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Abstract

This paper shows how periodic covariance
functions in Gaussian process regression can
be reformulated as state space models, which
can be solved with classical Kalman filter-
ing theory. This reduces the problematic cu-
bic complexity of Gaussian process regression
in the number of time steps into linear time
complexity. The representation is based on
expanding periodic covariance functions into
a series of stochastic resonators. The explicit
representation of the canonical periodic co-
variance function is written out and the ex-
pansion is shown to uniformly converge to
the exact covariance function with a known
convergence rate. The framework is gener-
alized to quasi-periodic covariance functions
by introducing damping terms in the system
and applied to two sets of real data. The
approach could be easily extended to non-
stationary and spatio-temporal variants.

1 INTRODUCTION

In Bayesian non-parametric machine learning, Gaus-
sian processes (GPs, [1]) are commonly used modeling
tools. In GP regression the model functions are as-
sumed to be realizations of a Gaussian process random
prior with a given covariance function, into which the
prior assumptions are encoded. One very commonly
encountered phenomenon in applications is periodic-
ity, and in GP regression this is incorporated through
periodic covariance functions.
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Whilst being very flexible and convenient model-
ing tools, computationally the direct GP methodol-
ogy does not conveniently lend itself to long (or un-
bounded) time series. This is due to the prohibitive
O(n3) scaling of computational cost, which grows un-
bearable when the number of training samples n grows
large. Several general sparse approximation schemes
have been proposed for this problem (see, e.g., [2] for
a review). For periodic latent force models [3] one op-
tion is to use a set of basis functions and estimate the
model variances as a part of the state [4].

In the case of temporal models computational savings
can be made by converting the GP into state space
form and do inference using Kalman filtering methods
[5]. This connection is well established (see [6, 7]),
and recently it has gained a lot of interest. Certain
classes of stationary covariance functions can be di-
rectly converted into state space models by represent-
ing their spectral densities as rational functions [8, 9].
This scheme is, however, not suitable for periodic co-
variances, where the spectrum is set up by Dirac delta
peaks. Therefore this paper seeks an alternative way
to approximate periodic covariance functions by intro-
ducing the connection to stochastic resonators.

Periodic structure in time series data can be mod-
eled by second-order differential equations. More
complex periodical variation can be accounted for by
adding harmonics to the model, and quasi-periodic (al-
most periodic) behavior by extending the model to a
stochastic differential equation (SDE) [10]. This for-
mulation fits under Bayesian state space estimation
and has been employed in [11, 12]. However, the the-
ory linking stochastic resonators to GP models has
been lacking, and constructing this theory enables di-
rect conversion of periodic GP models into computa-
tionally efficient state space form.

The structure of this paper is as follows. In Section 2
the state space methodology for Gaussian process re-
gression is briefly reviewed. In Section 3 a novel way
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of approximating periodic and quasi-periodic covari-
ance functions in state space form is introduced, and
the accuracy and convergence of the approximation is
analyzed. Section 4 contains experimental evaluation
of the computational requirements and application of
the methods to two real data sets.

2 METHODS

2.1 Gaussian Process Regression

GP regression is concerned with predicting an un-
known scalar output f(x∗) associated with a known in-
put x∗ ∈ Rd, given a training data set D = {(xk, yk) |
k = 1, 2, . . . , n}. The model function f is assumed to
be a realizations of a Gaussian random process prior
and the observations corrupted by Gaussian noise

f ∼ GP(0, k(x,x′)) (1)

yk = f(xk) + εk, (2)

where εk ∼ N (0, σ2
n). The direct solution to the

GP regression problem gives predictions p(f(x∗) |
x∗,D) = N (E[f(x∗)],V[f(x∗)]). This can be com-
puted in closed-form as [1]

E[f(x∗)] = kT
∗ (K + σ2

nI)−1y,

V[f(x∗)] = k(x∗,x∗)− kT
∗ (K + σ2

nI)−1k∗,
(3)

where Kij = k(xi,xj), k∗ is an n-dimensional vector
with the ith entry being k(x∗,xi), and y is a vector
of the n observations. The computational complexity
comes from the n× n matrix inversion in (3).

A common way to learn the hyperparameters θ of the
covariance function (k(x,x′;θ), suppressed earlier in
the notation for brevity) and the noise variance σ2

n is
by maximizing the marginal likelihood function using
a suitable optimizer (see, e.g., [1]).

