prediction problem over assignments y, and
we will have to resort to some approximation (see Sec.
4).

We next show how to formulate the learning objective
to optimize for AUC in our representation. To do so,
we replace the maximization over assignments y in the
structured hinge loss of Eq. (2) with a maximization
over rankings z. The resulting learning problem is
therefore:

min
w

λ

2
‖w‖2+

1

M

∑
m

hm(w, zm), where: (5)

hm(w, zm) = max
z∈Z

[
w>ϕ(xm, z) + ∆AUC(z, ym)

]
− w>ϕ(xm, zm)

where ∆AUC(z, ym) is the AUC loss, defined as 1 minus
the AUC for the ranking z under the ground-truth as-
signment ym. Another appealing property of the pro-
posed representation is that ∆AUC decomposes over
single variables (see Sec. 4).

However, the formulation in Eq. (5) is misleading,
since we do not have access to a correct, ground truth,
ranking zm. Instead, we can replace it with a ranking ẑ
consistent with ym. By consistent, we mean a ranking
where elements with ymi = 1 are ranked higher than
elements with ymi = 0 (see Fig. 1C). We denote this
consistency by ẑ ∼ ym. For any fixed choice of consis-
tent ẑ the resulting objective is a convex upper bound
on ∆AUC. However, it makes sense to seek the tightest
consistent upper bound, which yields the objective:

min
w

λ

2
‖w‖2 +

1

M

∑
m

max
z∈Z

[
w>ϕ(xm, z) + ∆AUC(z, ym)

]
− max

ẑ∈Z
ẑ∼ym

w>ϕ(xm, ẑ) (6)

Unfortunately, this objective is no longer convex, but
a local optimum can be found using the DC algorithm
(Tao and An, 1997). The algorithm is summarized in
Algorithm 1. It proceeds by calculating a linear up-
per bound on the concave part of the objective (line
4), and then solving for the convex part plus lineariza-
tion (line 6). This is repeated until convergence. In
this work we solve the convex problems (line 6) us-
ing the stochastic Frank-Wolfe algorithm recently pro-
posed by (Lacoste-Julien et al., 2013). Algorithm 1
assumes that the inference problems (calculating ẑm

and hm(w, ẑm)) can be solved efficiently, which is not
true in general. Instead, we approximate these opti-
mization problems with an LP relaxation. In the next
section we show how to solve the LP relaxations that
arise in prediction and learning.

Algorithm 1

1: Initialize w
2: repeat
3: for m = 1, . . . ,M do
4: ẑm ← argmax ẑ∈Z

ẑ∼ym
w>ϕ(xm, ẑ)

5: end for
6: w ← argminw

λ
2
‖w‖2 + 1

M

∑
m hm(w, ẑm)

7: until convergence

The non-convexity of the above problem may seem
particularly troubling when recalling that Joachims
(2005) developed a convex objective for the unstruc-
tured case. Surprisingly, it turns out that in the un-
structured case, the above objective is in fact convex,
as the following proposition states (see supplementary
material for a proof):

844



Nir Rosenfeld, Ofer Meshi, Danny Tarlow, Amir Globerson

Proposition 3.1 Eq. (6) generalizes the learning ob-
jective of Joachims (2005) to structured models.

One may note that a tighter upper bound can be at-
tained by dropping consistency, resulting in the struc-
tured ramp-loss objective (Chapelle et al., 2008). How-
ever, this formulation leads to an even ‘less’ convex
objective, and is no longer a generalization of the un-
structured case. Our choice of the maximal consistent
ranking can be seen as a middle point in the tradeoff
between tightness and convexity. The performance of
the ramp loss was comparable in our experiments to
that of the consistent loss.

