
Estimating Dependency Structures for non-Gaussian Components
with Linear and Energy Correlations

Hiroaki Sasaki1

hsasaki@cc.uec.ac.jp

Michael U. Gutmann2

michael.gutmann@helsinki.fi

Hayaru Shouno1

shouno@uec.ac.jp

Aapo Hyvärinen3,4

aapo.hyvarinen@helsinki.fi

1Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
2Department of Mathematics and Statistics and HIIT, University of Helsinki, Helsinki, Finland

3Department of Computer Science and HIIT, University of Helsinki, Helsinki, Finland
4 ATR Cognitive Mechanisms Laboratories, Kyoto, Japan

Abstract

The statistical dependencies which indepen-
dent component analysis (ICA) cannot re-
move often provide rich information beyond
the ICA components. It would be very useful
to estimate the dependency structure from
data. However, most models have concen-
trated on higher-order correlations such as
energy correlations, neglecting linear correla-
tions. Linear correlations might be a strong
and informative form of a dependency for
some real data sets, but they are usually com-
pletely removed by ICA and related meth-
ods, and not analyzed at all. In this pa-
per, we propose a probabilistic model of
non-Gaussian components which are allowed
to have both linear and energy correlations.
The dependency structure of the components
is explicitly parametrized by a parameter ma-
trix, which defines an undirected graphical
model over the latent components. Further-
more, the estimation of the parameter matrix
is shown to be particularly simple because
using score matching, the objective function
is a quadratic form. Using artificial data,
we demonstrate that the proposed method
is able to estimate non-Gaussian components
and their dependency structures, as it is de-
signed to do. When applied to natural images
and outputs of simulated complex cells in the
primary visual cortex, novel dependencies be-
tween the estimated features are discovered.

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

1 Introduction

Recent studies suggest that the statistical de-
pendencies which independent component analysis
(ICA) [Comon, 1994, Hyvärinen and Oja, 2000] cannot
remove provide rich information. By modeling corre-
lations between squared values (energy correlations) of
neighboring components or inside a group of compo-
nents, topography of the components and phase invari-
ant pooling emerged from natural images [Hyvärinen
and Hoyer, 2000, Hyvärinen et al., 2001, Mairal et al.,
2011]. Thus, modeling statistical dependencies is im-
portant to obtain information beyond the ICA compo-
nents.

The early work cited above used pre-fixed dependency
structures. More recent work is more flexible in the
sense that the structure is estimated from data itself.
A typical approach is to construct a hierarchical model
with ICA-like linear components in the first layer and
some parameters in the second layer. The second-layer
parameters, when estimated from the data, capture
statistical dependencies between the first-layer compo-
nents. Karklin and Lewicki [2005] proposed a model
where the first and second layers consist of linear and
density components, respectively. The density com-
ponents in the model are related to the variances of
the linear components. The model provided abstract
higher-order structures when it was estimated from
natural images. Osindero et al. [2006] proposed a hier-
archical topographic model which estimates not only
the linear components but also connections among
them. A related two-layer model was also proposed
by Köster and Hyvärinen [2010].

All the methods mentioned above have concentrated
on higher-order statistical dependencies and ignore
linear correlations. However, in many practical sit-
uations, linear correlations can be observed [Gómez-
Herrero et al., 2008, Coen-Cagli et al., 2012]. In fact,
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it is possible that in real-data scenarios, the real un-
derlying components are linearly correlated, but ICA
is biased towards uncorrelated components which is
why such correlations cannot usually be observed in
the ICA results. Therefore, it is important to develop
methods which incorporate linearly correlated compo-
nents.

Here, we present a new method to estimate non-
Gaussian components and their dependency struc-
tures, including linear correlations. The dependency
structures are parametrized by a matrix where each
off-diagonal element models how strongly a pair of
two components is dependent. Thus, the dependency
structures can be easily understood and visualized,
for example by a graph. Moreover, since the estima-
tion of the components is not biased towards uncor-
related sources, new kinds of underlying components
can be estimated. Compared with previous methods,
this method is a generalization of ICA and the more
recent correlated topographic analysis (CTA) [Sasaki
et al., 2013].

