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Abstract

We propose a novel unsupervised approach
for linking records across arbitrarily many
files, while simultaneously detecting dupli-
cate records within files. Our key innovation
is to represent the pattern of links between
records as a bipartite graph, in which records
are directly linked to latent true individuals,
and only indirectly linked to other records.
This flexible new representation of the link-
age structure naturally allows us to estimate
the attributes of the unique observable peo-
ple in the population, calculate k-way poste-
rior probabilities of matches across records,
and propagate the uncertainty of record link-
age into later analyses. Our linkage struc-
ture lends itself to an e�cient, linear-time,
hybrid Markov chain Monte Carlo algorithm,
which overcomes many obstacles encountered
by previously proposed methods of record
linkage, despite the high dimensional param-
eter space. We assess our results on real and
simulated data.

1 Introduction

When data about individuals comes from multiple
sources, it is essential to match, or link, records from
di↵erent files that correspond to the same individual.
Other names associated with record linkage are en-
tity disambiguation and coreference resolution, mean-
ing that records which are linked or co-referent can
be thought of as corresponding to the same underly-
ing entity. Solving this problem is not just important
as a preliminary to statistical analysis; the noise and
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distortions in typical data files make it a di�cult, and
intrinsically high-dimensional, problem [8, 11, 16, 17].

We propose a Bayesian approach to the record linkage
problem based on a parametric model that addresses
matching k files simultaneously and includes dupli-
cate records within lists. We represent the pattern
of matches and non-matches as a bipartite graph, in
which records are directly linked to the true but latent
individuals which they represent, and only indirectly
linked to other records. Such linkage structures allow
us to simultaneously solve three problems: record link-
age, de-duplication, and estimation of unique observ-
able population attributes. The Bayesian paradigm
naturally handles uncertainty about linkage, which
poses a di�cult challenge to frequentist record link-
age techniques.1 Doing so permits valid statistical in-
ference regarding posterior matching probabilities of
records and propagation of errors as discussed in §3.

To estimate our model, we develop a hybrid MCMC
algorithm, in the spirit of [9], which runs in linear time
in the number of records and the number of MCMC
iterations, even in high-dimensional parameter spaces.
Our algorithm permits duplication across and within
lists but runs faster if there are known to be no dupli-
cates within lists. We achieve further gains in speed
using standard record linkage blocking techniques [2].

We apply our method to data from the National Long
Term Care Survey (NLTCS), which tracked and sur-
veyed approximately 20,000 people at five-year inter-
vals. At each wave of the survey, some individuals had
died and were replaced by a new cohort, so the files
contain overlapping but not identical sets of individu-
als, with no within-file duplicates.

1.1 Related Work

The classical work of [5] considered linking two files in
terms of Neyman-Pearson hypothesis testing. Com-

1
Liseo and Tancredi [13] review Bayesian contributions

to record linkage.
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pared to this baseline, our approach is distinctive in
that it handles multiple files, models distortion explic-
itly, o↵ers a Bayesian treatment of uncertainty and
error propagation, and employs a sophisticated graph-
ical data structure for inference to latent individuals.
Fellegi-Sunter methods based upon [5] can extend to
k > 2 files [14], but they break down for even mod-
erately large k or complex data sets. Moreover, they
give little information about uncertainty in matches, or
about the true values of noise-distorted records. The
idea of modeling the distortion process originates with
the “Hit-Miss Model” by [3], which anticipates part of
our model in §2.1. The specific distortion model we
use is however closer to that introduced in [7], as part
of a nonparametric frequentist technique for matching
k = 2 files. We di↵er from [7] by introducing latent
individuals and distortion through a Bayesian model.

Within the Bayesian paradigm, most work has focused
on specialized problems related to linking two files,
which propagate uncertainty [1, 6, 12, 15]. These con-
tributions, while valuable, do not easily generalize to
multiple files and duplicate detection.

Two recent papers [4, 6] are most relevant to the nov-
elty of our work, namely the linkage structure. To aid
recovering information about the population from dis-
torted records, [6] called for developing “more sophis-
ticated network data structures.” Our linkage graphs
are such a data structure with the added benefit of
permitting de-duplication and handling multiple files.
Moreover, due to exact error propagation, our meth-
ods are also easily integrated with other analytic pro-
cedures. Algorithmically, the closest approach to our
linkage structure is the graphical representation in [4],
for de-duplication within one file. Their representation
is a unaparatite graph, where records are linked to each
other. Our use of a bipartite graph with latents indi-
viduals naturally fits in the Bayesian paradigm along
with distortion. Our method is the first to handle
record linkage and de-duplication, while also modeling
distortion and running in linear time.