4 Inference

Recall that within the structured learning framework
presented, we need to solve the following optimization
problems:

(a) max
z∈Z

w>ϕ(x, z), (7)

(b) max
z∈Z

w>ϕ(x, z) + ∆AUC(z, y),

(c) max
z∈Z
z∼y

w>ϕ(x, z)

Below we show that Eq. (7b) and Eq. (7a) are equiv-
alently difficult, since the loss term ∆AUC(z, y) fac-
torizes over single variables, so it can be absorbed
into the model score. We note that when the model
is unstructured the problems in Eq. (7) can be effi-
ciently solved by sorting elements according to their
individual scores. However, when additional structure
is introduced, this results in a combinatorial problem
which is generally hard to solve. In such cases, it makes
sense to seek an approximate solution that can be com-
puted efficiently. In the sequel we show how to perform
such approximate inference.

Factorizing the AUC loss: Seemingly, ∆AUC(z, y)
is quite an elaborate function of the ranking z. How-
ever, it turns out that in our representation it can ac-
tually be rewritten as a simple sum over scores corre-
sponding to single variables. To see this, consider a
given ranking z ∈ Z and a binary labeling y, and let
pos = {i : yi = 1} and neg = {i : yi = 0}. As shown
in Hand and Till (2001), the AUC can be written as a
linear function of z, namely:

∆AUC(z, y) = 1− 1

|pos|· |neg|
∑
i∈pos

∑
k

zki + c (8)

where c = |pos|+1
2|neg| is constant. We can rewrite the

above as
∑n
i,k=1Akizki + c̄, where we define Aki =

−1/|pos|· |neg| if i ∈ pos and 0 otherwise. Thus, in
this representation the AUC loss factorizes and can be
absorbed into the singleton scores of the model.

Approximate Inference: We next review a gen-
eral framework of approximate inference for structured
outputs, and show how it can be applied in our setting.
Specifically, we use Linear Programming (LP) relax-
ations (Wainwright and Jordan, 2008). To simplify
the presentation1, we assume that the model score de-
composes as in Eq. (1). Therefore, using Eq. (3), the
problem in (7a) becomes:

max
z∈Z

∑
k

∑
i

θi(zki) +
∑
ij

θij(zki, zkj)


where, θi(zki) ≡ w>i φi(x, zki) and θij(zki, zkj) ≡
w>ijφij(x, zki, zkj). In the LP relaxation approach in-
dicator variables µ are introduced. The optimization
problem is first cast as an integer LP in those vari-
ables. Then, the integrality constraints are relaxed in
order to obtain a tractable LP. As we show in the sup-
plementary, in our case this results in the following
LP:

max
µ∈L(G)

∑
k,i

∑
zki

µki(zki)θi(zki)+ (9)

∑
k,ij

∑
zki,zkj

µk,ij(zki, zkj)θij(zki, zkj)

s.t.
∑
i

µki(1) = k ∀k ∈ [n]

µk+1,i(1) ≥ µki(1) ∀k ∈ [n− 1], i ∈ [n]

where L(G) is known as the local marginal polytope,
defined as:

L(G) =
{
µ ≥ 0 |

∑
zkj

µk,ij(zki, zkj) = µki(zki),∑
zki

µk,ij(zki, zkj) = µkj(zkj),∑
zki

µki(zki) = 1
}

Notice that the constraints in L(G) apply separately
to each level k. Since the objective and constraints
are linear in µ, the above optimization problem can be
solved by standard LP solvers.

To conclude this section, we show how to handle the
optimization problem in Eq. (7c). Notice that this
problem is similar to the one in Eq. (7a), but has ad-
ditional constraints z ∼ y. We observe that in our rep-
resentation these constraints can be enforced by fixing
the assignments of some of the variables. Specifically,
we set zki = 1 for all i ∈ pos, k ∈ neg, and zki = 0 for
all i ∈ neg, k ∈ pos (see Fig. 1C). Thus, we are left

1Our approach is easily applicable to high-order scores
as well.
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with a modified optimization problem over the rest of
the variables in z. This is equivalent to solving prob-
lem (7a) with evidence on some of the variables. The
solution can be approximated, as before, with LP re-
laxation, where the model scores are “collapsed” to
reflect the evidence.