Another advantage of the proposed method is the sim-
plicity of the estimation of the dependency parameters.
Estimation of hierarchical models is often difficult be-
cause the second layer makes the partition function
intractable, which results in an intractable likelihood
function. Recently, several estimation methods such
as contrastive divergence [Hinton, 2002], score match-
ing [Hyvärinen, 2005] and noise contrastive estima-
tion [Gutmann and Hyvärinen, 2012] were proposed
to cope with this problem. When score matching is
applied to our proposed model, the objective function
for the estimation of the dependency parameters takes
a quadratic form, and can be optimized by standard
methods.

This paper is organized as follows: In Section 2, we
formulate a probability distribution for non-Gaussian
components and discuss relationships to distributions
assumed in previous work. It is argued that the pro-
posed method is a generalization of ICA and CTA.
Then, the details for estimating the components and
dependency parameters are described. Section 3 shows
results for artificial data which demonstrate that the
method estimates dependency structures correctly.
Application to two kinds of real data, natural images
and outputs of simulated complex cells, is the topic
of Section 4. Finally, we discuss connections to past
work and conclude the paper in Section 5.

2 Estimation of Dependency
Structures

2.1 Probabilistic Modeling of Dependency
Structures

As in previous work, we suppose that data x =
(x1, x2, . . . , xd)

⊤ is generated from the linear mixing
model:

x = As, (1)

where A is an unknown square mixing matrix and
s = (s1, s2, . . . , sd)

⊤ is the source vector of non-
Gaussian components. As in ICA, we estimate the
model (1) from data. To further model the dependen-
cies of the sources or components, we introduce the
following generative model for the sources:

s = σ ⊙ z, (2)

where ⊙ denotes element-wise multiplication, and σ =
(σ1, σ2, . . . , σd)

⊤ and z = (z1, z2, . . . , zd)
⊤ are the vec-

tors of non-negative and Gaussian random variables,
respectively. σ and z are statistically independent. As
proven in [Hyvärinen et al., 2001], this model generates
super-Gaussian components si, and statistical depen-
dencies within σ or z make the generated components
si dependent. For example, if σi and σj have energy
correlations (that is, σ2

i and σ2
j are correlated), and

zi and zj are linearly correlated, then the generated
component si is super-Gaussian and has both linear
and energy correlations with sj [Sasaki et al., 2013].

In previous work [Sasaki et al., 2013], a probability dis-
tribution for sources having linear and energy correla-
tions was derived as an approximation of the likelihood
of the model (2), giving

p̃(s;a, b) =
1

Z(a, b)

d∏
i

exp
(
−
√
ai|si| −

√
bi|si − si+1|

)
,

(3)

where Z(a, b) is the unknown partition function, and
ai and bi are non-negative parameters. In (3), the
terms |si| ensure that the components are super-
Gaussian, and the terms |si − si+1| encode statistical
dependencies. The dependency structure is, however,
limited to topographic neighbors. To remove this lim-
itation, we here extend (3) so that one component si
can be dependent on several sj ; we propose the follow-
ing model for the sources:

p̃(s;M) =
1

Z(M)

d∏
i

exp

−mi,i|si| −
∑
j>i

mi,j |si − sj |

 ,

(4)
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where M is a symmetric matrix containing the non-
negative parameters mi,j . It can be seen that mi,j

corresponds to statistical dependency of the two com-
ponents si and sj . Their effect can be understood in
the same way as the precision matrix for a Gaussian
distribution: If mi,j = 0, si and sj are statistically
independent conditioned on all other variables, while
they are strongly dependent (given all other variables),
if mi,j is large. Moreover, the variables sj for which
mi,j > 0 form the Markov blanket of si, so that the
matrix M allows us to read out conditional indepen-
dencies between the components.

We next discuss the basic properties of the probability
distribution (4). If, for j ̸= i, mi,j → 0, p̃ approaches
a Laplacian distribution. Laplacian distributions are
often used to model components in ICA. If mi,i → 1,
mi,i+1 → 1 and for j ̸= i, i + 1, mi,j → 0, p̃ ap-
proaches the distribution (3) derived in CTA [Sasaki
et al., 2013]. Thus, the distribution (4) includes those
assumed in ICA and CTA as special cases, and by
estimating M from data, a more general method is
obtained.