2.2 Representing the GP as a Stochastic
Differential Equation

For temporal GPs, instead of directly working with the
kernel formalism of the Gaussian process f(t), certain
classes of covariance functions allow to work with the
mathematical dual [9], where the Gaussian process is
constructed as a solution to a mth order linear stochas-
tic differential equation (SDE). The corresponding in-
ference problem can be solved with Kalman filtering
type of methods [13], where the computational com-
plexity is O(m3n). If the number of observations
n � m, as typically is the case in temporal model-
ing, this formulation is very beneficial.

The state space model corresponding to the GP re-

gression problem (1) can be given as

df(t)

dt
= Ff(t) + Lw(t)

yk = Hf(tk) + εk, εk ∼ N (0, σ2
n),

(4)

where f(t) =
(
f1(t), f2(t), . . . , fm(t)

)T
holds the m

stochastic processes, and w(t) is a multi-dimensional
white noise process with spectral density Qc. The
model is defined by the feedback matrix F and the
noise effect matrix L.

The Gaussian process can be reconstructed by defining
the observation matrix H such that f(t) = Hf(t). In
this form, the spectral density S(ω) of f(t) can be
written using the state representation as

S(ω) = H(F− iωI)−1LQcL
T
[
(F + iωI)−1

]T
HT.

(5)

In a stationary state, the covariance function of f(t) is
the inverse Fourier transform of its spectral density:

k(τ) =
1

2π

∫ ∞
−∞

S(ω) exp(−iωτ) dω. (6)

This can be written with the help of the state space
matrices:

k(τ) =

{
HP∞Φ(τ)THT, if τ ≥ 0

HΦ(−τ)P∞HT, if τ < 0,
(7)

where Φ(τ) = exp(Fτ) is the matrix exponential of
the feedback matrix. P∞ is the stationary covariance
of f(t) that is the solution to the corresponding matrix
Riccati equation:

dP∞
dt

= FP∞ + P∞FT + LQcL
T = 0. (8)

The continuous-time linear time-invariant model (4)
can be solved for discrete points. This is the closed-
form solution to the SDE at the specified time points,
and it is given as

fk+1 = Akfk + qk, qk ∼ N (0,Qk), (9)

where f(tk) = fk, and the state transition and process
noise covariance matrices can be solved analytically
(see, e.g., [9]). They are given as

Ak = Φ(∆tk) (10)

Qk =

∫ ∆tk

0

Φ(∆tk − τ)LQcL
TΦ(∆tk − τ)T dτ (11)

where ∆tk = tk+1 − tk. The inference problem is
now directly solvable using Kalman filtering type of
methods [13, 14]. The Kalman filtering scheme nat-
urally lends itself to hyperparameter optimization, as
the marginal likelihood comes out as a by-product of
the filtering step. Analytic gradients for conjugate gra-
dient optimization can also be calculated.

905



Arno Solin and Simo Särkkä

3 PERIODIC COVARIANCE
FUNCTIONS

3.1 Periodic Covariance Functions Through
Warping

Consider a stationary covariance function such that
with x ∈ Rd

k(x,x′) , k(x− x′), (12)

where a one-argument notation of the stationary co-
variance is introduced. A general way of construct-
ing non-stationary covariance functions is to introduce
a non-linear mapping (or warping) u(t) of the input
t and then use a stationary covariance function in
the u space. Using this warping method [15], peri-
odic stationary kernels can be constructed by setting
x(t) = u(t) for some periodic function u(t) : R → Rd
for which the resulting covariance

k(t, t′) = k(u(t)− u(t′)) (13)

becomes stationary. A typical choice in GP context

(see, e.g., [1, 15]) is u(t) =
(
sin(t), cos(t)

)T
, which has

the property

‖u(t)− u(t′)‖2

= (sin(t)− sin(t′))
2

+ (cos(t)− cos(t′))
2

= 4 sin2

(
t− t′

2

)
(14)

and thus results in a stationary covariance function for
isotropic k(·). An example of such periodic processes
is shown in Figure 1.

