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Abstract

This work addresses two classification prob-
lems that fall under the heading of do-
main adaptation, wherein the distributions
of training and testing examples differ. The
first problem studied is that of class propor-
tion estimation, which is the problem of esti-
mating the class proportions in an unlabeled
testing data set given labeled examples of
each class. Compared to previous work on
this problem, our approach has the novel fea-
ture that it does not require labeled training
data from one of the classes. This property
allows us to address the second domain adap-
tation problem, namely, multiclass anomaly
rejection. Here, the goal is to design a classi-
fier that has the option of assigning a “reject”
label, indicating that the instance did not
arise from a class present in the training data.
We establish consistent learning strategies for
both of these domain adaptation problems,
which to our knowledge are the first of their
kind. We also implement the class propor-
tion estimation technique and demonstrate
its performance on several benchmark data
sets.

1 INTRODUCTION

This work studies two related classification problems
that fall under the heading of domain adaptation,
which is used to describe any learning problem where
the distributions of training and testing instances dif-
fer. In particular, we study the problems of class pro-
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portion estimation (CPE) and multiclass anomaly re-
jection (MCAR). Both problems are studied in a mul-
ticlass setting, where the learner has access to a labeled
training data set as well as an unlabeled testing data
set. CPE is the problem of estimating the class pro-
portions governing the unlabeled testing data, which
may differ from those in the training data set. Un-
like previous approaches to CPE, our approach has
the novel feature that it does not require training data
from one of the classes. This property allows us to
address MCAR, where the goal is to design a classi-
fier that may assign a “reject” label, indicating that
the instance did not arise from a class present in the
training data. We establish consistent learning strate-
gies for both of these domain adaptation problems,
which to our knowledge are the first of their kind. We
also implement the CPE technique and demonstrate
its performance on several benchmark data sets.

To begin, let us state the CPE problem. There are M
classes, and a training sample for each class:

Xi
1, . . . , X

i
ni

iid∼ Pi, (1)

where Pi is the ith class-conditional distribution, and
Xi
j denotes the jth training sample from class i. In

addition, there is an unlabeled testing sample

X0
1 , . . . , X

0
n0
∼ P0 :=

M∑
i=1

πiPi, (2)

drawn from a mixture of the different classes. Here
πi ≥ 0 and

∑
i πi = 1. The critical feature of this

problem is that the proportions πi are unknown and
different from the proportions represented in the train-
ing data, so that ni/

∑
` n` is not a reasonable esti-

mate. The goal is to estimate the πi accurately, while
making minimal assumptions on the Pi.

This form of domain adaptation arises frequently in
applications where training and testing data are gath-
ered according to different sampling plans. For ex-
ample, training data gathered prospectively may have
user-determined sample sizes, while testing data ana-
lyzed retrospectively have sample sizes that are beyond
the user’s control.
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One motivation for class proportion estimation is de-
sign of a classifier for the test distribution. Sup-
pose that there is a joint distribution on labels and
instances with P0 the marginal distribution on in-
stances, Pi the class-conditional distributions, and πi
the prior distribution on labels. The risk of a classifier
f : X → {1, . . . ,M}, X ⊆ Rd denoting the feature
space, may be expressed R(f) :=

∑
i πiRi(f) where

Ri(f) := Pi({x : f(x) 6= i}). The class-conditional er-
rors Ri can be estimated since the training data pro-
vide examples from each class. However, the class pro-
portions πi need to be estimated in order to estimate
the risk and thereby achieve good generalization.1

Our work is further motivated by MCAR, another do-
main adaptation problem. In particular, we consider
the problem of having no training data from the last
class (nM = 0), which we consider to be the anomaly
class. Many real problems fall into this category. For
example, a classifier for object recognition will un-
doubtedly encounter object types in the real world not
observed during training. The first M − 1 classes may
be viewed as the known training classes, and predict-
ing the Mth class amounts to a decision to “reject” an
instance as not belonging to any of the known classes.
This problem is more challenging than regular multi-
class classification because estimation of RM (f) is no
longer straightforward.

To summarize, this work makes the following contri-
butions: It establishes the first methodology for CPE
that is consistent in the case where a class is not ob-
served. The first known consistent discrimination rule
for MCAR is also introduced. Finally, we propose
a practical implementation of our CPE methodology,
and support this approach with experimental compar-
isons to existing methods.