2 Notation, Assumptions, and
Linkage Structure

We begin by defining some notation, where we have
k files or lists. For simplicity, we assume that all files
contain the same p fields, which are all categorical,
field ` having M

`

levels. We also assume that ev-
ery record is complete. (Handling missing-at-random
fields within records is a minor extension within the
Bayesian framework.) Let x

ij

be the data for the jth
record in file i, where i = 1, . . . , k, j = 1, . . . , n

i

, and
n
i

is the number of records in file i; x
ij

is a categorical
vector of length p. Let y

j

0 be the latent vector of true

field values for the j0th individual in the population (or
rather aggregate sample), where j0 = 1, . . . , N , N be-
ing the total number of observed individuals from the
population. N could be as small as 1 if every record
in every file refers to the same individual or as large as
N

max

⌘

P

k

i=1

n
i

if no datasets share any individuals.

Now define the linkage structure ⇤ = {�
ij

; i =
1, . . . , k ; j = 1, . . . , n

i

} where �
ij

is an integer from
1 to N

max

indicating which latent individual the jth
record in file i refers to, i.e., x

ij

is a possibly-distorted
measurement of y

�ij . Finally, z
ij`

is 1 or 0 according
to whether or not a particular field ` is distorted in
x

ij

.

As usual, we use I for indicator functions (e.g.,
I(x

ij`

= m) is 1 when the `th field in record j in
file i has the value m), and �

a

for the distribution of a
point mass at a (e.g., �

y�ij`
). The vector ✓

`

of length
M

`

denotes the multinomial probabilities. For clarity,
we always index as follows: i = 1, . . . , k; j = 1, . . . , n

i

;
j0 = 1, . . . , N ; ` = 1, . . . , p; m = 1, . . . ,M

`

.

2.1 Independent Fields Model

We assume that the files are conditionally indepen-
dent, given the latent individuals, and that fields are
independent within individuals. We formulate the fol-
lowing Bayesian parametric model, where the joint
posterior is in closed form and we sample from the
full conditionals using a hybrid MCMC algorithm:

x

ij`

| �
ij

,y
�ij`, zij`,✓`

ind

⇠

(

�
y�ij`

if z
ij`

= 0

MN(1,✓
`

) if z
ij`

= 1

z
ij`

ind

⇠ Bernoulli(�
`

)

y

j

0
`

| ✓

j`

ind

⇠ MN(1,✓
`

)

✓

`

ind

⇠ Dirichlet(µ
`

)

�
`

ind

⇠ Beta(a
`

, b
`

)

⇡(⇤) / 1,

where a
`

, b
`

, and µ

`

are all known, and MN denotes
the Multinomial distribution.

Remark 2.1: We assume that every legal configura-
tion of the �

ij

is equally likely a priori. This implies
a non-uniform prior on related quantities, such as the
number of individuals in the data. The uniform prior
on ⇤ is convenient, since constructing either a sub-
jective or an alternative objective prior is unclear. A
uniform distribution on one quantity, i.e. ⇤, implies
a non-uniform distribution on other, related quanti-
ties (such as N). Making every entry in the matrix
�
ij

uniformly distributed on 1, 2, . . . N
max

implies that
the distribution of N , a function of ⇤, is not uniform
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on 1, 2, . . . N
max

. This is a long-standing problem with
“non-informative priors” [10].

Deriving the joint posterior and conditional distribu-
tions is now mostly straightforward. One subtlety,
however, is that y, z and ⇤ are all related, since if
z
ij`

= 0, then it must be the case that y
�ij` = x

ij`

.
Taking this into account, the joint posterior is

⇡(⇤,y, z,✓,� | x)

/

Y

i,j,`,m

h

(1� z
ij`

)�
y�ij`

(x
ij`

) + z
ij`

✓
I(xij`=m)

`m

i

⇥

Y

`,m

✓
µ`m+

PN
j0=1 I(yj0l=m)

`m

⇥

Y

`

�
a`�1+

Pk
i=1

Pni
j=1 zij`

`

⇥ (1� �
`

)b`�1+

Pk
i=1

Pni
j=1(1�zij`).

