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Abstract

Gaussian graphical models (GGMs) are
widely-used to describe the relationship be-
tween random variables. In many real-world
applications, GGMs have a block structure in
the sense that the variables can be clustered
into groups so that inter-group correlation
is much weaker than intra-group correlation.
We present a novel nonparametric Bayesian
generative model for such a block-structured
GGM and an efficient inference algorithm to
find the clustering of variables in this GGM
by combining a Gibbs sampler and a split-
merge Metropolis-Hastings algorithm. Ex-
perimental results show that our method per-
forms well on both synthetic and real data. In
particular, our method outperforms generic
clustering algorithms and can automatically
identify the true number of clusters.

1 INTRODUCTION

Gaussian graphical models (GGMs) [11] are widely
used to describe real world data and have important
applications in various fields such as computational bi-
ology, spectroscopy, climate studies, etc. Learning the
structure of GGMs is a fundamental problem since it
helps uncover the relationship between random vari-
ables and allows further inference. It is well known
that the structure of a GGM, i.e., the conditional de-
pendence of the underlying Gaussian vector, is en-
coded only by the zero pattern of its precision matrix.
A straightforward method to estimate the precision
matrix is to invert the empirical covariance matrix. In
addition to the singularity issue when the dimension
p is larger than the number of samples n, the preci-
sion matrix resulting from this method is usually not

Appearing in Proceedings of the 17" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

Yuancheng Zhu*
University of Chicago

931

Jinbo Xu
TTT Chicago

sparse and thus, the learned structure may greatly de-
viate from the real one. Graphical Lasso (Glasso) is
a popular approach for the estimation of the struc-
ture of a GGM. Glasso maximizes the log-likelihood
while penalizing the L; norm of the precision matrix
[2] [15] [3], which is used to favor a sparse graph.

In many real-world applications the underlying graph
or network that we want to estimate has block struc-
ture such that it can be divided into blocks where the
inter-block dependence is much weaker than the intra-
block dependence. For example, in protein-protein
interaction networks, proteins with similar functions
are more likely to form a pathway or a complex [12].
Therefore it is of great interest to learn such a block-
structured graph, which is also equivalent to cluster-
ing the variables into disjoint groups. Actually, the
clustering would not be hard as long as we could esti-
mate the graph accurately since we could simply use
the connected components of the estimated graph as a
clustering of variables. However, almost all the graph
estimation methods such as Glasso require some prede-
fined parameters controlling the sparsity of the graph
and different values of the parameters may lead to
quite different clustering results. We may also apply
those generic clustering algorithms such as k-means
to the variables. However, these clustering algorithms
are mainly designed for clustering observations rather
than variables and they cannot differentiate direct cou-
plings of variables from indirect couplings.

Some studies have been done to simultaneously infer
the block structure of GGMs and estimate the preci-
sion matrix [6] [7] [1]. Such methods, however, require
a predefined parameter for the number of clusters and
the inference is based on some variational approxima-
tion.

In this paper, we present a method to estimate the
block structure of GGMs and cluster the variables from
a Bayesian point of view. Our method is attractive in
several aspects. First of all, our model is parameter-
free in that we do not have to tune any parameter,
especially the number of clusters. Secondly, using a

*These two authors contributed equally to this work
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MCMC sampling method, we directly sample from the
posterior distribution rather than its approximation
obtained by variational methods. In addition, we have
also described an efficient greedy strategy to find the
finest clustering of the variables.

The rest of the paper is organized as follows. In section
2 we introduce some background and related work.
Our model and methods for inference are described in
section 3 and 4, respectively. Experimental results for
both synthetic and real data are presented in section
5, followed by a conclusion.

2 RELATED WORK

Suppose that X (X1,X2,...,X,) follows a p-
dimensional multivariate Gaussian distribution. For
simplicity we assume X ~ N(0,X), and let Q
[Qijlpxp = S be its precision matrix. It is easy
to prove that X; and X; are conditionally indepen-
dent given all the other random variables if and only
if Q;; = 0. Therefore, estimating the structure of a
Gaussian graphical model (GGM) is equivalent to es-
timating the zero pattern in (2.

Banerjee et al. [2] and Yuan and Lin [15] independently
proposed a technique that can estimate the sparse pre-
cision matrix. They achieved this by maximizing the
Ly penalized log likelihood, i.e.

max log det(€) — tr(QX) — A||Q|;

Q =arg
Q-0

where A is the tuning parameter, |21 = Y [©Q;;] and
5= %X T X is the empirical covariance matrix. The
problem can then be solved by a block coordinate de-
scent algorithm called graphical Lasso (Glasso) [3].