On the technical side, our approach hinges on a reduc-
tion of CPE to another problem called mixture propor-
tion estimation, reviewed below. To convert methods
for CPE to a discrimination rule for MCAR, we also
introduce a novel error estimation strategy for use with
empirical risk minimization, and a corresponding uni-
form error analysis using multiclass VC theory.

2 RELATED WORK

Class proportion estimation goes back at least to Hall
(1981), who introduced an approach for univariate

1Note that there are two possible settings for evaluation.
In a transductive setting, the goal is to assign labels to
the given test examples, while in a semi-supervised setting,
the goal is to use these unlabeled examples to design a
general-purpose classifier for classifying future draws from
P0. We focus on the semi-supervised setting, which can be
specialized to the transductive setting.

data based on matching a weighted combination of
class-conditional empirical distribution functions to
the empirical distribution function of the unlabeled
data. This idea was extended by Titterington (1983),
who replaced empirical distribution functions by ker-
nel density estimates, which allowed this “distribu-
tion matching” method to extend easily to multivari-
ate data. The matching criterion is the L2 distance
between estimates of the marginal density P0, and
can be easily formulated as an unconstrained or con-
strained (if the class proportions are required to be-
long to a simplex) quadratic program. These authors
established asymptotic normality of the estimated pro-
portions under conditions that are typical of L2 consis-
tency for kernel density estimates. See Hall and Zhou
(2003) for additional references on this strand of work.

Two other works in the machine learning literature
have also addressed CPE. Latinne et al. (2001) in-
troduced an EM algorithm in a logistic regression
framework that adjusts class proportions to maxi-
mize the test data likelihood given the trained model.
Du Plessis and Sugiyama (2012) developed an al-
gorithm based on distribution matching but with a
Kullback-Leibler criterion. None of the above cited
works consider the case where one of the classes is
unobserved, nor do they establish a consistent dis-
crimination rule. Only Hall and Titterington provide
theoretical analysis for CPE; Hall’s analysis considers
univariate data, while Titterington’s assumes the ex-
istence of densities.

Multiclass anomaly rejection should not be confused
with a problem known as “classification with reject
option” (Chow, 1970). Despite the name, that prob-
lem is not concerned with rejection of anomalous in-
stances. Rather, the classifier is allowed to abstain
from labeling instances that are ambiguous, that is,
near the boundary between two observed classes. The
objective in that problem is to minimize the error rate
conditioned on a label being assigned.

The framework of “zero-shot learning” can correctly
classify previously unobserved classes, provided that
additional semantic information about those classes is
also available (Palatucci et al., 2009). The framework
of Görnitz et al. (2013) develops semi-supervised one-
class classifiers that leverage unlabeled data and are
capable of rejecting anomalies, but no consistency re-
sult is known. In the binary case (M = 2), MCAR
amounts to learning with positive and unlabeled ex-
amples (LPUE). Consistency for LPUE can be estab-
lished with respect to the Neyman-Pearson criterion
(Blanchard et al., 2010), but this analysis has not been
extended to other performance measures or the mul-
ticlass setting. In the next section we recount a key
contribution of Blanchard et al. (2010) that enables
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our own.

3 MIXTURE PROPORTION
ESTIMATION

We will show that class proportion estimation reduces
to mixture proportion estimation, which is now re-
viewed. Let (X ,S) be a measurable space, and let
F , G, and H be distributions on X such that

F = (1− ν)G+ νH (3)

where 0 ≤ ν ≤ 1. Mixture proportion estimation is the
following problem: given iid training samples of sizes
m and n from F and H respectively, and no infor-
mation about G, estimate ν. This problem was first
addressed in a distribution-free framework by Blan-
chard et al. (2010) and later applied to the problem
of classification with label noise (Scott et al., 2013).
In this section, we relate the necessary results from
Blanchard et al. (2010) while following the notation of
Scott et al. (2013).

Without additional assumptions, ν is not an identi-
fiable parameter. Indeed, if F = (1 − ν)G + νH
holds, then any alternate decomposition of the form
F = (1 − ν + δ)G′ + (ν − δ)H , with G′ = (1 − ν +
δ)−1((1 − ν)G + δH) , and δ ∈ [0, ν) , is also valid.
With no knowledge of G , we cannot decide which rep-
resentation is the correct one. Therefore, the idea is
to impose a condition on G such that ν becomes iden-
tifiable. Toward this end, the following definition is
introduced.

Definition 1. Let G , H be probability distributions.
G is said to be irreducible with respect to H if there
exists no decomposition of the form G = γH + (1 −
γ)F ′, where F ′ is some probability distribution and 0 <
γ ≤ 1 .

