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Abstract

We study the problem of identifying bat
species from echolocation calls in order to
build automated bioacoustic monitoring al-
gorithms. We employ the Dynamic Time
Warping algorithm which has been success-
fully applied for bird flight calls identification
and show that classification performance is
superior to hand crafted call shape param-
eters used in previous research. This high-
lights that generic bioacoustic software with
good classification rates can be constructed
with little domain knowledge. We conduct a
study with field data of 21 bat species from
the north and central Mexico using a multi-
nomial probit regression model with Gaus-
sian process prior and a full EP approxima-
tion of the posterior of latent function val-
ues. Results indicate high classification accu-
racy across almost all classes while misclassi-
fication rate across families of species is low
highlighting the common evolutionary path
of echolocation in bats.

1 Introduction

In many tropical ecosystems, bats are keystone species
as they act as important pollinators, seed dispersal
agents and regulators of insect populations (Jones
et al., 2009). Inspite of their importance, most bat
population studies in the tropics have been short term
and the lack of long term bat monitoring programs
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is a result of their inherent difficulty. Bats produce
unique sounds at frequencies that usually do not over-
lap with other species and most bat species have
evolved species-specific echolocation calls (Fenton and
Bell, 1981; Jones and Teeling, 2006; Ahlen and Baage,
1999). However, their calls also show great inter-
species variation and flexibility caused by habitat, ge-
ography, sex, age, etc. and in other cases there is a
great overlap of call structures between species which
makes species identification complicated (Obrist, 1995;
Murray et al., 2001; Schnitzler et al., 2003). Devel-
oping automatic identification tools would therefore
assist in creating long term acoustic monitoring pro-
grams for biodiversity.

This work is a first step towards this direction. Our
aim here is not to do an exhaustive comparison of
methods, but to show that using state of the art algo-
rithms from the Machine Learning literature and with
no significant tunning or heavily engineered feature ex-
traction good identification rates can be achieved.

In this study we use data of 21 species collected in
North and Central Mexico and treat bat call identifi-
cation as a supervised classification problem. A repre-
sentative set of bat calls is used to train a classification
model which is then applied to classify novel instances
of bat calls. We employ a Multinomial probit regres-
sion model with Gaussian process prior (Girolami and
Rogers, 2006) which is a state of the art discrimina-
tive classification model achieving good generalization
capabilities with moderate to low numbers of training
data. We also utilize a kernel representation of the
data that directly compares the calls’ spectrograms
and thus requires minor tunning.

The rest of the paper is organised as follows. In Section
2 we briefly review related work to our study. In Sec-
tion 3 we describe our methods. The GP classification
model is described in detail in Section 3.1 and how to
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efficiently optimise parameters is discussed in Section
3.2. Different data representations are discussed in
Sections 3.3-3.5. Section 4 discusses how data are col-
lected and our experiments while Section 5 concludes
the paper. The data used in this paper are available to
download1 as supplementary material with the aim to
promote researchers in the Statistics, Artificial Intelli-
gence and Machine Learning fields to conduct research
in the area of bioacoustic monitoring for biodiversity
programs.

2 Related Work

2.1 Bat Call Classification

Previous research on bat call identification has also ap-
proached the problem from a supervised learning per-
spective. The most studied methods employ a number
of call parameters extracted from the calls spectrogram
or FFT and then Discriminant Function Analysis and
Artificial Neural Networks are employed for supervised
classification (Walters et al., 2012; Parsons and Jones,
2000; Fenton and Bell, 1981). Although the call shape
parameters encode important prior knowledge on bat
call shapes, they are not flexible enough to model in-
ter and intra species variations and capture the rich
information encoded in the calls’ spectrograms, such
as harmonics. Moreover, the classification algorithms
utilised in previous research impose constraints on the
data representation and make integration of different
sources of data and representation difficult. Finally,
optimising the architecture of an Artificial Neural Net-
work is not trivial and little guidance is available.

In this work we show that by comparing directly
the spectrograms with the Dynamic Time Warping
(DTW) algorithm we can obtain better classification
accuracy than using call shape parameters. However
we also show that augmenting the DTW representa-
tion with call shape parameters can further improve
classification indicating that prior knowledge on call
shapes is an important factor for bat call identifica-
tion.