Not much work has been done for learning the block
structure in a GGM. When the block structure infor-
mation is not known a priori, all the existing stud-
ies employ a Bayesian approach, partially because
it is hard to design a penalty term to enforce the
block structure without leading to a computationally
intractable problem. An example of such work is
by Marlin and Murphy [6], who propose a Bayesian
model, use a stochastic block model as prior and then
use variational Bayes to do inference. Further, they
employ a heuristic method to determine the number
of clusters. This method starts by putting all the vari-
ables in a single cluster, and then split clusters itera-
tively to increase the free energy. After computing the
marginal MAP clustering information, they use group
Lasso [14] to infer the precision matrix.

In another two similar approaches to learn a block-
structured GGM, Marlin et al. [7] and Ambroise et
al. [1] use latent variables to indicate group member-
ship and Laplace distributions as the priors for the
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precision matrix entries. The group membership in-
formation is used to choose the hyperparameters of
the prior distributions. An EM algorithm and a vari-
ational algorithm are then used, respectively, to learn
the structure and estimate the graph.

Another relevant method is Dirichlet process variable
clustering (DPVC) proposed by Palla et al. [9]. This
work considers the variable clustering problem in a
factor model setting and uses nonparametric Bayesian
methods to cluster the variables. Specifically, they
consider the model where the p variables can be gen-
erated as follows.

A%'::gjy2j47€jaj ::13”'7p

where z; is the membership of the jth variable, Y, is
a Gaussian distributed latent factor for group z, g; is
the factor loading, and ¢; is a Gaussian noise. In fact,
X generated by this model forms a block-structured
GGM and thus can be viewed as a special case of the
model to be presented below.

3 THE NONPARAMETRIC
BAYESIAN MODEL

We consider the problem of clustering the variables
of a Gaussian graphical model. Suppose that €2, the
precision matrix of X = (X1,...,X,), is block diago-
nal after some permutation. This is equivalent to as-
suming that the variables can be grouped into several
clusters, and that the edges in the underlying graph
only exist within each cluster. The clustering struc-
ture can be relaxed to a more general setting where a
relatively small number of edges exist between clusters
or the inter-cluster edges carry much smaller weight.
We now propose a nonparametric Bayesian approach
to model such settings.

3.1 Model

Suppose that Z = (Z31,Zs,...,Z,) are hidden vari-
ables indicating the membership of Xi,...,X,, ie.,
the X; and X; are in the same cluster if and only
it Z; = Z;. In fact, Z defines a partition over the
set {1,...,p}. We assume that Zi,...,Z, are gen-
erated by a Chinese restaurant process CRP(«) [10]
where « is the concentration parameter, controlling
how diverse the clustering tends to be. The Chinese
restaurant process defines a distribution over random
partitions of positive integers, with the possible num-
ber of clusters being infinite. Specifically, Z1,...,Z,
are exchangeable and can be sampled sequentially by
the following conditional probability.

Zj<1i ]lzj =Z;

i—14o

a
1—14+a

)

Hj < i:z% =7;
Vi<i:Z;#Zi

P(Zi|Z1:-1,0) = {
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Further, when only considering the first p elements, a
specific partition ¢ = (21,...,2p) is assigned with the
following probability.

a#clustersr

P(o) = H T'(|cluster]).

I'(n+a)

clustercp
For a given clustering Z, we assume that the pre-
cision matrix {2 is from a Wishart distribution de-
fined over symmetric positive semidefinite matrices.
As a prior distribution for the precision matrix, the
Wishart distribution is conjugate to the multivariate
Gaussian likelihood. The density function of  ~
Wishart, (V, v) is

|/ exp{-3
quw(

POIV,v) = L)

tr(V"

3)
where I',(-) is the multivariate Gamma function, V is
known as the scale matrix and v the degree of free-
dom. The expectation of Wishart,(V,v) is vV. Here,
to reflect our knowledge about the clustering pattern

based on Z, we set the scale matrix V' to have a block
diagonal structure. In particular, we let

Wij/V
0

if Z;, =27,
V=V(ZW)= .

if Zz 75 Zj
where W is a prior guess of the precision matrix and
we scale it by a factor of 1/v so that the expectations
of remaining entries will be the same as in W.

Thus, we have introduced a generative model to form a
Gaussian graphical model with clustered variables. As
shown in Fig. 1, our model can be summarized below.

Z|a ~ CRP(a),
Q|Z, W,v ~ Wishart,(V(Z,W),v),
X|Q~ N(©0,07h).