We suppress derivation of the full conditionals, but
note that the full conditionals of y, z and ⇤ always
obey their logical dependence, and therefore never con-
dition on impossible events. The full conditional of ⇤
must reflect whether or not there are duplicates within
files. If we define R

ij

0 = {j : �
ij

= j0} , then not hav-
ing within-file duplicates means that R

ij

0 must be ei-
ther ; or a single record, for each i and j0. Graphically,
this means allowing or forbidding links from a latent
individual to multiple records within one file.

2.2 Split and MErge REcord linkage and
De-duplication (SMERED) Algorithm

Our main goal is estimating the posterior distribution
of the linkage (i.e., the clustering of records into in-
dividuals). The simplest way of accomplishing this
is via Gibbs sampling. We could iterate through the
records, and for each record, sample a new assignment
to an individual (from among the individuals repre-
sented in the remaining records, plus an individual
comprising only that record). However, this requires
the quadratic-time checking of proposed linkages for
every record. Thus, instead of Gibbs sampling, we use
a hybrid MCMC algorithm to explore the space of pos-
sible linkage structures, which allows our algorithm to
run in linear time.

Our hybrid MCMC takes advantage of split-merge
moves, as done in [9], which avoids the problems as-
sociated with Gibbs sampling, even though the num-
ber of parameters grows with the number of records.
This is accomplished via proposals that can traverse
the state space quickly and frequently visit high-
probability modes, since the algorithm splits or merges
records in each update, and hence, frequent updates of
the Gibbs sampler are not necessary.

Furthermore, a common technique in record linkage
is to require an exact match in certain fields (e.g.,
birth year) if records are to be linked. This technique
of blocking can greatly reduce the number of possible
links between records (see e.g., [17]). Since blocking
gives up on finding truly co-referent records which dis-
agree on those fields, it is best to block on fields that
have little or no distortion. We block on the fairly re-
liable fields of sex and birth year in our application to
the NLTCS below. A strength of our model is that it
incorporates blocking organically. Setting b

`

= 1 for
a particular field ` forces the distortion probability for
that field to zero. This requires matching records to
agree on the `th field, just like blocking.

We now discuss how the split-merge process links
records to records, which it does by assigning records
to latent individuals. Instead of sampling assignments
at the record level, we do so at the individual level. Ini-
tially, each record is assigned to a unique individual.
On each iteration, we choose two records at random.
If the pair belong to distinct latent individuals, then
we propose merging those individuals to form a sin-
gle new latent individual (i.e., we propose that those
records are co-referent). On the other hand, if the two
records belong to the same latent individual, then we
propose splitting it into two new latent individuals,
each seeded with one of the two chosen records, and
the other records randomly divided between the two.
Proposed splits and merges are accepted based on the
Metropolis-Hastings ratio and rejected otherwise.

To choose the pair of records, one option is to sam-
ple uniformly from among all possible pairs. How-
ever, this is not ideal, for two reasons. First, most
pairs of records are extremely unlikely to match since
they agree on few, if any, fields. Frequent proposals
to merge such records are wasteful. Therefore, we
employ blocking, and only consider pairs of records
within the same block. Second, sampling from all pos-
sible pairs of records will sometimes lead to propos-
als to merge records in the same list. If we permit
duplication within lists, then this is not a problem.
However, if we know (or assume) there are no dupli-
cates within lists, we should avoid wasting time on
such pairs. The no-duplication version of our algo-
rithm does precisely this. (See Algorithm 1 for pseu-
docode.) When there are no duplicates within files, we
call the SMERE (Split and MErge REcord linkage) al-
gorithm, which enforces the restriction that R

ij

0 must
be either ; or a single record. This is done through lim-
iting the proposal of record pairs to those in distinct
files; the algorithm otherwise matches SMERED.
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Algorithm 1: Split and MErge REcord linkage and
De-duplication (SMERED)

Data: X and hyperparameters
Initialize the unknown parameters ✓,�,y, z, and ⇤.

for i 1 to S
G

do
for j  1 to S

M

do
for t 1 to S

T

do
Draw records R

1

and R
2

uniformly and
independently at random.
if R

1

and R
2

refer to the same individual

then
propose splitting that individual,
shifting ⇤ to ⇤0

endif
else

propose merging the individuals R
1

and R
2

refer to, shifting ⇤ to ⇤0

endif

r  min
n

1, ⇡(⇤0
,y,z,✓,�|x)

⇡(⇤,y,z,✓,�|x)

o

Resample ⇤ by accepting proposal with
Metropolis probability r or rejecting with
probability 1� r.

end
Resample y and z.

end
Resample ✓,�.

end

return ✓|X,�X,y|X, z|X, and ⇤|X.