2.2 Dynamic Time Warping Kernels

Dynamic Time Warping (DTW) is a dynamic pro-
gramming algorithm (Sakoe and Chiba, 1978) for com-
paring sequence-based and time-series data which can
vary in time or speed. Given two sequences, x of length
N and y of lengthM , it stretches or expands x in order
to match y by minimizing the alignment cost based on
an application specific function or some distant mea-
sure obtained from the warped paths.

1http://www.engage-project.org/

More formally, given two sequences x,y of lengths N
and M respectively and a local cost or dissimilarity
matrix D ∈ RN,M for each pair of elements in x,y,
an alignment path is a sequence p = (p1, . . . , pL) with
pl = (nl,ml) ∈ [1 : N ] × [1 : M ]. The total cost of

an alignment path is cp =
∑L

l=1D(xnl
, yml

) while the
optimal alignment score is defined as the alignment
with the minimum total score, i.e. cp∗ = argmin

p
cp.

With the success of kernel based classification meth-
ods such as the Support Vector Machines and Gaus-
sian process classifiers several researches have investi-
gated the use of DTW to construct positive definite
kernel functions. The kernel proposed by Hansheng
and Bingyu (2007) however is not guaranteed to be
positive definite. Damoulas et al. (2010) proposed a
global DTW kernel by constructing a vector represen-
tation utilising the optimal alignment costs with all
training sequences. Their work has shown great clas-
sification accuracy of bird flight calls and we therefore
adopt their method in our study.

2.3 Multi-Class GP Classification

Gaussian process regression (Rasmussen and Williams,
2005) has been a well known algorithm in the Ma-
chine Learning comunity, known for it superior gener-
alisation capabilities with moderate to low numbers of
training data. It is based on a kernel representation
of the data, allowing for different types of data repre-
sentations to be utilised, and is not restricting the use
of vector representations with the same length, thus
making it suitable for times-series.

Classification with GP models however is not amend-
able to analytical solutions and usually approximate
inference methods are used. For binary classification,
the Expectation Propagation (EP) algorithm has been
shown to provide better approximation to the neces-
sary integrals required for inference (Kuss and Ras-
mussen, 2005). However, for the multinomial case,
where there are many mutually exclusive classes, the
EP algorithm requires additional approximations of
the tilted distributions (Girolami and Zhong, 2007).
Recently Riihimaki et al. (2013) proposed the nested
EP algorithm where the moments of the tilted distri-
butions are obtained by an inner EP approximation.
They show that a single iteration of the inner EP algo-
rithm is enough for the algorithm to converge thus pro-
viding significant computational savings. In this paper
we show that the same algorithm of Riihimaki et al.
(2013) can be obtained by an augmentation and per-
mutation of the latent function values and thus there
is no need to interpret the algorithm as a nested EP.

914



V. Stathopoulos, V. Zamora-Guitierrez, K. E. Jones, M. A. Girolami

3 Methodology

We approach bat call identification as a classifica-
tion problem where the class response variables yn ∈
{1, . . . C} indicate the species id for the nth call in the
library and x ∈ RD is a D-dimensional vector repre-
sentation of the call, e.g. features extracted from the
call’s spectrogram. We will discuss how such represen-
tation is generated for each call in Sections 3.3 - 3.4.
Species’ ids from all calls in the library are collected in
a vector y = [y1, . . . , yN ] and all call vector represen-
tations are collected in the matrix X = [x1, . . . ,xN ]T

of size N ×D. In Section 3.1 we will define a proba-
bilistic model for the conditional probability p(y|X,θ)
where θ denotes a vector of unknown model parame-
ters with an associated prior distribution p(θ). The
id for a new call, y∗, with vector representation x∗

is obtained by the class with highest probability from
p(y∗|x∗,X,y, θ̂) where parameter estimates θ̂ are ob-
tained by maximizing the posterior distribution, i.e.
θ̂ = argmax

θ
p(θ|X,y).