2.2 Estimation Method

Based on the proposed component model p̃(s;M), we
estimate the dependency parameters M and the mix-
ing model (1). For any fixed M, the mixing matrix
in (1) can be estimated by maximizing the likelihood.
The objective function for W = A−1 to perform max-
imum likelihood estimation can be derived as

J(W) =
1

T

T∑
t=1

d∑
i=1

mi,iG(w⊤
i x(t))

+
d∑

j>i

mi,jG(w⊤
i x(t)−w⊤

j x(t))− log | detW| (5)

where x(t) is the t-th observation of a data vector and
wi denotes the i-th row vector in W; we replace | · | in
(4) by G(·) = log cosh(·) for numerical stability. The
estimation of the dependency parameters M, in con-
trast, is difficult because we do not know the partition
function Z(M) in (4).

To cope with the problem of an intractable partition
function, several estimation methods have been re-
cently proposed. Score matching has a property which
is particularly useful for our purposes: For the continu-
ous exponential family, the objective function given by
score matching is a quadratic form [Hyvärinen, 2007,
Section 4].1 Based on (4), the proposed distribution

1If the parameters are not constrained, score matching
gives the closed-form solution when the probability dis-
tribution belongs to the exponential family. In our case,

p̃(s;M) can be manipulated to the form of an expo-
nential family,

log p̃(s;M) =

d(d+1)/2∑
k=1

θkFk(s)− logZ(M), (6)

where

θk =

{
mi,i, 1 ≤ k ≤ d,

mi,j , d+ 1 ≤ k ≤ d(d+1)
2 ,

(7)

Fk(s) =

{
−G(si), 1 ≤ k ≤ d,

−G(si − sj), d+ 1 ≤ k ≤ d(d+1)
2 .

(8)

The objective function given by score matching is the
following quadratic form:

JSC(θ) =
1

2
θ⊤E{K(s)K(s)⊤}θ + θ⊤

(
d∑

i=1

E{hi(s)}

)
,

(9)

where E denotes the sample average, the (k, i)-th el-
ement in K(s) is ∂Fk(s)/∂si, and hi(s) is the i-
th column vector in H whose (k, i)-th element is
∂2Fk(s)/∂s

2
i . Note that we further have the constraint

that all θk are non-negative.

To estimate W and M, we propose the following op-
timization algorithm:

Optimization Algorithm for W and M

Input: Data vectors x(1),x(2), . . . ,x(T ).

• Initialization: Set M to the identity matrix, and
the elements in W are randomly determined.

• Alternate between Step 1 and Step 2.

Step 1 Minimize J(W) with respect to W by the
nonlinear conjugate gradient method
of [Rasmussen, 2006]. After 10 iterations,
normalize each row vector in W to ∥wi∥ = 1
and move to Step 2.

Step 2 Minimize the quadratic form JSC(θ) with
respect to θ under the constraint of
non-negativity.

For Step 2, we used the MATLAB function quad-
prog.m. The specific initialization for M in the al-
gorithm worked well empirically.

however, the parameters mi,j are constrained to be non-
negative.
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3 Simulations on artificial data

In this section, we investigate if the model (1) can
be identified by the proposed method and if the es-
timated parameters in M correctly reflect the depen-
dency structures in the sources.

3.1 Methods

We generated sources according to the model (2) in
two different cases taken from [Sasaki et al., 2013].
Case 1 is an “independent” source where all the com-
ponents are statistically independent. Case 2 is a “to-
pographic” source where all pairs of only neighboring
components, si and si+1 for all i, have both linear and
energy correlations and the others are independent.
The boundary condition is ring-like in this source. As
in [Sasaki et al., 2013], for Case 2 sources, the order
(topography) of the components can be determined be-
cause the dependencies approximately correspond to
distances between the components.

Using generated sources s, the data x were created
from the model (1) where the elements in A were
randomly determined. The only preprocessing step
was whitening based on PCA. The dimension of data
was d = 10, and the total number of samples was
T = 20, 000.

We evaluated the results by the performance matrix
P = WA where W is the estimated inverse of A, and
by visualizing M. If our estimation was performed
correctly, P should be a permutation matrix and M
should correctly reflect the dependency structure em-
bedded in the sources. The ordering of the rows of P
and M are coupled: If P is permuted, that is, if the
labeling of the features is changed, the order in the ma-
trix M changes as well. For the visualization of P, the
ordering of the features was changed. We determined
the ordering based on the estimated M. The ordering
(permutation) algorithm used is a simple greedy algo-
rithm; the details are provided in the supplementary
material. Note that the indeterminacy of the permu-
tation is just the same indeterminacy which is always
encountered in ICA. It is only a problem for the vi-
sualization and validation of the estimation results; it
does not change the features and dependency structure
learned.