2.2.1 Time Complexity

Scalability is crucial to any record linkage algorithm
Current approaches typically run in polynomial (but
super-linear) time in N

max

. (The method of [14] is
O(Nk

max

), while that of [4] finds the maximum flow in
an N

max

-node graph, which is O(N3

max

), but indepen-
dent of k.) In contrast, our algorithm is linear in both
N

max

and MCMC iterations.

Our running time is proportional to the number of
Gibbs iterations S

G

, so we focus on the time taken
by one Gibbs step. Recall the notation from §2,
and define M = 1

p

P

p

`=1

M
`

as the average num-

ber of possible values per field (M � 1). The time
taken by a Gibbs step is dominated by sampling
from the conditional distributions. Specifically, sam-
pling � and y are both O(pN

max

); sampling ✓ is
O(pMN) + O(pN

max

) = O(pMN), as is sampling z.
Sampling ⇤ is O(pN

max

M) if done carefully. Thus, all
these samples can be drawn in time linear in N

max

.

Since there are S
M

Metropolis steps within each
Gibbs step and each Metropolis step updates y,
z, and ⇤, the time needed for the Metropo-

lis part of one Gibbs step is O(S
M

pN
max

) +
O(S

M

pMN) +O(S
M

pN
max

M). Since N  N
max

, the
run time becomes O(pS

M

N
max

) + O(MpS
M

N
max

) =
O(MpS

M

N
max

). On the other hand, the updates
for ✓ and � occur once each Gibbs step implying
the run time is O(pMN) + O(pN

max

). Since N 

N
max

, the run time becomes O(pMN
max

+ pN
max

) =
O(pMN

max

). The overall run time of a Gibbs step
is O(pMN

max

S
M

) + O(pMN
max

) = O(pMN
max

S
M

).
Furthermore, for S

G

iterations of the Gibbs sampler,
the algorithm is order O(pMN

max

S
G

S
M

). If p and M
are all much less than N

max

, we find that the runtime
is O(N

max

S
G

S
M

).

Another important consideration is the number of
MCMC steps needed to produce Gibbs samples that
form an adequate approximation of the true posterior.
This issue depends on the convergence properties (ac-
tual rate of convergence) of the hybrid Markov chain
used by the algorithm, which are beyond the scope
of the present work. Convergence diagnostics for our
application to the NLTCS and hyperparameter sensi-
tivity is discussed in Appendix B.

2.3 Posterior Matching Sets and Linkage
Probabilities

In a Bayesian framework, the output of record linkage
is not a deterministic set of matches between records,
but a probabilistic description of how likely records are
to be co-referent, based on the observed data. Since we
are linking multiple files at once, we propose a range of
posterior matching probabilities: the posterior prob-
ability of linkage between two arbitrary records and
more generally among k records, the posterior proba-
bility given a set of records that they are linked, and
the posterior probability that a given set of records is
a maximal matching set (which will be defined later).

Two records (i
1

, j
1

) and (i
2

, j
2

) match if they point
to the same latent individual, so �

i1j1 = �
i2j2 . The

posterior probability of a match can be computed from
the S

G

MCMC samples:

P (�
i1j1 = �

i2j2 |X) =
1

S
G

SG
X

h=1

I(�(h)

i1j1
= �

(h)

i1j2
).

A one-way match is when an individual appears in only
one of the k files, while a two-way match is when an
individual appears in exactly two of the k files, and so
on (up to k-way matches). We approximate the poste-
rior probability of arbitrary one-way, two-way, . . . , k-
way matches as the ratio of the number of times those
matches happened in the posterior sample to S

G

.

Although probabilistic results and interpretations pro-
vided by the Bayesian paradigm are useful both quan-
titatively and conceptually, we often report a point
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estimate of the linkage structure. Thus, we face the
question of how to condense the overall posterior dis-
tribution of⇤ into a single estimated linkage structure.