In terms of the original GP, f(x), the above means
that the values of the GP are evaluated on a certain
periodic curve x(t) = u(t). An interesting question
is now that under what conditions does k(t, t′) then
become stationary. For all t the following must hold:

k(t+ τ, t) = k(u(t+ τ)− u(t))

= k(u(τ)− u(0)).

Assume now that k(·) is invariant with respect to
some parametrized set of invertible time-invariant lin-
ear transforms T(s):

x∗ = T(s) x (15)

for some s. Consequently, this should always result
in u(τ) = T(s)u(t + τ). This seems to imply that
u(τ) and T(τ) can actually be identified by suitable
selection of scaling for s. Thus T needs to be the
transition matrix of u(t). In other words, k(·) needs
to be invariant with respect to the transition matrix
of u. For isotropic functions, any orthogonal matrix
will do (provided that it is periodic).

0
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− 3
4
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0−2σ 2σ

Figure 1: Random draws from a periodic GP prior
with different length-scales: ` = 1 ( ), ` = 0.5
( ), and ` = 0.25 ( ).

3.2 Writing Periodic Covariances in State
Space Form

Let k(t, t′) = k(u(t)−u(t′)) be a stationary, periodic,
and valid covariance function set up by the procedure
in the previous section. There exists a symmetric and
periodic kp(τ) such that

k(t, t′) = kp(t− t′). (16)

As kp(·) is a periodic and continuous even function,
kp(τ) = kp(−τ), it can be expanded into a (almost
everywhere) convergent Fourier series

kp(τ) =
∞∑
j=0

q2
j cos(j ω0 τ), (17)

where ω0 is the angular frequency defining the peri-
odicity. Formally its spectral density consists of delta
function peaks at the characteristic frequencies, which
can be written as

Sp(ω) =
∞∑
j=0

q2
jπ [δ(ω − j ω0) + δ(ω + j ω0)] . (18)

As pointed out by Reece et al. [4], this spectral den-
sity does not conveniently fit under the framework by
Särkkä et al. [9], where the spectral density was ap-
proximated by rational functions. Instead, this paper
takes an alternative approach to come up with the ex-
plicit state space representation of the periodic covari-
ance function in terms of resonator models.

Each periodic term j in the series (17) can be consid-
ered separately as a pair of processes stacked in fj(t) =
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(
xj(t), yj(t)

)T
with initial conditions fj(0) ∼ N (0, q2

j I)
and satisfying the differential equations

dxj(t)

dt
= −j ω0 yj(t)

dyj(t)

dt
= j ω0 xj(t)

(19)

which define a harmonic oscillator. This second-order
ordinary differential equation can be solved, and the
processes are given in closed-form as

fj(t) =

(
cos(ω0 j t) − sin(ω0 j t)
sin(ω0 j t) cos(ω0 j t)

)
fj(0). (20)

These processes are random only in the sense that the
initial state is drawn from a Gaussian. The trajectories
themselves are deterministic. The covariance of xj for
τ > 0 is given by

E[xj(t)xj(t+ τ)]

= E
[
(xj(0) cos(ω0 j t)− yj(0) sin(ω0 j t))

(xj(0) cos(ω0 j (t+ τ))− yj(0) sin(ω0 j (t+ τ)))
]

= q2
j cos(ω0 j τ).

Therefore the covariance function of the sum of sta-
tistically independent resonators,

∑∞
j=0 xj(t), with(

xj(0), yj(0)
)T ∼ N (0, q2

j I), is

kp(τ) =

∞∑
j=0

q2
j cos(j ω0 τ). (21)

The question now remains how to determine q2
j from

given k(·) and u(·), or equivalently from a given co-
variance function kp(·). One way to determine the
coefficients is via projection to the cosine basis

q2
j =

ω0

π

∫ π/ω0

−π/ω0

kp(τ) cos(j ω0 τ) dτ, (22)

for j = 1, 2, . . .. However, the coefficients can be
matched in other ways as well, as will be demonstrated
in the next section.

3.3 The Canonical Periodic Covariance
Function in State Space Form

In machine learning, the most commonly encoun-
tered periodic covariance function (see, e.g., [1, 15])
corresponds to the squared exponential, k(x,x′) =
σ2 exp(−‖x − x′‖2/(2`2)), covariance function in u-
space as given by (14). In this paper, this covariance
is referred to as the canonical periodic covariance func-
tion:

kp(t, t′) = σ2 exp

−2 sin2
(
ω0

t−t′
2

)
`2

 , (23)

−4π −2π 0 2π 4π
0

1

τ

k
(τ

)

(a) Periodic covariance function with ` = 1.