Some commentary on this definition is offered be-
low. The following was established in Blanchard et al.
(2010).

Proposition 1. Let F , H be probability distributions.
If F 6= H, there is a unique ν∗ ∈ [0, 1) and G such
that the decomposition F = (1 − ν∗)G + ν∗H holds,
and such that G is irreducible with respect to H . If we
additionally define ν∗ = 1 when F = H, then in all
cases,

ν∗ := max{α ∈ [0, 1] :∃ a distribution G′ s.t.

F = (1− α)G′ + αH} .

By this result, the following is well-defined.

Definition 2. For any two probability distributions F ,

H, define

ν∗(F,H) := max{α ∈ [0, 1] :∃ a distribution G′ s.t.

F = (1− α)G′ + αH} .

Thus, G is irreducible with respect to H if and only
if ν∗(G,H) = 0. Further, it is not hard to show
that for any two distributions F and H, ν∗(F,H) =
infA∈S F (A)/H(A) (Scott et al., 2013). Similarly,
when F and H have densities f and h, ν∗(F,H) is the
essential infimum of f(x)/h(x). These identities make
it possible to check irreducibility in different scenarios.
For example, ν∗(G,H) = 0 whenever the support of G
does not contain the support of H. Even if the sup-
ports are equal, irreducibility can still hold as in the
case where g and h are two Gaussian densities with
distinct means, where the variance of h is no smaller
than the variance of g (Scott et al., 2013).

The following corollary summarizes the above and
states that irreducibility of G w.r.t. H is a sufficient
condition for ν in (3) to be identifiable.

Corollary 1. If F = (1 − γ)G + γH, and G is irre-
ducible with respect to H, then γ = ν∗(F,H).

Blanchard et al. (2010) studied an estimator ν̂ =

ν̂(F̂ , Ĥ) of ν∗(F,H), where F̂ and Ĥ denote the empir-
ical distributions based on iid random samples from F
andH. They show in Thm. 8 that ν̂ is strongly univer-
sally consistent, i.e., for any F and H, ν̂ → ν∗(F,H)
in probability as the sample sized tend to∞.2 We will
show that this estimator leads to consistent estima-
tors of class probabilities. The estimator is discussed
further in Sec. 6.1.

4 CLASS PROPORTION
ESTIMATION

In this section we apply mixture proportion estima-
tion to CPE. Let P1, . . . , PM be probability measures
(distributions) on (X ,S).

4.1 Identifiability Conditions

As with mixture proportion estimation, class propor-
tion estimation requires an identifiability condition.

(A) For all i = 1, . . . ,M , every element of conv{P` :
` 6= i} is irreducible with respect to Pi.

2More precisely, Blanchard et al. (2010) use the nota-
tion π = 1 − ν, and present a consistent estimator for π.
Furthermore, they actually establish almost sure conver-
gence. As noted by Scott et al. (2013), the statement of
Thm. 8 of Blanchard et al. (2010) needs to be amended
slightly (by constraining how the two sample sizes grow
w.r.t. each other) for almost sure convergence to hold.
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Here conv{Q1, . . . , QK} denotes the set of convex com-
binations of Q1, . . . , QK , that is, the set of mixture dis-
tributions based on Q1, . . . , QK . To illuminate (A),
we introduce a second condition, where supp(Q) de-
notes the support of distribution Q.

(B) For all i = 1, . . . ,M , supp(Pi) * ∪ 6̀=i supp(P`).

(B) clearly implies (A) from the definition of irre-
ducible.

We argue that (B) is a reasonable assumption in many
real-world classification problems, and therefore so is
(A). In words, (B) means that for each class, there
exist at least some instances, with positive probability
of occurring (however small), that are always correctly
classified by an optimal classifier. In other words, such
instances could not possibly be mistaken for instances
of another class. For example, consider handwritten
digit recognition. Although various classes may have
overlapping supports, each class has instances (corre-
sponding to very clear handwriting, say) that could
not possibly be mistaken for any other class.

4.2 Consistency in the Fully Observed Case

For now assume training samples from all M classes
are observed. Under (A), the proportions πi are iden-
tifiable, and we propose to estimate them via

π̂i = ν̂(P̂0, P̂i) (4)

for i = 1, . . . ,M , where ν̂ is the estimator of Blanchard
et al. (2010) discussed in the previous section.

Proposition 2. Under (A), for each i, π̂i converges
to πi in probability as min{n0, ni} → ∞.