5 AUC Generalizations

The AUC can also be viewed as the (normalized) count
of swapped positive-negative label pairs:

AUC =
|{(i, j) : i ∈ pos, j ∈ neg, π(i) > π(j)}|

|pos|· |neg|

for a given ranking π. In this sense, the AUC treats
all pairs and all ranks uniformly. However, in some
ranking tasks this is not a desired trait.

In this section we present several variants to the AUC
which address such tasks. These variants arise as nat-
ural generalizations to our representation of the AUC
over ranking matrices. In section 6 we demonstrate
their application. Moreover, by reducing the number
of variables and/or constraints, these extensions sig-
nificantly improve computational complexity.

Binned AUC: In some settings, instead of a full
ranking, items are placed into ranked bins b1 ≺ · · · ≺
bK . For instance, in web-search query, results are
binned into sequential pages. In this setting, the rela-
tive rank of two results on the same low-ranked page
is of little importance. Hence, the Binned AUC can be
defined as the number of pairs swapped only between
bins. To handle this setting, we replace the notion of
ranks with bins. We duplicate the original structured
prediction model K times instead of n times, and de-
fine it over partial ranking matrices z by constraining
each row k in z to be of cardinality

∑
k′≤k |bk′ |, as

well as enforcing nestedness (see figure 1D). This can
greatly reduce the number of variables, factors and
constraints in the model. For instance, if K � n, then
the number of variables and constraints is O(n) instead
of O(n2), and the resulting LP is much smaller.

AUC@k: In other settings, only the highly ranked
items are of interest. This scenario has been recently
addressed by Partial AUC, which takes into account
the area under the ROC curve for a given false-positive
range (Narasimhan and Agarwal, 2013). However, in
many settings, such as recommendation services, the
number of items of interest is a small fixed constant.
Since a given false positive value can be reached at any
item in the ranking, the above measure is not suitable
for these settings. We define the AUC@k measure by
discarding swapped pairs ranked k+1, . . . , n. Thereby

Figure 2: Synthetic image segmentation task. (A)
original image, (B) noisy input, (C) binned ranking of
factored model (binned AUC=88.7), (D) binned rank-
ing of pairwise model (binned AUC=97.5). Darker
colors correspond to higher rank position.

this measure focuses on ordering true items in the top
k ranks. To handle this setting, we simply truncate
ranks k + 1, . . . , n from our model.

Unnested AUC: Recall that one of the motivations
for constructing predictors which attain high AUC is
that an end user may use it to predict any number of
items k ∈ [n]. The natural approach usually taken is
to rank the items and select the top k. However, out-
puting a ranking is not necessary for producing subsets
of size k. In fact, in the general setting, the output can
be any subset of k elements, where there is no depen-
dency between sets of different sizes. This is suitable
for tasks such as contour detection, where as the num-
ber of contour edges grows, different objects might be
discriminated. The score of such an assignment can
be computed by

∑
kiAkizki + c, just as in the stan-

dard AUC (see Sec. 4). In our framework, allowing
for such outputs simply reduces to omitting the nest-
edness constraints from Eq. (9), resulting in improved
runtime. Hence, this measure can also be thought of
as an unnested generalization to AUC (see figure 1B
for an illustration.

6 Experiments

To test our approach, we apply it to synthetic and
real-world data. We first demonstrate performance on
a synthetic image segmentation task, and then report
results on the real tasks of link prediction and doc-
ument retrieval. In all settings we compare the per-
formance of a pairwise model trained over the AUC
loss using our proposed method to a logistic regres-
sion model and to SVMrank (Joachims, 2005). Due to
runtime constraints, the pairwise models were trained
using binning. Test-time inference was performed over
binned (link prediction) or unbinned (document re-
trieval) models. Note that since w is shared across
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bins, training and inference can be done on different
binnings. In all experiments the regularization con-
stant λ was chosen via cross-validation.