Perhaps the most obvious approach is to set some
threshold v, where 0 < v < 1, and to declare (i.e.,
estimate) that two records match if and only if their
posterior matching probability exceeds v. This strat-
egy is useful if only a few specific pairs of records are
of interest, but its flaws are exposed when we consider
the coherence of the overall estimated linkage struc-
ture implied by such a thresholding strategy. Note
that the true linkage structure is transitive in the fol-
lowing sense: if records A and B are the same indi-
vidual, and records B and C are the same individual,
then records A and C must be the same individual as
well. However, this requirement of transitivity is in no
way enforced by the simple thresholding strategy de-
scribed above. Thus, a more sophisticated approach is
required if the goal is to produce an estimated linkage
structure that preserves transitivity.

To this end, it is useful to define a new concept. A
set of records A is a maximal matching set (MMS) if
every record in the set has the same value of �

ij

and
no record outside the set has that value of �

ij

. Define
⌦(A,⇤) := ⌦A,⇤ to be 1 if A is an MMS in ⇤ and 0
otherwise:

⌦A,⇤ =
X

j

0

0

@

Y

(i,j)2A

I(�
ij

= j0)
Y

(i,j) 62A

I(�
ij

6= j0)

1

A.

Essentially, the MMS contains all the records which
match some particular latent individual, though which
individual is irrelevant. Given a set of records A, the
posterior probability that it is an MMS in ⇤ is simply

P (⌦A,⇤ = 1) =
1

S
G

SG
X

h=1

⌦(A,⇤(h)).

The MMSs allow a sophisticated method of preserv-
ing transitivity when estimating a single overall link-
age structure. For any record (i, j), its most probable

MMS M

ij

is the set containing (i, j) with the highest
posterior probability of being an MMS, i.e.,

M

ij

:= argmax
A:(i,j)2A

P (⌦A,⇤ = 1).

Next, a shared most probable MMS is a set that is the
most probable MMS of all records it contains, i.e., a
set A

? such that M

ij

= A

? for all (i, j) 2 A

?. We
then estimate the overall linkage structure by linking
records if and only if they are in the same shared most
probable MMS. The resulting estimated linkage struc-
ture is guaranteed to have the transitivity property
since (by construction) each record is an element of at
most one shared most probable MMS.

2.4 Functions of Linkage Structure

The output of the Gibbs sampler also allows us to es-
timate the value of any function of the variables, pa-
rameters, and linkage structure by computing the av-
erage value of the function over the posterior samples.
For example, estimated summary statistics about the
population of latent individuals are straightforward to
calculate. Indeed, the ease with which such estimates
can be obtained is yet another benefit of the Bayesian
paradigm, and of MCMC in particular.

3 Assessing Accuracy of Matching
and Application to NLTCS

We test our model on data from the NLTCS, a longitu-
dinal study of the health of elderly (65+) individuals
(http://www.nltcs.aas.duke.edu/). The NLTCS
was conducted approximately every six years, with
each wave containing roughly 20,000 individuals. Two
aspects of the NLTCS make it suitable for our pur-
poses: individuals were tracked from wave to wave
with unique identifiers, but at each wave, many pa-
tients had died (or otherwise left the study) and were
replaced by newly-eligible patients. We can test the
ability of our model to link records across files by see-
ing how well it is able to track individuals across waves,
and compare its estimates to the ground truth pro-
vided by the unique identifiers.

To show how little information our method needs to
find links across files, we gave it access to only four
variables, all known to be noisy: full date of birth,
sex, state of residence, and the regional o�ce at which
the subject was interviewed. We treat all fields as cat-
egorical. We linked individuals across the 1982, 1989
and 1994 survey waves.2 Our model had little infor-
mation on which to link, and not all of its assumptions
strictly hold (e.g., individuals can move between states
across waves). We demonstrate our method’s validity
using error rates, confusion matrices, posterior match-
ing sets and linkage probabilities, and estimation of
the unknown number of observed individuals from the
population.

Appendix A provides a simulation study of the NLTCS
with varying levels of distortion at the field level. We
conclude from this that SMERE is able to handle low
to moderate levels of distortion (Figure 4). Further-
more, as distortion increases, so do the false negative
rate (FNR) and false positive rate (FPR) (Figure 3).