3.2 Results

The results for independent sources (Case 1) are shown
in Figure 1. The estimated performance matrix is
close to a permutation matrix (Figure 1(a)). Further-
more, M is a diagonal matrix (Figure 1(b)). Since
the sources are statistically independent, these results
mean that estimation was performed correctly: the

(a) (b)

−1 0 1 0 1 2 3

Figure 1: Artificial data, Case 1 (independent
sources): (a) Estimated performance matrix P. P is
re-scaled so that its absolute maximum value is one.
(b) Dependency matrix M.

(a) (b) (c)

(d) (e) (f)

−1 0 1

−1 0 1 −1 0 10 0.5 1 1.5

Figure 2: Artificial data, Case 2 (topographic sources):
(a) Estimated performance matrix P and (b) depen-
dency matrix M. (c) Performance matrix, permuted
based on M. (d) Correlation matrix of the origi-
nal sources. (e,f) Correlation matrix of the estimated
sources before and after permutation.

method learned that the sources are all independent.

The results for topographic sources (Case 2) are shown
in Figure 2. Figures 2(a) and (b) visualize the matrix
P and M before permutation. Figure 2(c) shows P
after permutation based on M. The permuted P is
close to a diagonal matrix, which indicates that the
estimate of the features is reasonable. The result is,
however, not as good as for Case 1 above in terms of
identifiability of the sources. Figures 2(d) and (e) show
the linear correlations matrices for the original and es-
timated sources before permutation. These matrices
have different structures. After permutation, however,
the linear correlation matrix for the sources is approx-
imately the same as the one for the original sources
(Figure 2(d) and (f)). For the energy correlation ma-
trix, the structure was recovered likewise (results not
shown). These results mean that the estimated M
contained the information of the topographic depen-
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dency structure in the original sources, and that the
method worked well.

In summary, the two sets of results indicate that the
estimation method works reasonably well and that the
estimated M reflects dependency structures contained
in the sources.

4 Application to Real Data

Next, we apply the proposed method to two kinds of
real data: natural image patches and outputs of sim-
ulated complex cells in the primary visual cortex for
natural image inputs.

4.1 Natural Image Patches

ICA-like one-layer and more advanced two-layer mod-
els were applied to natural image patches before [Osin-
dero et al., 2006, Hyvärinen et al., 2009, Köster
and Hyvärinen, 2010, Gutmann and Hyvärinen, 2012,
Sasaki et al., 2013]. Our purpose here is to investigate
what kind of inter-relationships between the features
the proposed method identifies.

4.1.1 Methods

Natural image patches x(t) of size 12 by 12 pixels were
randomly extracted from complete natural scenes.2

The total number of patches was T = 100, 000. As
preprocessing, first, the DC component of each patch
was removed, and then, the norm of each patch was
normalized to be one. We further preprocessed the im-
age patches by whitening and dimensionality reduction
by PCA. We retained d = 60 dimensions.

4.1.2 Results

Groups of basis vectors and the profiles of the rows of
M are presented in Figure 3. Moreover, for a fixed
basis vector ai, the basis vectors aj with the top five
largest values of mi,j are shown. Figures 3(a-1,b-1,c-1)
indicate that these basis vectors show similar proper-
ties in spatial positions or orientations. In addition,
themi,j are sparse (Figure 3(a-3,b-2,c-2)). This means
that the Markov blankets in the source space are rather
small and formed by the features with similar proper-
ties.

In order to compactly visualize all the features and
the complete matrix M, we first fitted a Gabor func-
tion to each basis vector, and made a line icon rep-
resenting its spatial position, orientation and length.
Second, we pooled the icons with weight mi,j , which

2We used the natural scenes in the contournet MAT-
LAB package, which is available at http://www.cs.
helsinki.fi/u/phoyer/software.html.

resulted in the desired compact visualization. Several
examples of line icons are shown in Figure 3(a-2). Fig-
ures 3(a-4,b-3,c-3) show two kinds of pooling patterns:
Pooling similar orientations from spatially distant fea-
tures (Figure 3(a-4,b-3)) and pooling diverse orienta-
tions from spatially close features (Figure 3(c-3)).