Image segmentation: In the binary image segmen-
tation task, noisy images are given as input, and the
goal is to predict for each pixel whether it belongs to
the foreground or background. We used noisy 20× 17
images of the letter A for training. Noise was added by
flipping each pixel with a fixed probability p = 0.15.
We then evaluated performance by predicting a binned
ranking over the pixels of three-letter 20 × 45 images
and computing the AUC. We compared a factored
model to a pairwise model with interactions between
adjacent pixels. In both models 10 equally sized bins
were used. As can be seen in Fig. 2, the pairwise
factors encourage adjacent pixels to be closely ranked,
leading to a higher binned AUC score.

Link prediction: In this task, a graph representing
the network at time t is given as input, and the goal
is to predict the new links created up to some time
t′ > t (Liben-Nowell and Kleinberg, 2007). Due to the
high sparsity of labels, AUC has become a standard
measure of performance for this task. Nonetheless,
most link prediction methods do not optimize directly
for AUC (an exception is Menon and Elkan (2011)).

We test our method on a collaboration network of
NIPS authors in the years 1987-2013. This data was
parsed from the DBLP2 repository and extends the
currently available data which spans the years 1987-
20033. We take the years 1998-2002, 2003-2007, and
2008-2012 for train, validation, and test sets, respec-
tively (we discard the first years since they are highly
disconnected). This results in a roughly 25-25-50 split.
Our supervised setting follows the line of Lichtenwalter
et al. (2010); Backstrom and Leskovec (2011), where a
sample is created for each focal node i, and a predic-
tion consists of a ranking over nodes j at distance two
from i. We discard trivial cases by considering only
nodes with at least two neighbors at distance two at
time t and form at least one new link at t′. A predic-
tion is evaluated by averaging the AUC over all nodes.

As in other supervised methods for link prediction
(Al Hasan et al., 2006; Lichtenwalter et al., 2010;
Backstrom and Leskovec, 2011), we use well known
network-related proximity measures as features on
node pairs (i, j) with corresponding links yij . Specifi-
cally, we use the Adamic-Adar (AA), Katz (KZ), Jac-
card (JC), and common neighbors (CN) measures (de-
tailed in Liben-Nowell and Kleinberg, 2007). These

2http://www.informatik.uni-trier.de/~ley/db/
conf/nips/

3http://ai.stanford.edu/~gal/data.html

Table 1: AUC scores in different settings. TOP: Docu-
ment retrieval on the OHSUMED dataset. BOTTOM:
Link prediction on the NIPS dataset. Numbers in
parentheses indicate the difference in AUC score to
column on left.5

OHSUMED SVMrank Pairwise

Fold 1 63.1 65.2 (+2.1)

Fold 2 64.9 67.5 (+2.6)

Fold 3 65.1 68.3 (+3.2)

Fold 4 60.9 61.0 (+0.1)

Fold 5 61.6 62.0 (+0.4)

Average 63.1 64.8 (+1.7)

Link prediction - NIPS

Log.Reg. SVMrank Pairwise
58.7 59.0 62.1 (+3.1)

AA CN JC KZ
58.4 54.5 54.5 55.2

measures are also used as unsupervised baselines to
which we compare our results. In the pairwise model,
a feature vector φijk(yij , yjk) for links (i, j), (i, k) was
added if the link (j, k) existed in the network at time
t. This vector consisted of an indicator feature and
the above proximity measures for the node pair (j, k).
In all models the weight vector w was shared across
links.

Training and test-time inference were performed over
bins of increasing size. Table 1 (bottom) displays the
standard AUC of the pairwise model (‘Pairwise’ ) as
well as that of SVMrank and the above unsupervised
methods. As can be seen, the pairwise model shows
superior performance.

Document Retrieval: In the task of document re-
trieval, samples consist of queries and related docu-
ments. Given a query, the goal is to rank the re-
lated documents in the order of relevance. The ground
truth consists of a classification of the documents into
relevant and irrelevant, making the AUC a natural
performance measure. We test our method on the
OHSUMED dataset.6 The dataset consists of 106
medical related queries. Each query is associated with
between 35 and 320 (mean 153) medical publications
from the MEDLINE database. Each document is as-

5Logistic Regression on the OHSUMED data performed
worse than chance, and therefore is not displayed. We
also considered binned factored models, but they attained
inferior performance, most likely due to binning.