Proof. WLOG assume i = 1. Now P0 = π1P1 +
(1 − π1)Q where Q ∈ conv{P` : ` 6= 1}. Under
(A), ν∗(Q,P1) = 0, and therefore by Corollary 1,
π1 = ν∗(P0, P1). The result now follows by conver-

gence in probability of ν̂(P̂0, P̂1) to ν∗(P0, P1).

When M = 2, (A) says ν∗(P1, P2) = 0 and
ν∗(P2, P1) = 0. This is the so-called mutual irre-
ducibility assumption adopted by Scott et al. (2013)
in the context of label noise. It turns out that when
M = 2 we can consistently estimate the proportions
under a weaker condition, namely, P1 6= P2. To
achieve this, we employ the following estimators:

π̂′1 :=
1− ν̂(P̂0, P̂2)

1− ν̂(P̂1, P̂2)
, π̂′2 :=

1− ν̂(P̂0, P̂1)

1− ν̂(P̂2, P̂1)
.

The intuition is that in the binary case, even if (A) is
violated, say ν∗(P1, P2) > 0, we can use mixture pro-
portion estimation to estimate ν∗(P1, P2), and rescale

the estimates accordingly. Note that each of these
modified estimators uses all three samples, and there-
fore this result does not generalize to the case where
one class is unobserved.

Proposition 3. If M = 2 and P1 6= P2, then
π̂′1 → π1 in probability and π̂′2 → π2 in probability,
as min{n0, n1, n2} → ∞.

Proof. Consider estimation of π1. Denote ν12 =
ν∗(P1, P2). By Proposition 1, there exists a unique
distribution E1 such that P1 = (1 − ν12)E1 + ν12P2

and ν(E1, P2) = 0. Then

P0 = π1[(1− ν12)E1 + ν12P2] + (1− π1)P2

= π1(1− ν12)E1 + [π1ν12 + (1− π1)]P2.

Since ν(E1, P2) = 0, by Corollary 1 we must have
ν∗(P0, P2) = π1ν12 + (1 − π1). Solving for π1 yields

π1 = 1−ν∗(P0,P2)
1−ν∗(P1,P2) . Since P1 6= P2, the denominator is

nonzero. The result now follows by consistency of ν̂
and continuity of division.

4.3 Consistent CPE with an Unobserved
Class

The primary advantage of our approach to CPE is that
it can consistently estimate all proportions, even πM ,
when nM = 0. The estimators π̂i of Eqn. (4) do

not depend on P̂M when i < M , so they can remain
the same in this setting. For i = M , we can just set
π̂M := 1 −

∑M−1
i=1 π̂i. The following is an immediate

consequence of the necessary condition
∑M
i=1 π = 1

and the consistency of π̂1, . . . , π̂M−1.

Corollary 2. Consider class proportion estimation
where nM = 0. Let π̂i be as in Eqn. (4) for i =

1, . . . ,M−1, and set π̂M = 1−
∑M−1
i=1 π̂i. Under (A),

for each i = 1, . . . ,M , π̂i converges to πi in probability
as min{n0, n1, . . . , nM−1} → ∞.

5 ANOMALY REJECTION

We now turn our attention to the design of a con-
sistent discrimination rule for MCAR. In this set-
ting, available data consist of iid random samples from
P1, . . . , PM−1 as in (1), and an iid random sample from
P0 as in (2). Data from PM are not observed. Our goal

is a discrimination rule f̂ , constructed from the avail-
able data, whose risk converges to the Bayes risk as
the various sample sizes tend to ∞. Note that previ-
ous work has not addressed this problem even in the
case where all classes are observed (which still differs
from standard classification because the test distribu-
tion has different class proportions).
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To set notation, let Q denote the joint distribution of
(X,Y ) ∈ X ×{1, . . . ,M} such that the X-marginal of
Q is P0, the Y -marginal is given by the πi, and the
class-conditional distributions are Pi. For any classi-
fier f : X → {1, . . . ,M}, denote the class-conditional
error probabilities Ri(f) := Pi({x : f(x) 6= i}), and
the test-distribution risk R(f) := Q({(x, y) : f(x) 6=
y}) =

∑M
i=1 πiRi(f). Let R∗ denote the Bayes risk for

distribution Q. Our goal is to construct a discrimina-
tion rule f̂ such that R(f̂)→ R∗ in probability as the
sample sizes n0, n1, . . . , nM−1 tend to ∞.