−4π −2π 0 2π 4π
0

1

τ

k
(τ

)

(b) Peridic covariance function with ` = 0.5.
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0

1

` = 1.00
` = 0.50

` = 0.25

` = 0.10

Order of state space model, J

E
rr

or

(c) Upper bound for approximation error.

Figure 2: Approximations to the canonical periodic
covariance function with two length-scales. The degree
of approximation is J = 2, 6, 10, growing with the line
thickness. The grey line ( ) represents the exact
covariance.

where, without loss of generality, the magnitude scale
σ2 and frequency scale ω0 parameters are assigned unit
values to simplify the expressions that will follow. The
scaling can always be restored by replacing τ with ω0 τ
and multiplying the spectral density coefficients with
σ2. The parameter ` defines the characteristic length-
scale of the covariance. Figure 1 shows three random
draws on the unit circle from the canonical periodic
GP prior (23) with different length-scales.

In order to convert the covariance into state space
form, the exponential expression in (23) can be de-
composed by the identity 2 sin2(τ/2) = 1 − cos(τ).
Writing out the Taylor series expansion of the expo-
nential function gives:

kp(τ) = exp(−`−2)

∞∑
j=0

1

j!
cosj(τ). (24)

Now consider truncating this series at J , and recall
that the powers of cosine can be expressed as sums of
cosines with multiplied angles. Similarly, each power
of cosine can be rewritten as a sum of first-order cosine
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terms with multiplied angles. Expanding the powers
of cosine and applying reduction formulas lead to the
expression that is of the form given by (21) meeting
the requirements of the previous subsection:

kp,J(τ) =

J∑
j=0

q̃2
j,J cos(j τ), (25)

where the coefficients for cos(j τ) are given by

q̃2
j,J =

2

exp(`−2)

b J−j
2 c∑
i=0

(2`2)−j−2i

(j + i)! i!
, (26)

where j = 1, 2, . . . , J and b·c denotes the floor round-
off operator. q̃2

0,J obeys the above formula, but is di-
vided by 2. These coefficients always return a valid
covariance function. Note that each q̃2

j,J depends on
the chosen truncation index J . These coefficients en-
sure that Equation (25) is always a valid covariance
function, as the terms are coupled in growth by J .

If the requirement of a valid covariance function is re-
laxed and only an optimal series approximation is re-
quired, taking the limit J → ∞ in the sub-sums (26)
gives the following spectral densities (or variances co-
efficients)

q2
j =

2 Ij(`
−2)

exp(`−2)
, for j = 1, 2, . . . , J, (27)

and q2
0 = I0(`−2)/ exp(`−2), where Iα(z) is the mod-

ified Bessel function [16] of the first kind of order α.
This is also the solution to the corresponding integral
in (22). Note that the terms in (26) are bounded from
above such that q̃2

j,J < q2
j for any J .

In the notation of Section 2 the corresponding state
space model is now: F, L, and P∞ are block-diagonal
matrices, where block j = 0, 1, . . . , J is set up by the
statistically independent feedback matrices

Fp
j =

(
0 −ω0 j
ω0 j 0

)
, (28)

noise effect matrices Lp
j = I2, and stationary covari-

ances Pp
∞,j = q2

j I2, respectively. Because the process
does not have a diffusion term, Qp

c = 0, but the noise
effect matrix is written out for compatibility. The
measurement model matrix H is a block-row vector
of Hp

j =
(
1 0

)
.

3.4 Approximation Error

Recall that the approximation in (25) is the result
of a Jth order truncation of the Taylor series rep-
resentation (24) of the exponential at origin. By
Taylor’s theorem the residual error at x is given by

0 2π 4π 6π 8π 10π
0

1

τ

k
(τ

)

(a) Quasi-periodic covariance function with damping
smoothness ν = 1

2
(exponential covariance function).

0 2π 4π 6π 8π 10π
0

1

τ

k
(τ

)

(b) Quasi-periodic covariance function with damping
smoothness ν =∞ (squared exponential).