6http://research.microsoft.com/~letor/
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sociated with 45 standard features, most of which ex-
press similarity between query and document. Since
documents are labeled as either definitely, possibly, or
not relevant, we simply treated both ‘possibly’ and
‘definitely’ as relevant. The online package also in-
cludes a similarity relation matrix between documents
of the same query. For the pairwise model we selected
the 100 most similar pairs, and computed 20 similar-
ity features (similar to the above document-query fea-
tures) over document pairs.

Training was performed with bins of size 20, and infer-
ence with unbinned models. As can be seen in Table
1 (top), the pairwise model outperformed SVMrank.

AUC Generalizations: Finally, we conduct exper-
iments to evaluate the performance of the generalized
AUC measures in Sec. 5. For lack of space we give
the results in the supplementary material. Our results
show that the generalized measures are higher than
the standard AUC, which is expected as some of the
errors are not accounted for. Surprisingly, sometimes
training with generalized AUC measure achieves bet-
ter standard AUC at test time.

7 Related Work

While structured in itself, the AUC has been pre-
viously used as an error measure for unstructured
models. In this case both prediction and learning
can be performed efficiently within the SVM frame-
work (Joachims, 2005), as well as with decision trees
(Ferri et al., 2002) and neural networks (Herschtal and
Raskutti, 2004) among others.

Our goal in this paper is to extend the use of the AUC
loss to structured models, where variables have addi-
tional direct dependencies. We show in Sec. 6 that
these richer models often achieve better performance
than the unstructured ones.

In Chapelle et al. (2007) the authors show that un-
structured models can be trained to optimize various
other error measures for ranking. They suggest to de-
fine a prediction problem over the space of permuta-
tions, and show that this reduces to a linear assign-
ment problem (or a matching problem), which can be
solved in polynomial time. In contrast to our work,
they do not handle structured models, and AUC is
not one of the measures considered. That work was
later extended by Mensink et al. (2011) to handle
structured models that output rankings. They show
that the prediction problem is hard in the structured
case and focus on specific type of models which can
be solved efficiently. Our work differs from theirs in
several aspects. First, we specifically target the AUC
loss. Second, instead of defining the model in the space

of permutations, we propose an alternative represen-
tation in which it is more natural to incorporate the
features used for prediction. Finally, we do not restrict
ourselves to tractable instances, but instead propose
an approximation scheme for the general case, where
prediction is hard.

Weston and Blitzer (2012) use a similar approach to
Mensink et al. (2011), and also discusses a variant of
the AUC loss. However, their AUC loss is essentially
the same as Joachims’ unstructured variant and does
not apply to complete rankings as we have here.7 Fur-
thermore, their feature construction is restricted in the
same way as Mensink et al. (2011).

Another recent work (Dembczynski et al., 2012) fo-
cuses on the rank loss (a generalization of the AUC)
in multilabel ranking. The authors show that certain
univariate surrogate losses defined over unstructured
models are consistent with regard to the AUC, and
propose that each label can be learned independently.
However, since in general we do not have access to
the real distribution, the expressiveness of structured
models often leads to superior performance (see Sec.
6). Moreover, this framework assumes that the labels
are bound to some fixed label set, which may be true
for multilabel ranking, but not for other applications
such as link prediction and document retrieval.

8 Conclusion

We have presented a natural generalization of struc-
tured prediction models to ranking in general and
AUC optimization in particular. Previous approaches
directly represented the ranking via a permutation ma-
trix, and were thus limited in the features they could
use. Here we represent ranking as a nested sequence of
standard labelings of the output variables.This allows
us to use natural features for the domain, and does
not require hand coded parameters as in permutation
based representations.

Our empirical results show that it is indeed worthwhile
to optimize AUC in these models, and significant per-
formance gains are achieved compared to unstructured
models in a variety of domains.
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