3.1 Multinomial Probit Regression with GP
prior

The probabilistic model assumes a latent function
f : RD → RC with latent values f(xn) =
fn = [f1n, f

2
n, . . . , f

C
n ]T such that when transformed

by a sigmoid-like function give the class probabilities
p(yn|fn). Here we use a the multinomial probit func-
tion,

p(yn|fn) =

∫
N (un|0, 1)

C∏
j=1,j 6=yn

Φ(un+fyn
n −f jn)dun,

(1)
which is convenient for deriving the EP approxi-
mation and Gibbs sampling (Seeger et al., 2006;
Girolami and Rogers, 2006). For the latent func-
tion values we assume independent zero-mean Gaus-
sian process priors for each class similar to Ras-
mussen and Williams (2005). Collecting latent
function values for all calls and classes in f =
[f11 , . . . , f

1
N , f

2
1 , . . . , f

2
N . . . , fC1 , . . . , f

C
N ]T the GP prior

is

p(f |X,θ) = N (f |0,K(θ)) , (2)

where K(θ) is a CN × CN block covariance matrix
with block matrices K1(θ), . . . ,KC(θ), each of size
N ×N , on its diagonal. Elements Kc

i,j define the prior
covariance between the latent function values f ci , f cj
governed by a covariance function k(xi,xj |θ) with un-
known parameters θ. A common choice for the covari-

ance function is the squared exponential defined as

kse(xi,xj |θ) = σ2 exp

(
−1

2
λ−2

D∑
d=1

(xi,d − xj,d)2

)
,

(3)
with parameters θ = [σ2, λ]T , but we will discuss other
variations in Sections 3.3 - 3.5.

Optimising the unknown kernel parameters θ involves
computing and maximising the posterior

p(θ|X,y) ∝ p(θ)

∫
p(y|f)p(f |X,θ)df . (4)

Making predictions for a new call, y∗, x∗, involves two
steps. First computing the distribution of the latent
function values for the new call

p(f∗|x∗,X,y, θ̂) =

∫
p(f∗|x∗,f ,X, θ̂)p(f |X,y, θ̂)df ,

(5)
and then computing the class probabilities using the
multinomial probit function

p(y∗|x∗,X,y, θ̂) =

∫
p(y∗|f∗)p(f∗|x∗,X,y, θ̂)df∗.

(6)

3.2 Full EP approximation

Unfortunately exact inference, i.e. computing the inte-
grals, for Equations (4-6) is not possible and we have to
either resort to numerical estimation through Markov
Chain Monte Carlo or use approximate methods. Due
to the large number of classes (21 species in our data)
in this work we consider the latter approach and use
Expectation Propagation (EP) (Minka, 2001) to ap-
proximate the posterior of the latent function values
p(f |X,y,θ) in Equations (4) and (5) while for com-
puting the integral in (6) we can again use the EP
algorithm.

The EP method approximates the posterior using

qEP (f |X,y,θ) ≈ 1

ZEP
p(f |X,θ)

N∏
n=1

t̃n(fn|Z̃n, µ̃n, Σ̃n),

(7)

where t̃n(fn|Z̃n, µ̃n, Σ̃n) = Z̃nN
(
fn|µ̃n, Σ̃n

)
are

local likelihood approximate terms with parameters
Z̃n, µ̃n, Σ̃n. The approximation parameters are up-
dated by first computing the cavity distribution

q−n(fn) = qEP (fn|X,y,θ)t̃n(fn|Z̃n, µ̃n, Σ̃n)−1 (8)

and then matching Z̃n, µ̃n, Σ̃n with the zero, first and
second moments of the corresponding tilted distribu-
tion

q̂(fn) = Ẑ−1n q−n(fn)p(yn|fn). (9)
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Unlike the binary probit case, where the tilted distri-
bution (9) is univariate and thus its moments are easy
to compute, the tilted distribution for the multino-
mial probit model is C-dimensional. Previous work on
EP approximations for the multinomial probit model
(Girolami and Zhong, 2007) further approximated the
moments of the tilted distribution using the Laplace
approximation. This assumes that the distributions
can be closely approximated my a multivariate nor-
mal.

In this work we show that a full EP algorithm can
be derived by augmenting the latent function values
f with the auxiliary variables un from Equation (1)
and permuting both the augmented variables and the
covariance matrix K(θ). This results in the same al-
gorithm as the ”nested” EP approximation presented
by Riihimaki et al. (2013). However this presentation
clearly shows why a single iteration of the inner EP for
the tilted distributions using the moments estimated
from the previous iteration of the outer EP is enough
for the algorithm to converge.

We introduce the new variables w which are formed by
augmenting f with un and permuting such that w =
[f11 , . . . , f

C
1 , u1, f

1
2 , . . . , f

C
2 , u2, . . . , f

1
N , . . . , f

C
N , uN ]T .