To construct such a rule, we adapt a classic strategy
from statistical learning theory (Devroye et al., 1996):
empirical risk minimization (ERM) over a growing
family of classifiers, also known as sieve estimation.
This strategy relies upon VC theory, and since we are
in a multiclass setting, we take the following gener-
alization of VC dimension to multiclass. Define the
(multiclass) VC dimension of a set of classifiers F
to be the maximum conventional (two-class) VC di-
mension (Devroye et al., 1996) of the family of sets
{x : f(x) 6= `}f∈F , over ` = 1, . . . ,M .

As its name suggests, ERM also requires an estimate
of the risk. We propose to estimate R(f) by writ-

ing R(f) =
∑M−1
i=1 πiRi(f) +RM (f), where RM (f) :=

Q({(x, y) : f(x) 6= y, y = M}) = πMRM (f), and es-
timating each term in this expression. For i < M ,
πi is estimated by π̂i in Eqn. (4), and Ri(f) is esti-

mated by R̂i(f) := 1
ni

∑ni
j=1 1{f(Xij) 6=i}. An estimate

of RM (f) is motivated as follows. Let RiM (f) :=
Pi({x : f(x) 6= M}) and observe that R0M (f) =∑M−1
i=1 πiRiM (f) + πMRM (f). Then

RM (f) = R0M (f)−
∑M−1
i=1 πiRiM (f). (5)

Plugging in R̂iM (f) := 1
ni

∑ni
j=1 1{f(Xij)6=M} and our

estimates for the πi leads to the following estimator:

R̂M (f) = R̂0M (f)−
∑M−1
i=1 π̂iR̂iM (f). (6)

Now set R̂(f) :=
∑M−1
i=1 π̂iR̂i(f) + R̂M (f).

We now define the ERM-based discrimination rule.
Let (Fk)k≥1 be a sequence of VC classes with corre-
sponding (multiclass) VC dimensions Vk <∞. Let τk
be any sequence of positive numbers tending to zero.
Let f̂k be an approximate empirical risk minimizer,
i.e., any classifier

f̂k ∈
{
f ∈ Fk : R̂(f) ≤ inf

f ′∈Fk
R̂(f ′) + τk

}
.

The introduction of τk lets us avoid assuming the
existence of an empirical risk minimizer. Denote
n := (n0, n1, . . . , nM−1). We write n → ∞ to indi-
cate min{n0, n1, . . . , nM−1} → ∞. Let k(n) denote a

sequence of positive integers indexed by n. Finally,
define the discrimination rule f̂ := f̂k(n). Note that
the sequences (Fk)k≥1 and k(n) are user-specified and
must grow in a certain way, indicated by the theory
below, for f̂ to be consistent.

Analysis of this discrimination rule hinges on uniform
control of the deviation |R(f) − R̂(f)| over Fk(n) as
n→∞. The following result establishes this property.
In the proof, the error deviance is decomposed in such
a way that uniform control follows from the multiclass
VC extension and consistency of the class proportion
estimators. The proof of this and the next result are
found in the supplemental material.

Proposition 4. Assume (A) holds and suppose
k(n)→∞ as n→∞ such that

Vk(n) log ni

ni
→ 0, (7)

for 0 ≤ i ≤M − 1. Then

sup
f∈Fk(n)

|R(f)− R̂(f)| → 0

in probability as n→∞.

So that arbitrary classifiers can be accurately approxi-
mated, we choose (Fk)k≥1 satisfying the following uni-
versal approximation property: For any joint distribu-
tion Q on X × {1, . . . ,M},

lim
k→∞

inf
f∈Fk

R(f) = R∗

where R∗ is the Bayes error corresponding to Q. De-
vroye et al. (1996) give examples of families of VC
classes that satisfy the above approximation property.
We can now state the main result of this section.

Theorem 1. Assume (A) holds and that (Fk)k≥1 is
chosen to satisfy the universal approximation property
above. Further suppose k(n) is chosen such that as
n→∞, k(n)→∞ and (7) holds for 0 ≤ i ≤M − 1.

Then R(f̂)→ R∗ in probability.

Although we have focused on the probability of error
as a performance measure, it would not be difficult
to adapt this result to any other performance measure
that is a continuous function of the class proportions πi
and class-conditional errors Ri, such as a cost-sensitive
Bayes risk or the minmax error.