2
The other three waves used di↵erent questionnaires

and are not strictly comparable.
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3.1 Error Rates and Confusion Matrix

Since we have unique identifiers for the NLTCS, we
can see how accurately our model matches records. A
true link is a match between records which really do
refer to the same latent individual; a false link is a
match between records which refer to di↵erent latent
individuals; and a missing link is a match which is not
found by the model. Table 3 gives posterior means
for the number of true, false, and missing links. For
the NLTCS, the FNR is 0.11, while the FPR is 0.046,
when we block by date of birth year (DOB) and sex.

More refined information about linkage errors comes
from a confusion matrix, which compares records’ es-
timated and actual linkage patterns (Figure 1 and Ap-
pendix C, Table 4). Every row in the confusion matrix
is diagonally dominated, indicating that correct classi-
fications are overwhelmingly probable. The largest o↵-
diagonal entry, indicating a mis-classification, is 0.07.
For instance, if a record is estimated to be in both the
1982 and 1989 waves, it is 90% probable that this es-
timate is correct. If the estimate is wrong, the truth is
most probably that the record is in all waves (4.4%),
followed by the 1982 wave alone (1.4%) and waves 1982
and 1994 (0.15%), and then other patterns with still
smaller probability.

82 89

82
,8

9 94

82
,9

4

89
,9

4 AY

True Pattern

AY

89,94

82,94

94

82,89

89

82
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at
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Figure 1: Heatmap of relative probabilities from the
confusion matrix, running from yellow (most probable)
to dark red (probability 0). The largest probabilities
are on the diagonal, showing that the linkage patterns
estimated for records are correct with high probability.
Mis-classification rates are low and show a tendency to
under-link rather than over-link.

3.2 Example of Posterior Matching
Probabilities

We wish to search for sets of records that match record
10084 in 1982. In the posterior samples of ⇤, this
record is part of three maximal matching sets that oc-
cur with nonzero estimated posterior probability, one
with high and two with low posterior matching prob-
abilities (Table 1). This record has a posterior proba-
bility of 0.995 of simultaneously matching both record
6131 in 1989 and record 5583 in 1994. All three records
denote a male, born 07/01/1910, visiting o�ce 25 and
residing in state 14. The unique identifiers show that
these three records are in fact the same individual. If
we threshold matching sets, ignoring ones of low pos-
terior probability, we would simply return the set of
records in last column of Table 1.

3.3 Estimation of Attributes of Observed
Individuals from the Population

The number of observed unique individuals N is easily
inferred from the posterior of ⇤|X, since N is simply
the number of unique values in ⇤. Defining N |X to
be the posterior distribution of N, we can find this by
applying a function to the posterior distribution on ⇤,
as discussed in §2.4. (Specifically, N = |#⇤|, where
#⇤ maps ⇤ to its set of unique entries, and |A| is
the cardinality of the set A.) Doing so, the posterior
distribution of N |X is given in Figure (2). Also, N̂ :=
E(N |X) = 35, 992 with a posterior standard error of
19.08. Since the true number of observed unique indi-
viduals is 34,945, we are overmatching, which leads to
an overestimate of N . This phenomenon most likely
occurs due to patients migrating between states across
the three di↵erent waves. It is di�cult to improve this
estimate since we do not have additional information
as just described above.

We can also estimate attributes of sub-groups. For
example, we can estimate the number of individuals
within each wave or combination of waves—that is, the
number of individuals with any given linkage pattern.
(We summarize these estimates here with posterior ex-
pectations alone, but the full posterior distributions
are easily computed.) For example, the posterior ex-
pectation for the number of individuals appearing in
lists i

i

and i
2

but not i
3

is approximately
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.

(Note that the inner sum is a function of ⇤(h), but a
very complicated one to express without the R

ij

.)

Table 2 reports the posterior means for the overlap-
ping waves and each single wave of the NLTCS and
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Figure 2: Posterior density of the number of observed
unique individuals N.

compares this to the ground truth. In the first wave
(1982), our estimates perform exceedingly well with
relative error of 0.11%, however, as waves cross and we
try to match people based on limited information, the
relative errors range from 8% to 15%. This is not sur-
prising, since as patients age, we expect their proxies
to respond, making patient data more prone to errors.
Also, older patients may move across states, creating
further matching dilemmas. We are unaware of any al-
ternative algorithm that does better on this data with
only these fields available. Given these results, and
considering how little field information we allowed it
to use for matching, we find that our model performs
overall very well.