Figure 3: Approximations to the quasi-periodic covari-
ance function with two length-scales. The order of the
model is J = 1, 2, 3, growing with the line thickness.
The grey line ( ) represents the exact covariance.

RJ(x) = 1
(J+1)! exp(z)xJ+1, for some z ∈ [0, x].

Thus the residual error in (25) can be written as
R̃J(τ) = exp(−`−2) 1

(J+1)! exp(cos(τ)) cosJ+1(τ) for

some τ ∈ [0, 2π]. Because | cos(τ)| ≤ 1, the error
bound is |R̃J(τ)| ≤ 1

(J+1)! exp(1−`−2), which thus also

shows that kp,J(τ) → kp(τ) uniformly, when J → ∞.
It is also easy to show that the series expansion ob-
tained by replacing the terms q̃2

j,J with q2
j in (25) con-

verges to kp(τ) uniformly, when J →∞.

Figures 2a and 2b show the canonical periodic covari-
ance function (23) for two different length-scales ` (in
grey). The black lines correspond to approximations
defined by the state space model truncated at different
values of J . It is apparent that smaller length-scales
correspond to rougher processes, and thus to longer
tails in the spectrum.

Taking the analysis a step further gives an upper
bound for the approximation error. Using recur-
rence relations of Iα(z) (see [17]),

∑∞
j=0 Ij(z) =

[exp(z) + I0(z)]/2, and thus
∑∞
j=0 q

2
j = 1. Because

| cos(ω0 j τ)| ≤ 1, a rough upper bound for the trunca-

tion error can be given as ε(J) = 1−
∑J
j=0 q

2
j . This is

visualized for various length-scales in Figure 2c.

3.5 Quasi-Periodic Covariance Functions

It is often desirable to allow for seasonable periodic
variation, allowing the shape of the periodic effect to
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change over time. This is known as quasi-periodicity.
New covariance functions can be constructed as prod-
ucts of existing covariances. If kp(x,x′) and kq(x,x′)
are both covariance functions of the same space, then
so is k(x,x′) = kp(x,x′) kq(x,x′). A common way
(see, e.g., [1]) of constructing quasi-periodic covari-
ances is to take the product of a periodic covariance
function kp(τ) with a covariance function kq(τ) with
rather long characteristic length-scale, allowing the co-
variance to decay away from exact periodicity.

Even though this is very straight-forward under the
classical GP scheme, this is not trivial when using the
state space form. In the state space model, the state
transition matrix needs to factorize such that

Ak = exp(Fp∆tk) exp(Fq∆tk)

= exp ((Fp + Fq)∆tk) ,
(29)

where Fp is the feedback matrix corresponding to co-
variance function kp(τ) and Fq the matrix correspond-
ing to kq(τ). This is not true in general, and in order
to factorize as above, the feedback matrices need to
commute (FpFq = FqFp). This also ensures that the
matrices preserve each others eigenspaces.

Consider the second covariance function to be of the
Matérn class (e.g. [1]), which is a class of stationary
isotropic covariance functions that are widely used in
many applications and their parameters have under-
standable interpretations. A Matérn covariance func-
tion can be expressed as:

k(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

`

)ν
Kν

(√
2ν

τ

`

)
, (30)

where Γ(·) is the Gamma function and Kν(·) is the
modified Bessel function of the second kind [16]. The
covariance function is characterized by three parame-
ters: a smoothness parameter ν, a distance scale pa-
rameter `, and a strength (magnitude) parameter σ2,
all of which are positive.

For example, if ν = 1/2, this gives the exponential
(Ornestein–Uhlenbeck) covariance function, kexp(τ) =
exp(−λ|τ |), where λ = 1/`. The dashed line in Fig-
ure 3a shows the function values as ` = 16. As ex-
plained in [8] it is straight-forward to form the corre-
sponding state space model for this function, and in
the notation of Section 2 this model is F = −λ, L = 1,
and Qc = 2λ. This is not an approximation, but the
exact representation of the process in state space form.

However, the model does not commute with the peri-
odic state space model defined by (28). But writing
the Ornstein–Uhlenbeck process in terms of two sepa-
rate stochastic processes gives the following state space
presentation of the product between the periodic and

0 2π 4π 6π 8π

0

Time, t

f
(t

)

(a) With exponential damping (ν = 1/2).