6 IMPLEMENTATION AND
EXPERIMENTS

In this section we introduce a practical algorithm for
mixture proportion estimation (MPE) and use it to
implement the proposed CPE methodology. We then
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compare our method to existing methods for CPE on
a variety of binary and multiclass data sets. We con-
sider two experimental settings. In the first setting, we
adopt the assumption that the unlabeled test data do
not contain an anomalous class. This is the assump-
tion adopted by competing methods and, not surpris-
ingly, we find that they outperform our own approach,
which allows for the existence of an anomalous class
in the test data. In the second group of experiments,
the test data contain an anomalous class, and our ap-
proach vastly outperforms the competitors in this sce-
nario.

For a fairer head-to-head comparison with existing
methods, we introduce two additional class proportion
estimators based on MPE that make the same assump-
tions as competing methods (namely, that there is not
an anomalous class in the test data). We compare
these to existing methods under the first experimen-
tal setting and find they are competitive, which offers
experimental validation of the MPE-based framework.

A thorough experimental investigation of MCAR is be-
yond the scope of this work. The discrimination rule
we introduce for MCAR could be implemented for var-
ious VC classes such as histograms or decision trees,
but other methods would also be worthy of explo-
ration, such as those based on convex surrogate losses.

6.1 Practical Algorithm for MPE

As discussed in Scott et al. (2013), Theorem 6 of Blan-
chard et al. (2010) tells us ν∗ = ν∗(F,H) is related to
the optimal Receiver Operating Characteristic (ROC)
that arises when the distribution H is viewed as the
null hypothesis and F as the alternative. This optimal
ROC is the function3

p(α) := sup
C⊂X

F (C)

s.t.H(C) ≤ α.

This function gives the optimal detection probability
of a binary classifier constrained to have false alarm
rate no more than α, where C here represents a subset
of X that predicts the class of F .

As shown in Blanchard et al. (2010); Scott et al.

(2013), ν∗ = dp
dα

∣∣∣
α=1−

, the slope of the optimal ROC

evaluated at the right endpoint where the false positive
rate becomes 1. The estimator ν̂ studied in Blanchard
et al. (2010) implements this principle, but relies on
distribution free confidence intervals (to achieve uni-
versal consistency), and thus tends to be too conser-
vative in practice.

3Technically, if the function is not concave, the optimal
ROC is the smallest concave function that upper bounds
p(α).

Therefore we introduce a more practical implementa-
tion of the above principle for MPE, and apply it to
CPE. Given random samples F̂ and Ĥ from F and H,
we treat these as training classes for a binary classifi-
cation problem, and train a kernel logistic regression
(KLR) classifier using a Gaussian kernel. We then vary
the threshold on the KLR posterior class probability
to generate an empirical version of the optimal ROC,
and obtain ν̂ by estimating the slope of this empiri-
cal ROC at its right endpoint. Note that the choice
to use KLR is simply for convenience, and any binary
classifier capable of producing an ROC, such as cost-
sensitive SVMs, could be used instead.

Since the empirical ROC may be noisy at its right
endpoint, we fit a curve to the empirical ROC and
take the right endpoint slope of the fitted curve to be
our proportion estimate. Lloyd (2000) provides two
regression models for ROCs, and we augment them
both to include an extra linear term in an attempt
to better model the linear behavior seen towards the
right end of the ROC.

In particular, for a given ROC, let α denote the false
positive rate, p(α) the corresponding detection rate,
and f(α) the model for p(α). Our regression models
are:

fγ,∆(α) = (1− γ)Q(Q−1(α) + ∆) + γα. (8)

fγ,∆,µ(α) = (1− γ)(1 + ∆(α−µ − 1))−
1
µ + γα. (9)

where Q is the standard normal CDF, ∆ controls ROC
quality, µ is an asymmetry parameter, and γ is the
slope of the added linear component. See Lloyd (2000)
for more insight into the form of these models.

Since the domain and range of the ROC are proba-
bilities, we fit the models by minimizing the binomial
deviance between the empirical ROC given by α̂j and
p̂j , where j = 1, . . . , n indexes sample points along the
empirical ROC, and the model f(α̂) as given by Eqns.
(8) or (9):

Bf (α̂, p̂) = −2

n∑
j=1

p̂j log(f(α̂j))+(1−p̂j) log(1−f(α̂j))

The right-endpoint slope of the model as a function
of the fitted parameters is γ in the case of (8) and
(1− γ)∆ + γ in the case of (9).