4 De-duplication

Our application of SMERE to the NLTCS assumes
that each list had no duplicates, however, many other
applications will contain duplicates within lists. We
showed in §2.1 that we can theoretically handle de-
duplication across and within lists. We apply SMERE
with de-duplication (SMERED) to the NLTCS by (i)
running SMERED on the three waves to show that
the algorithm does not falsely detect duplicates when
there really are none, and (ii) combining all the lists
into one file, hence creating many duplicates, to show
that SMERED can find them.

4.1 Application for NLTCS

We combine the three files of the NLTCS mentioned
in §3 which contain 22,132 duplicate records out of

57,077 total records. We run SMERED on settings (i)
and (ii), evaluating accuracy with the unique IDs.

In the the case of running SMERED on the three
waves, we compare our results of SMERED and
SMERE to that under ground truth (Table 2). In
the case of the NLTCS, compiling all three files to-
gether and running the three waves separately under
SMERED yields similar results, since we match on
similar covariate information. There is no covariate
information to add to from thorough investigation to
improve our results, except under simulation study.
Specifically, when running SMERED for the three files,
the FNR is 0.11 and is 0.38 for FPR, while its FNR
and FPR is 0.11 AND 0.37 for the one compiled file.
We contrast this with the FNR of 0.11 and FPR of
0.046 under SMERE for the three waves (Table 3).

The dramatic increase in the FPR and number of false
links shown in Table 2 is explained by how few field
variables we match on. Their small number means
that there are many records for di↵erent individuals
that have identical or near-identical values. On ex-
amination, there are 2, 558 possible matches among
“twins,” records which agree exactly on all attributes
but have di↵erent unique IDs. Moreover, there are
353,536 “near-twins,” pairs of records that have dif-
ferent unique IDs but match on all but one attribute.
This illustrates why the matching problem is so hard
for the NLTCS and other data sources like it, where
survey-responder information like name and address
are lacking. However, if it is known that each file con-
tains no duplicates, there is no need to consider most
of these twins and near-twins as possible matches.

5 Discussion

We have made two contributions in this paper. The
first is to frame record linkage and de-duplication si-
multaneously, namely linking observed records to la-
tent individuals and representing the linkage structure
via ⇤. The second contribution is our specific para-
metric Bayesian model, which, combined with the link-
age structure, allows for e�cient inference and exact
error rate calculation. Moreover, this allows for easy
integration with capture-recapture methods, where er-
ror propogation is exact. As with any parametric
model, its assumptions only apply to certain prob-
lems, but it also serves as a starting point for more
elaborate models, e.g., with missing fields, data fusion,
complicated string fields, population heterogeneity, or
dependence across fields, across time, or across indi-
viduals. Within the Bayesian paradigm, such model
expansions will lead to larger parameter spaces, and
therefore call for computational speed-ups, perhaps via
online learning, variational inference, or approximate
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Bayesian computation.

Our work serves as a first basis for solving record link-
age problems using a noisy Bayesian model, a linkage
structure that can handle large-scale databases, and
a model that simultaneously combines record linkage
and de-duplication for arbitrarily many files. We hope
that our approach will encourage the emergence of new
record linkage approaches, extensions of our method
to non-categorical fields, and applications along with
more state-of-the-art algorithms for this kind of high-
dimensional data.

Acknowledgements This research was supported
by NSF Census Research Network (NCRN), Research
Training Grant (NSF), Singapore National Research
Foundation (NRF) under its International Research
Centre @ Singapore Funding Initiative and the In-
teractive Digital Media Programme O�ce (IDMPO)
to the Living Analytics Research Centre (LARC). We
thank the referees, the NCRN research node at CMU,
Chris Genovese, Cosma Shalizi, Doug Sparks for pro-
viding helpful comments.

sets of records 1.10084 3.5583; 1.10084 3.5583; 1.10084; 2.6131
posterior probability 0.001 0.004 0.995

Table 1: Example of posterior matching probabilities
for record 10084 in 1982

82 89 94 82, 89 89, 94 82, 94 82, 89, 94
NLTCS (ground truth) 7955 2959 7572 4464 3929 1511 6114
Bayes Estimates