Similarly we augment the covariance matrix K(θ) and
permute accordingly such that the new covariance ma-
trix V (θ) is a (C+ 1)N × (C+ 1)N block matrix with
blocks V (θ)i,j = diag([K1

i,j , . . . ,K
C
i,j , δi=j ]), i, j ∈

{1, . . . , N} of size C + 1 × C + 1 and δi=j is 1 if and
only if i = j. Now we can write the posterior for w as

p(w|X,y,θ) ∝ N (w|0,V )
N∏

n=1

C∏
j=1,j 6=yn

Φ(wT
nbn,j),

(10)
where wn = [f1n, . . . , f

C
n , un]T and bn,j = [(eyn

−
ej), 1]T with ej a C-dimensional vector of zeros and
the jth element set to 1.

The EP approximate posterior for w follows as

qep(w) = Z−1ep N (w|0,V )

N∏
n=1

C∏
j=1,j 6=yn

t̃n,j(w
T
nbn,j),

(11)

where t̃n,j(w
T
nbn,j) = Z̃−1n,jN

(
wT

nbn,j |β̃n,j , α̃n,j

)
are the local approximate terms with parameters
Z̃n,j , β̃n,j , α̃n,j . This corresponds to an approximate
posterior with N(C − 1) local approximation terms
which have to be updated by matching their moments
with the corresponding tilted distributions

q̂(wT
nbn,j) = Ẑ−1n,jq−n,j(w

T
nbn,j)Φ(wT

nbn,j), (12)

where q−n,j(w
T
nbn,j) = qep(wT

nbn,j)t̃n,j(w
T
nbn,j)

−1

are the cavity distributions. Calculating the moments

for the tilted distribution can now be done analyti-
cally as Equation (12) resembles the tilted distribution
of the probit model (Rasmussen and Williams, 2005;
Riihimaki et al., 2013).

3.3 Spectrogram Features

The vector representation xn for each call is con-
structed by extracting call shape parameters from the
call’s spectrogram similar to Walters et al. (2012). The
spectrogram of a call is calculated by using a ham-
ming window of size 256 with 95% overlap and an FFT
length of 512. The frequency range of the spectrogram
is thresholded by removing frequencies below 5kHz and
above 210kHz. An example of a call’s spectrogram is
illustrated in Figure 1. In total 32 parameters are cal-
culated including the call’s duration in miliseconds,
the highest and lowest frequencies of the call, its total
frequency spread, the frequency with maximum ampli-
tude, the frequencies at the start and end of the call
etc. We do not give a full list of the call parameters
here as they are available to download in the supple-
mentary material2 accompanying this paper.

Figure 1: Example of a call’s spectrogram. See text
for details on spectrogram computation.

All 32 call parameters are concatenated in the vector
xn and a squared exponential kernel

ksei(xi,xj |θ) = σ2 exp

(
−1

2

D∑
d=1

λ−2d (xi,d − xj,d)2

)
,

(13)
with individual length scales for each parameter is used
for the GP classifier.

2http://www.engage-project.org/
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3.4 Dynamic Time Warping Kernel

Although extracting call shape parameters from the
spectrogram of a call captures some of the call’s char-
acteristics and shape, there is still a lot of informa-
tion that is discarded, e.g. harmonics. An alternative
to characterising a call using predefined parameters
is to directly utilise its spectrogram. However due
to the differences in call duration the spectrograms
will need to be normalised in order to have the same
length using some form of interpolation. In this work
we borrow ideas from speech recognition (Sakoe and
Chiba, 1978) and previous work on bird call classifica-
tion (Damoulas et al., 2010) and employ the Dynamic
Time Warping (DTW) kernel to directly compare two
calls’ spectrograms.

Given two calls i, j from the library and their spec-
trograms Si,Sj , where Si ∈ CF×W with F being the
number of frequency bands and W the number of win-
dows, the dissimilarity matrix Di,j ∈ RW×W is con-
structed such that

Di,j(w, v) = 1− Si(:, w)TSj(:, v)√
Si(:, w)TSi(:, w)Sj(:, v)TSj(:, v)T

.

(14)

Figure 2: Example of DTW optimal warping path for
2 call spectrograms from the same species. Top row,
call spectrograms; bottom row, dissimilarity matrix
and optimal warping path.

DTW uses the dissimilarity matrix in order to stretch
or expand spectrogram Si over time in order to match
Sj by calculating the optimal warping path with the
smallest alignment cost, ci,j , using dynamic program-
ming. Figure 2 illustrates the optimal warping path
for two calls in the library.