6.2 New MPE-based Algorithms for CPE

We apply the above algorithm to CPE following the
framework of Sec. 4, so that π̂i := ν̂(P̂0, P̂i), where

recall P̂0 and P̂i represent the data drawn from the
unlabeled test distribution and training class i respec-
tively. In the first set of experiments, there are M
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observed training classes, and our method allows for
the existence of an (M+1)st class, estimating π̂M+1 =

1 −
∑M
i=1 π̂i. In the second set of experiments, there

are M − 1 training classes, and the anomalous class
proportion πM is estimated as π̂M = 1 −

∑M−1
i=1 π̂i.

We found the model from Eqn. (9) performed best.
In the results we denote this CPE method as MPE-
Incomplete since it assumes incomplete knowledge of
the classes.

In the fully observed case (the first experimental set-
ting), we showed in Sec. 4.2 that our approach consis-
tently estimates the true class proportions. However,
due to estimation error the estimates π̂1, . . . , π̂M do
not sum to one, as they should in this setting. There-
fore, for a fairer comparison with existing methods,
we also introduce two extensions of MPE-based CPE
that, like previous methods, do not support an anoma-
lous class in the test data, but do perform better when
all classes are observed.

The first extension is to simply project the vector of es-
timated proportions onto the probability simplex ∆M .
In the results, we denote this projected estimate as
MPE-Projected.

The second extension forms M empirical ROCs based
on the distributions (P0, Pi), i = 1, . . . ,M , and fits
all ROC curves simultaneously while constraining the
estimated class proportions to sum to one. We use
the model from Eqn. (8) since the slope at the right
endpoint is simply γ. Letting f be Eqn. (8), and Bf
the binomial deviance given above, we solve

minimize
γi,∆i

M∑
i=1

Bf (α̂i, p̂i), subject to

M∑
i=1

γi = 1

where (α̂i, p̂i) is the empirical ROC based on P̂0 and

P̂i. This extension is denoted MPE-Joint.

6.3 Evaluation

Recall that we consider two experimental settings. In
the first, all training classes are observed, while in the
second, the Mth class is not observed.

We compare against several approaches noted in
the related work section. We denote the methods
by Latinne et al. (2001), Titterington (1983), and
Du Plessis and Sugiyama (2012) as EM, L2 Distance,
and KL-Divergence4, respectively. Since the EM al-
gorithm requires posterior class probabilities, we use
kernel logistic regression in both the EM algorithm

4Due to computational constraints, we limited the in-
put to the KL-Divergence method to 1000 training and
1000 testing examples, and were not able to use it in the
multiclass setting.

and our method. Finally, we compare against a sim-
ple baseline estimate defined as the proportions of the
labels predicted by a KLR classifier on the test data.

Our experiments were conducted on 13 well-known
binary data sets and 5 multiclass data sets. Each
data set was permuted 10 times and performance was
computed by averaging over permutations. To mea-
sure performance we use the `1-norm between the es-
timated class proportion vector and the vector of true
class proportions. For each data set and permutation,
we manually set the class proportion of the Mth class
to range over the following set of values: {1%, 10%,
20%, . . ., 90%, 99%}. In the binary case, the posi-
tive class proportion was taken to be the Mth class
(M = 2). In the multiclass case, the largest class in
the original data set was taken to be the Mth class.
The size of both the training set and testing set were
kept constant over all proportions. As a result, as the
M -th class grows the remaining classes shrink propor-
tionately.

In the first experimental setting, the Mth class is ob-
served. Under the assumption that all classes are ob-
served, and to fairly compare to the other methods, in
this scenario we discard the estimate of the (M + 1)st
class proportion for the MPE-Incomplete method. Ta-
ble 1 reports the `1-norm performance measure means
and standard deviations, where the average is taken
over permutation and varied class proportion. Fig. 1
shows the performance of each method, averaged over
the binary data sets, as a function of the artificially
modified class proportion.

The results show that the MPE-Projected and MPE-
Joint extensions are comparable to the best perform-
ing algorithms in the binary case, and achieve the best
performance on a few data sets. In some multiclass
data sets the baseline error is low indicating the classes
are highly separable. The EM algorithm often per-
formed well but had high variance. The L2 Distance
method performed consistently well and best overall.
The MPE-Incomplete method does not assume the test
distribution contains only training classes, yet, it still
performs reasonably well. Using a Wilcoxon signed
rank test, we found the mean performances (across
data set and varied proportion) of the algorithms were
significantly different at the 5% level, except the MPE-
Projected, MPE-Joint, and EM methods in the binary
case were mutually insignificant from each other.