SMERE

7964 3434.1 8937.8 4116.9 4502.1 1632.2 5413
Bayes Estimates

SMERED

7394.7 3009.9 6850.4 4247.5 3902.7 1478.7 5191.2
Relative Errors

SMERE

(%) 0.11 16.06 18.04 �7.78 14.59 8.02 �11.47
Relative Errors

SMERED

(%) �7.04 1.72 �9.53 �4.85 �0.67 �2.14 �15.09

Table 2: Comparing NLTCS (ground truth) to the
Bayes estimates of matches for SMERE and SMERED

False links True Links Missing Links FNR FPR
NLTCS (ground truth) 0 28246 0 0 0
Bayes Estimates

SMERE

1298.9 25196 3050 0.11 0.05
Bayes Estimates

SMERED

10595 24900 3346 0.09 0.37

Table 3: False, True, and Missing Links for NLTCS
under blocking sex and DOB year where the Bayes es-
timates are calculated in the absence of duplicates per
file and when duplicates are present (when combining
all three waves). Also, reported FNR and FPR for
NLTCS, Bayes estimates.

929



Rebecca C. Steorts, Rob Hall, Stephen E. Fienberg

References

[1] Belin, T. R. and Rubin, D. B. (1995). A
method for calibrating false-match rates in record
linkage. Journal of the American Statistical As-

sociation, 90 694–707.

[2] Christen, P. (2012). A survey of indexing tech-
niques for scalable record linkage and deduplica-
tion. IEEE Transactions on Knowledge and Data

Engineering, 24.

[3] Copas, J. and Hilton, F. (1990). Record link-
age: Statistical models for matching computer
records. Journal of the Royal Statistical Society,

Series A, 153 287–320.

[4] Domingos, P. andDomingos, P. (2004). Multi-
relational record linkage. In Proceedings of the

KDD-2004 Workshop on Multi-Relational Data

Mining. ACM.

[5] Fellegi, I. and Sunter, A. (1969). A theory
for record linkage. Journal of the American Sta-

tistical Association, 64 1183–1210.

[6] Gutman, R., Afendulis, C. and Zaslavsky,
A. (2013). A bayesian procedure for file linking
to analyze end- of-life medical costs. Journal of

the American Statistical Association, 108 34–47.

[7] Hall, R. and Fienberg, S. (2012). Valid
statistical inference on automatically matched
files. In Privacy in Statistical Databases 2012

(J. Domingo-Ferrer and I. Tinnirello, eds.), vol.
7556 of Lecture Notes in Computer Science.
Springer, Berlin, 131–142.

[8] Herzog, T., Scheuren, F. and Winkler, W.
(2007). Data Quality and Record Linkage Tech-

niques. Springer, New York.

[9] Jain, S. and Neal, R. (2004). A split-merge
Markov chain Monte Carlo procedure for the
Dirichlet process mixture model. Journal of Com-

putational and Graphical Statistics, 13 158–182.

[10] Kass, R. E. and Wasserman, L. (1996). The
selection of prior distributions by formal rules.
Journal of the American Statistical Association,
91 1343–1370.

[11] Lahiri, P. and Larsen, M. (2005). Regression
analysis with linked data. Journal of the Ameri-

can Statistical Association, 100 222–230.

[12] Larsen, M. D. and Rubin, D. B. (2001). It-
erative automated record linkage using mixture
models. Journal of the American Statistical As-

sociation, 96 32–41.

[13] Liseo, B. and Tancredi, A. (2013). Some ad-
vances on Bayesian record linkage and inference
for linked data. URL http://www.ine.es/e/

essnetdi_ws2011/ppts/Liseo_Tancredi.pdf.

[14] Sadinle, M. and Fienberg, S. (2013). A
generalized Fellegi-Sunter framework for multi-
ple record linkage with application to homicide
record-systems. Journal of the American Statis-

tical Association, 108 385–397.

[15] Tancredi, A. and Liseo, B. (2011). A hierarchi-
cal Bayesian approach to record linkage and popu-
lation size problems. Annals of Applied Statistics,
5 1553–1585.

[16] Winkler, W. (1999). The state of record linkage
and current research problems. Technical report,
Statistical Research Division, U.S. Bureau of the
Census.

[17] Winkler, W. (2000). Machine learning, in-
formation retrieval, and record linkage. Amer-
ican Statistical Association, Proceedings of the
Section on Survey Research Methods, 20–
29. URL http://www.niss.org/affiliates/

dqworkshop/papers/winkler.pdf.

930