0 2π 4π 6π 8π

0

Time, t

f
(t

)

(b) With squared exponential damping (ν →∞).

Figure 4: Random draws from quasi-periodic GP pri-
ors with different damping covariance functions, kq(τ),
of the Matérn class.

the exponential covariance functions:

Fj =

(
0 −ω0 j
ω0 j 0

)
+

(
−λ 0
0 −λ

)
=

(
−λ −ω0 j
ω0 j −λ

)
(31)

and Lj = I2 and Qc,j = 2λq2
j I2, P∞,j = q2

j I2. Note
that when ` → ∞, this reverts back to the fully pe-
riodic model. The original quasi-periodic covariance
function and the resulting state space approximation
of it is visualized in Figure 3a. The dashed line shows
the exponential covariance function, and the black
lines the approximation to the quasi-periodic covari-
ance (in tick grey).

Generalizing the approach, consider the periodic state
space model to be represented by the matrices Fp

j ,
Pp
∞,j , Hp

j , and the q-dimensional model matrices cor-
responding to the second covariance function (e.g. of
the Matérn class) to be denoted Fq, Lq, Qq

c , Pq
∞. The

joint model corresponding to the quasi-periodic prod-
uct of the two covariance functions can then be given
in the block-form similar to Section 3.3:

Fj = Fq ⊗ I2 + Iq ⊗ Fp
j ,

Lj = Lq ⊗ Lp
j ,

Qc,j = Qq
c ⊗ q2

j I2,
P∞,j = Pq

∞ ⊗Pp
∞,j ,

Hj = Hq ⊗Hp
j ,

(32)

where ‘⊗’ denotes the Kronecker product of two ma-
trices. The way of setting up Fj is also known as the
Kronecker sum of matrices Fq and Fp

j , which makes
the matrix exponential factor as the Kronecker prod-
uct of the corresponding two matrix exponentials [18].
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Full GP solution

State space solution
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Figure 5: Demonstration of the computational benefits
of the state space model in solving a GP regression
problem for a number of data points up to 10 000 and
with ten repetitions. The state space model execution
times grow exactly linearly.

The approximation still converges uniformly as long as
kq(0) <∞ and the approximation for kp(τ) converges
uniformly. The matrices (32) result in a very sparse
model, and sparse matrix methods can be employed
for the matrix exponentials and multiplication.

Figure 3b shows the quasi-periodic covariance func-
tion corresponding to squared exponential damping
(ν → ∞) of the periodicity (the squared exponential
covariance is represented by the dashed line), and Fig-
ure 4b shows draws from the corresponding prior.

4 EXPERIMENTAL RESULTS

In this section the computational efficiency of the
method is first demonstrated by applying it to sim-
ulated data, after which two empirical sets of data are
used to show that the method is feasible in real-world
applications.

4.1 Demonstrating the Computational
Efficiency

To illustrate the efficiency of the proposed model, let
f(t) be a Gaussian process simulated from a GP prior
with a periodic covariance function with unit parame-
ters. The state space solution is benchmarked against
a naive GP implementation in Mathworks Matlab (im-
plemented as in [1] using the Cholesky decomposition).

Figure 5 shows the results for simulated GP regression
problems with the number of observations ranging up
to n = 10 000 and with ten repetitions each. The peri-
odic model was truncated at J = 6, and yet the worst
case root-mean-square error was ∼ 10−3. As stated
in Section 2 the computational complexity truly scales
linearly with respect to the number of observations.
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Figure 6: CO2 concentration observations (n = 2227,
values for years 1958–2000 not shown in figure) to-
gether with the 95% predictive confidence region (the
shaded patch is from the state space model, and the
thin lines from the exact GP solution).

4.2 Modeling Carbon Dioxide Concentration

In this section the method is applied to the well-known
time series data1 consisting of atmospheric CO2 con-
centration readings in parts per million (ppm) by vol-
ume from air samples collected at the Mauna Loa ob-
servatory, Hawaii (see, e.g., [1]). The observations are
monthly from 1958 to May 1974, after which the ob-
servations are weekly, resulting in 2227 measurements
altogether. Data collected after year 2010 were re-
tained for validation.