Figure 3(d) visualizes the complete set of features and
the matrix M using the icons. Inspection of the figure
suggests that the two pooling patterns above are the
dominant instances. This is also visible in the undi-
rected graph shown in Figure A in the supplementary
material.

To investigate the pooling properties (Markov blan-
kets) more rigorously, we analyzed the relative dis-
tance and orientation of the features. Relative dis-
tance and orientation are defined as the distance of
the center positions and the absolute difference of the
orientations between two basis vectors. For relative
orientation, the range is from 0 to π/2. Figure 4(a)
shows a scatter plot of the relative distances and orien-
tations. In the figure, to make the points, the top five
basis vectors per one basis vector are selected as in Fig-
ure 3 and for the five pairs, the relative distance and
orientation are computed. Finally, all the points for
the relative distance and orientation are summarized
in the figure. As the relative distance gets larger, the
relative orientation tends to get smaller as well. The
slope of the fitted line is clearly negative. This is in
agreement with our qualitative analysis above: When
the features are spatially close, the learned weights
mi,j pool over diverse orientations, and when spatially
distant, the pooling occurs over similar orientations.

We further investigated if the model really found lin-
early correlated components in contrast to energy-
correlation based methods [Karklin and Lewicki, 2005,
Osindero et al., 2006, Köster and Hyvärinen, 2010].
Figure 4(b) shows a scatter plot for the linear and en-
ergy correlation coefficients between the estimated si
and the corresponding top five sj selected as in Fig-
ure 3. The method did find strongly linearly corre-
lated components. In fact, the average of the linear
correlation coefficients for all the points in the figure
is 0.669, with standard deviation 0.068. Furthermore,
the linear correlation coefficients are correlated with
the energy correlation coefficients.

4.2 Outputs of Complex Cells

Next, we applied the method to the outputs of simu-
lated complex cells in the primary visual cortex. ICA
and non-negative sparse coding were applied to this
kind of data and long-contour features emerged [Hoyer
and Hyvärinen, 2002, Hyvärinen et al., 2005]. Re-
cently, a topographic map of these features was learned
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(b-1)

(b-2)

(b-3)
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1
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(d)

Figure 3: Examples of observed pooling properties. (a-1,b-1,c-1) For the leftmost fixed basis vector ai, the basis
vectors aj with the top five largest values of mi,j are shown. (a-2) Line icons of the basis vectors presented in
(a-1). Each line represents spacial position, orientation and length of a basis vector. The color from gray to
white indicates the values of mi,j for fixed i. The black line represents the leftmost basis vector ai. (a-3,b-2,c-2)
The profile of mi,j for fixed i. (a-4,b-3,c-3) Pooled icons to visualize the learned features and mi,j in a compact
manner. (d) Visualization of all learned features and the matrix M.

too [Sasaki et al., 2013]. However, the topographic
map was obtained by using a pre-fixed dependency
structure. Our purpose here is to relax this assump-
tion and to investigate the inter-relation between the
features learned from the outputs of the complex cells.

4.2.1 Methods

The outputs of the simulated complex cells x are com-
puted as

x′
k =

(∑
x,y

W o
k (x, y)I(x, y)

)2

+

(∑
x,y

W e
k (x, y)I(x, y)

)2

,

xk = log(x′
k + 1.0), (10)

where I(x, y) is a 24 × 24 natural image patch,3 and
W o

k (x, y) and W e
k (x, y) are odd- and even-symmetric

Gabor functions with the same spatial positions, ori-
entation and frequency. The total number of outputs
is T = 100, 000. The complex cells exist on a 6 by
6 spatial grid and 4 orientation grid. Thus, there are
144 cells in total.

As preprocessing, the DC component of each x was
removed. Then, the norm of x was constrained to be
one. Finally, whitening and dimensionality reduction
were performed simultaneously by PCA. The retained
dimension was d = 80.

3For the computation of the complex cell outputs, we
used again the contournet package.
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Figure 4: (a) Scatter plot for relative distance and
orientation. The solid red line is the fitted regression
line (its slope is -1.385). The dotted lines are confi-
dence bounds of the solid one. (b) A comparison of
linear and energy correlation coefficients between the
estimated sources. In this figure, the coefficients are
selected like the five pairs of basis vectors are selected
in Figure 3(a-1,b-1,c-1). The same linear fitting was
performed as in (a), the slope of the regression line is
1.173. For (a) and (b), the elements relating to the
low frequency basis vectors were omitted.