In the second experimental setting, the Mth class is
not available to the various algorithms. Since com-
peting methods do not natively support this scenario,
we allow them to estimate the class proportions of
classes they have observed and set their estimate of
the anomalous class proportion to zero. Predictably,
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Table 1: Comparison of mean performances with standard deviations, taken over all data permutations and
resampled proportions.

Data set (M) MPE-Incomplete MPE-Projected MPE-Joint EM-KLR L2 Dist. KL-Diverg. baseline
All Binary .188 ± .20 .131 ± .17 .140 ± .20 .145 ± .21 .104 ± .12 .155 ± .17 .270 ± .39

All Multiclass .143 ± .08 .137 ± .09 .114 ± .07 .098 ± .14 .109 ± .08 n/a .097 ± .10
Australian (2) .169 ± .12 .132 ± .13 .094 ± .07 .096 ± .08 .077 ± .06 .164 ± .14 .179 ± .12

Banana (2) .045 ± .04 .030 ± .04 .019 ± .02 .016 ± .02 .128 ± .08 .296 ± .22 .117 ± .07
Breast-cancer (2) .535 ± .20 .312 ± .24 .488 ± .32 .442 ± .35 .234 ± .17 .235 ± .19 .875 ± .58

Diabetes (2) .221 ± .10 .152 ± .11 .201 ± .17 .133 ± .12 .112 ± .09 .182 ± .18 .393 ± .29
German (2) .307 ± .15 .188 ± .17 .219 ± .18 .211 ± .17 .146 ± .10 .180 ± .13 .645 ± .47
Image (2) .086 ± .06 .066 ± .06 .044 ± .04 .020 ± .02 .083 ± .07 .134 ± .11 .053 ± .04

Ionosphere (2) .217 ± .17 .176 ± .17 .129 ± .11 .052 ± .04 .125 ± .10 .140 ± .12 .098 ± .08
Ringnorm (2) .023 ± .03 .018 ± .03 .010 ± .01 .165 ± .20 .014 ± .01 .022 ± .01 .018 ± .01
Saheart (2) .406 ± .20 .283 ± .22 .364 ± .27 .222 ± .19 .184 ± .15 .225 ± .18 .552 ± .39
Splice (2) .088 ± .07 .073 ± .07 .049 ± .05 .050 ± .03 .050 ± .04 .080 ± .06 .105 ± .06

Thyroid (2) .265 ± .19 .204 ± .20 .153 ± .13 .183 ± .28 .163 ± .17 .300 ± .25 .339 ± .54
Twonorm (2) .022 ± .02 .018 ± .01 .010 ± .01 .269 ± .21 .010 ± .01 .023 ± .01 .025 ± .01
Waveform (2) .063 ± .04 .045 ± .03 .043 ± .03 .028 ± .02 .019 ± .02 .036 ± .03 .113 ± .07

SensIT (3) .189 ± .08 .140 ± .09 .169 ± .08 .340 ± .16 .104 ± .06 n/a .210 ± .12
DNA (3) .080 ± .04 .074 ± .04 .048 ± .03 .025 ± .02 .062 ± .03 n/a .055 ± .02

Opportunity (4) .154 ± .07 .158 ± .08 .116 ± .05 .067 ± .04 .156 ± .14 n/a .136 ± .09
SatImage (6) .109 ± .06 .115 ± .08 .085 ± .04 .031 ± .01 .083 ± .04 n/a .059 ± .02
Segment (7) .183 ± .08 .196 ± .11 .152 ± .07 .027 ± .01 .139 ± .05 n/a .025 ± .02

Figure 1: Mean performance over all permutations
and binary data sets as manipulated class proportion
changes.

as shown in Fig. 2, the performances of compet-
ing methods (averaged over data sets) rise linearly
as the anomalous class proportion grows. The MPE-
Incomplete method, in contrast, adapts to the anoma-
lous class.

In the supplemental material, additional details of the
experiments are reported. We also describe a method
that successfully estimates confidence intervals on the
πi, with experimental results.

7 CONCLUSION

This work has demonstrated, both theoretically and
experimentally, that mixture proportion estimation
can be successfully applied to the problem of class pro-

Figure 2: Mean performance over all permutations
and multiclass data sets as anomaly class proportion
changes.

portion estimation. Unlike existing methods for CPE,
our approach is able to accurately estimate the propor-
tion of an anomalous class in the unlabeled test data.
This feature of our method facilitates error estimation
with respect to the test distribution, which forms the
basis of a consistent discrimination rule for multiclass
anomaly rejection. These approaches based on MPE
are, to our knowledge, the first viable solutions to these
two fundamental domain adaptation problems.
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