For each call we construct a vector representation xn

by computing the optimal warping paths with all N

calls from the library and concatenating the alignment
costs such that xn = [cn,1, . . . , cn,N ]. We then use the
squared exponential covariance function in Equation
(3) for the covariance matrix of the GP classifier.

3.5 Multiple Kernel GP

GP classifiers allow for integrating information from
different sources or different representations of the
data by combining covariance functions. Although
both representations discussed in the previous sections
are extracted from a call’s spectrogram, some of the
call parameters used in Section 3.3 involve non-linear
and complex transformations of the spectrograms by
utilising prior knowledge of bat call shapes. Since such
knowledge is important for bat call identification and
is not present in the DTW representation we com-
bine both kernels by a weighted sum and treating the
weights as unknown parameters.

Figure 3: Class sorted kernel matrix for the weighted
average of the DTW and call shape parameters repre-
sentations.

Denoting the vector representation computed by ex-
tracting call parameters from the spectrogram by

x
(vect)
n and the DTW by x

(dtw)
n , the new covariance

function is

w1ksei(x
(vect)
i ,x

(vect)
j ) + w2kse(x

(dtw)
i ,x

(dtw)
j ),

where we restrict w1 and w2 to sum to 1. Figure 3
illustrates the kernel matrix obtained on the training
set of calls in our library with optimised parameters.

4 Experimental Setup and Data

4.1 Data

Bat echolocation calls were recorded across North and
Central Mexico from June to November 2012 and from
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Table 1: Dataset statistics

Species Samples Calls
Family: Emballonuridae

1 Balantiopteryx plicata 16 384
Family: Molossidae

2 Nyctinomops femorosaccus 16 311
3 Tadarida brasiliensis 49 580
Family: Mormoopidae

4 Mormoops megalophylla 10 135
5 Pteronotus davyi 8 106
6 Pteronotus parnellii 23 313
7 Pteronotu personatus 7 51
Family: Phyllostomidae

8 Artibeus jamaicensis 11 82
9 Desmodus rotundus 6 38
10 Leptonycteris yerbabuenae 26 392
11 Macrotus californicus 6 53
12 Sturnira ludovici 12 71
Family: Vespertilionidae

13 Antrozous pallidus 58 1937
14 Eptesicus fuscus 74 1589
15 Idionycteris phyllotis 6 177
16 Lasiurus blossevillii 10 90
17 Lasiurus cinereus 5 42
18 Lasiurus xanthinus 8 204
19 Myotis volans 8 140
20 Myotis yumanensis 5 89
21 Pipistrellus hesperus 85 2445

February to May 2013. We used 10 mist nets of 12,
9 and 6 m and 36 mm knot-to-knot mesh size erected
at ground level (0-3 m) to capture bats. Nets were
set 30 minutes before sunset and closed 30 minutes
after sunrise to cover two of the most important bat
activity peaks thus increasing capture success. Live-
trapped bats were measured and identified to species
level using field keys (Medelĺın et al., 2008; Ceballos
and Oliva, 2005) and bat taxonomy followed Simmons
(2008). We constructed an echolocation call library by
recording the calls of captured individuals using two
different techniques: 1) bats were recorded while re-
leased from the hand about 6 to 10 m from the bat
detector in open areas and away from vegetation, 2)
bats were tied to a zip-line and recorded while fly-
ing along the zip flight path. Echolocation calls were
recorded with a Pettersson 1000x bat detector (Pet-
tersson Elektronik AB, Uppsala, Sweden) and stored
on a Sandisk 8 GB Extreme CF Compact Flash Card.

The bat detector was set to manually record calls in
real time, full spectrum at 500 KHz. Each recording
consists of multiple calls from a single individual bat.

In total our dataset consists of 21 species, 449 indi-
vidual bats and 8429 calls. Table 1 gives a summary
of the dataset. Care must be taken when spliting the
data to training and test sets during cross-validation in
order to ensure that calls from the same individual bat
recording are not in both sets. For that we split our
dataset using recordings instead of calls. For species
with less than 100 recordings we include as many calls
as possible up to a maximum of 100 calls per species.
The raw data as well as the post processed and 5-fold
cross validation sets are available to download3 as a
supplementary material for this paper.