In practical GP modeling problems it is common to
combine several simple covariance functions in order
to come up with a model structure that meets the
requirements of the phenomenon. The following rather
simplified model is considered for the covariance:

k(τ) = k1(τ) + k2(τ) k3(τ) + k4(τ), (33)

where k1(·) is a squared exponential covariance func-
tion for the slow rising trend (hyperparameters σ2

1 , `1),
k2(·) the canonical periodic covariance function with a
period of one year (hyperparameters σ2

2 , `2), k3(·) is a
covariance function of the Matérn class with ν = 3/2
(hyperparameter `3), and k4(·) is a covariance function
of the Matérn class with ν = 3/2 (hyperparameters
σ2

4 , `4). The observations are assumed to be corrupted
by Gaussian noise with variance σ2

n.

Maximizing the marginal likelihood (quasi-Newton
BFGS) with respect to the hyperparameters and pre-
dicting 20 years forward gives the results that are
shown in Figure 6. The predictive 95% confidence re-
gion may be compared to the solid line representing

1Data available from ftp://ftp.cmdl.noaa.gov/ccg/
co2/trends/.
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Figure 7: Relative number of births in the US based
on daily data between 1969–1988 (n = 7305). The first
plot shows the non-periodic long-term effects, the two
latter the quasi-periodic seasonal and weekly effects.

the region corresponding to the full GP solution. The
approximation error is negligible even though both the
squared exponential and the periodic covariance func-
tion were approximated only by degree J = 6.

4.3 Modeling Birth Frequencies

Gaussian processes can ultimately be employed as
components in a larger model. As demonstrated in
[19], analysis of birthday frequencies can be done by
considering structural knowledge of population growth
and temporal patterns implied by the calendar weeks
and years. The data in this example consist of the
number of deliveries in the US during the years 1969–
1988 (observed daily, n = 7305). The data was pro-
vided by the US National Vital Statistics System,
available from Google BigQuery and pre-processed by
Chris Mulligan2.

Consider the following additive model with four com-
ponents: a Matérn (ν = 5/2, with hyperparameters
σ2

1 , `1) GP prior for a smooth slow trend, a Matérn
(ν = 3/2, with hyperparameters σ2

2 , `2) prior for
the fast non-periodic component, a quasi-periodic co-
variance function with a period of about one year
(365.25 days, J = 6, hyperparameters σ2

3 , `3) and
Matérn (ν = 3/2, hyperparameter `4) damping, and

2Data available from http://chmullig.com/
wp-content/uploads/2012/06/births.csv.

a quasi-periodic covariance function with a period of
one week (J = 6, hyperparameters σ2

5 , `5) and Matérn
(ν = 3/2, hyperparameter `6) damping. This is sim-
ilar to [19], but special days are not considered sepa-
rately. The observations are assumed to be corrupted
by Gaussian noise with variance σ2

n.

Optimizing (quasi-Newton BFGS) the marginal likeli-
hood with respect to all the 11 hyperparameters gives
the results that are shown in Figure 7. All the plots
have been scaled in the same way to show differences
relative to a baseline of 100. The first subfigure shows
the slow trend over the 20-year period and the faster
non-periodic component. The two remaining subfig-
ures visualize the periodic yearly and weekly effects
for years 1972, 1980, and 1988. The day of week and
seasonal effects are clearly quasi-periodic; the rising
number of induced births and selective C-sections has
affected the day of week effect. The results agree with
those of [19], and this can be regarded a successful ex-
ample of a beneficial reformulation of a GP model in
terms of sequential inference.

5 CONCLUSION

This paper has established the explicit connection be-
tween periodic covariance functions and stochastic dif-
ferential equations. This link enables the use of effi-
cient sequential inference methods to solve periodic
GP regression problems in O(n) time complexity.

This reformulation is a ‘best of both worlds’ approach;
it brings together the convenient model specification
and hyperparametrization of GPs with the computa-
tional efficiency of state space models. As shown in
Section 3.4, the approximation converges uniformly
and a rough upper bound for the error can be given
in closed-form. As demonstrated in the examples,
the computational benefits can be accomplished with
practically no loss of accuracy. Several extensions
could be considered: It is possible to consider time-
dependent frequencies (non-stationarity) as was done
in [11] for the resonator model. Spatio-temporal ex-
tensions could be formulated following [20].

The codes for running the examples in this paper are
available on the author’s web page: http://becs.

aalto.fi/~asolin/.
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