4.2.2 Results

The learned features were qualitatively similar to those
found in [Sasaki et al., 2013]. However, learning mi,j

unveiled a novel dependency structure which we vi-
sualize in Figures 5(a)-(d): There seem to be strong
(conditional) dependencies between long contours.

The complete set of the features and the learned de-
pendency structure is displayed using an undirected
graph (Figure 6). In this graph, each node represents
a feature and each link corresponds to a mi,j which
has a value larger than 0.4. Most of the long contour
features are positioned on the left part of the graph,
while star-like features, which are the spatially local-
ized ones, are on the right part. This result shows that
long contours tend to be (conditionally) dependent on
each other, and star-like features also have a similar
tendency. The features with less clear structures have
only weaker links mi,j .

It was shown before that the star-like features may not
reflect properties of natural images but properties of
the fixed complex-cell stage [Sasaki et al., 2013]. With
a threshold of 0.4, these features are mostly separated
from the longer contours. It is important future work
to choose this threshold more objectively using statis-
tical techniques.

5 Discussion and Conclusion

We proposed a new method for the estimation of
non-Gaussian components and their dependency struc-
tures. The dependency structures are represented by
a parameter matrix M and their interpretation is easy.
As described in Section 2.1, this method includes ICA
and CTA as special cases depending on the values of
the matrix M. In addition, due to a useful property of
score matching [Hyvärinen, 2007], M can be estimated
by solving a standard optimization problem.

Dependency structures were modeled in previous
work [Hyvärinen and Hoyer, 2000, Hyvärinen et al.,
2001, Mairal et al., 2011, Sasaki et al., 2013]. In those
methods, the dependency structures were fixed a pri-
ori, while the proposed method estimates the struc-
ture from data. Thus, our method is more flexible.
Other methods have been proposed to estimate depen-
dency structures from data [Karklin and Lewicki, 2005,
Osindero et al., 2006, Köster and Hyvärinen, 2010].
However, those methods did not explicitly take into
account linear correlations of the sources, while our
method is able to estimate linearly correlated com-
ponents. Further related work is the estimation of
tree-dependent structures [Bach and Jordan, 2003, Zo-
ran and Weiss, 2009]. However, these methods restrict
graphs to have a tree-structure. In our method, no
such a restriction is imposed.

In simulations for artificial data in Section 3, we
demonstrated that the dependency parameters can be
correctly estimated for different kinds of sources: For
independent sources (Case 1), the estimated M was a
diagonal matrix and for topographic sources (Case 2),
the order (topography) of the components was recov-
ered from M. As a limitation, estimation accuracy for
the dependent topographic sources was worse than for
the independent sources. An important task for the
future is to address this shortcoming.

In simulations with natural images, interesting pool-
ing properties were observed: Pooling various orienta-
tions from spatially nearby features and pooling sim-
ilar orientations from far features. This might be
because natural images contain many long contours,
textures and junctions. Detailed investigation of this
point is an important point for future work. For simu-
lated complex cells, ICA, non-negative sparse coding,
and CTA were applied in previous work [Hoyer and
Hyvärinen, 2002, Hyvärinen et al., 2005, Sasaki et al.,
2013]. While the features estimated by our method
are similar as those in previous work, the estimated
matrix M revealed interesting relationships between
these features.

Typical ICA methods remove linear correlations alto-
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Figure 5: Basis vectors aj with the five largest mi,j for the leftmost fixed basis vector ai. The stem plots below
the basis vectors visualize the values mi,j for fixed i. We see that the strongest (conditional) dependencies occur
among long contours, typically of the same orientation.

Figure 6: An undirected graph for the estimated features. Each node corresponds to a feature, and only the
links which have mi,j larger than 0.4 are displayed. The features aligned in the lower part have no links mi,j

larger than 0.4.

gether, thus leaving no room for their further analysis.
This is in contrast to energy correlations, which re-
main even after ICA, and could in many cases be esti-
mated and analyzed after ordinary ICA. Here, we have
demonstrated that if the components are allowed to be
linearly correlated, the learned dependency structure
is not trivial at least for some real data sets. The linear
correlation thus provides interesting information which
could not have been obtained without a method which
allows such correlations in the first place.
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