4.2 Experiments

We compare the classification accuracy of the multi-
nomial probit regression with Gaussian process prior
classifier using the three representations discussed in
Sections 3.3-3.3. The values of the call shape param-
eters are normalised to have zero mean and standard
deviation equal to one by subtracting the mean and
dividing by the standard deviation of the call shape
parameters in the training set. For the 33 covariance
function parameters, σ2 and λ1, . . . , λ32 we use inde-
pendent Gamma priors with shape parameter 1.5 and
scale parameter 10. For the DTW representation each
call vector of optimal alignment costs is normalised to
unit length and independent Gamma (1.5, 10) priors
are used for the magnitude and length-scale covariance
function parameters. The weights for the linear com-
bination of the DTW and call shape kernel functions
in Equation (3.5) are restricted to be positive and sum
to 1 and a flat Dirichlet prior is used.

As a baseline we also compare with a multi-class Sup-
port Vector Machine (SVM) classifier using the Lib-
SVM software library (Chang and Lin, 2011). For
the SVM we use the call shape parameters and the
DTW representations with a squared exponential ker-
nel. The kernel lengthscale parameter, γ, and the
relaxation parameter, C, for the SVM where opti-
mised using a held out validation data set and a
grid search with values C ∈ {2−5, 2−3, . . . , 215} and
γ ∈ {2−15, 213, 23}. Combining both kernel represen-
tations using a weighted sum would require optimis-
ing 4 parameters simultaneously with cross validation
which is not straight-forward using grid search there-
fore we do not compare against this option.

3http://www.engage-project.org/
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4.3 Results

Table 2 compares the misclassification rate of the three
methods. Results are averages of a 5-fold cross vali-
dation. We can see that the DTW representation is
significantly better for characterising the species vari-
ations achieving a better classification accuracy. How-
ever, results can be improved by also considering in-
formation from the call shape parameters. Moreover,
the optimised weights for the kernel combination sig-
nificantly favor the DTW covariance function with a
weight of ≈ 0.8 in contrast to the call shape parame-
ters with weight ≈ 0.2. If we fix the weight parameters
to equal values we obtain a classification error rate of
0.22± 0.031 highlighting the importance of the DTW
kernel matrix.

The independent length scales allow us also to inter-
pret the discriminatory power of the call shape param-
eters. In our experiments, the frequency at the center
of the duration of a call, the characteristic call fre-
quency (Determined by finding the point in the final
40% of the call having the lowest slope or exhibiting
the end of the main trend of the body of the call),
as well as the start and end frequencies of the call
have consistently obtained a small lengthscale param-
eter value indicating their importance in species dis-
crimination. This coincides with expert knowledge on
bat call shapes where these call shape parameters are
extensively used for identifying species.

Table 2: Classification results, smaller values are bet-
ter.

Method Error rate Std.

SVM shape parameters 0.26 ±0.064
SVM DTW 0.25 ±0.035
GP shape parameters 0.24 ±0.052
GP DTW 0.21 ±0.026
GP DTW + shape param. 0.20 ±0.037

In Figure 4 the confusion matrix from the best classi-
fication results, 15% misclassification rate, are shown.
There is an overall high accuracy for all classes with
the exception of species Lasiurus xanthinus, class 18,
which is often misclassified as Antrozous pallidus, class
13, which needs to be further investigated. In contrast,
the very similar call shapes of the Myotis species are
easily discriminated. Finally, misclassification rates
are higher to within family species compared to species
from other families indicating a common evolutionary
path of bat echolocation.
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Figure 4: Confusion matrix of the best classification.
Classes are in the same order and grouped as in Table
1

5 Conclusions and Future Work

Previous works highlight the complexity to discrim-
inate species from the Phyllostomidae family, while
others recognized Myotis species hard to classify as
well. The high accuracy obtained in this study to sep-
arate species in the Phyllostomidae family from other
families and its ability to discriminate between Myotis
species sets the ground for a further development of
an automatic identification tool for Mexican bats. Al-
though only a small set of Mexican bat species was
used in this study, it suggests promising applications
to a bigger set of species. Despite these limitations, the
development of a national call library of full-spectrum
calls together with the echolocation classification tool
will set the foundations to establish a long-term Na-
tional Bat Acoustic Monitoring Program. This is a
feasible alternative for developing countries to create
biodiversity monitoring programs and develop volun-
teer networks since they are easier and less costly to
implement at broad scales and on a long term basis as
compared to other monitoring techniques.
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