An alternative way to model block-structured GGMs
is to assume that the precision matrix €2, given the
clustering information Z, follows a block-wise Wishart
distribution. Specifically, suppose that Zy,. .., Z, take
values in {1,...,k}, and for z =1,...,k, let Z, = {i :
Z; = z} and p, = |Z.|. Then we can assume the
precision matrix €2 is from

Q1. ad Wishart,_(V,v,), for z=1,...k,

Qij = 0, if Zl 7£ Zj,

where €7 is the submatrix of Q0 with indices Z,. In
other words, the precision matrix is assumed to be
block-structured, and each block is assumed to follow

a Wishart distribution. Such an approach sets the
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Figure 1: Graphical representation of the generative
model

off-block-diagonal entries of the precision matrix to
exactly 0. In practice, this alternative approach also
works for the case where weak dependence exists be-
tween clusters, and performs similarly as the model we
proposed above. Therefore, in this paper, we mainly
discuss the model proposed first.

3.2 Hyperparameter

There are three hyperparameters to be specified or
tuned in the model, namely, o, W and v. We dis-
cuss below our strategies of choosing them and the
underlying reasons. The concentration parameter o of
the Chinese restaurant process takes value in (0, 00).
To improve the flexibility of the model, we can put a
prior distribution on the hyperparameter «, for which
we use Gamma(1,1) throughout this paper. In fact,
the inference results are similar with different choices
of the priors as long as it has a support (0, c0).

The Wishart distribution of €2 is characterized by three
parameters, Z, W and v, where Z is obtained from
the Chinese restaurant process. Some methods such
as empirical Bayes estimation [4] are proposed for the
scale matrix without enforcing a block diagonal. We
set W to the empirical precision matrix (i.e., W = Q),
which is a widely-used method. For the case when p
is smaller than n, we set W to be the Glasso estimator
with a small penalization parameter. From now on we
will treat W as fixed, and denote V(Z, W) as V(Z).

For the degree of freedom v, a common choice, which
is also the least informative one, would be to set
v = p, the dimension of the matrix. In order to re-
flect our prior knowledge of the block structure, we
set v = max{p,n} where n is the sample size. To
see why this favors block diagonal structure of the
precision matrix, consider the posterior distribution
P(Q|Z,v, X) where X represents n i.i.d. samples. Be-
cause of the conjugacy, this is still a Wishart distribu-
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tion, with expectation

( )

where 3 is the sample covariance matrix. Notice that
V(Z)~! has a block diagonal structure, so the pos-
terior mean somehow preserves the intra-cluster co-
variance structure while adding some shrinkage on the
inter-cluster correlation. By choosing v = max{p,n},
the shrinkage effect remains consistent for different p
and n when n > p. Besides, when p < n, such a choice
will introduce more shrinkage on the off-block-diagonal
entries, reflecting more strength from the prior knowl-
edge of the block structure when we have insufficient
data. Although there are some other sensible choices
for the degree of freedom, such as putting a prior with
a support on (p — 1,00), we choose v = max{p,n}
throughout this paper, which turns out to work well
for various settings regardless of p and n.

vV (Z)~! +nS
v+n

Q:

4 INFERENCE

In this section, we describe the methods we have imple-
mented to achieve variable clustering using the model
introduced in section 3.1. Specifically, given the data
X, we would like to compute the posterior distribution
of the latent variables, with special interest in the clus-
tering information Z. Note that for Z this is a distri-
bution over partitions of {1,...,p}. Although we can
compute the posterior distribution P(Z|X) with other
variables integrated out analytically up to a normaliza-
tion constant, the number of partitions on {1,...,p}
is known to be the Bell number, which grows faster
than exponentially, hence making it computationally
intractable to find the normalization constant and to
directly sample from the posterior distribution.

4.1 Gibbs Sampler

To explore the posterior distribution over the latent
variables, we propose a Gibbs sampling method as
follows. We update the elements of Z one at a
time. That is, we sample Z; according to the con-
ditional distribution P(Z;|X,, Z_;, ) where Z_;
(Zl, ceay Z,’_l, Zi+17 ey Zp) In particular,

P(Zi|X797Z—i7a)
xP(X[Q)P(Q|Z)P(Zi|Z—;,a)

—P—

‘Q| 2 1 -1
§ — e (V(2)70) ) P(Z|Z i a) (1
|(@hem( S (V(2)71Q) ) P(Zi Z-1.0) (1)
where P(Z;|Z_;,a) is given by
Piz  35. 7. —
P(Z;i=2Z_i,a) = {p_ifa A
iTa Vi:Z;#z
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with p_; , being the number of elements in cluster z
excluding Z;, i.e.,, p_; , = Zj# lz,—..

To update Q, we sample from P(Q|X, Z, «) as follows.

X, Z, o ~ Wishartp((V 2)7'+y XiX?)’17n+y).
=1

(2)

Alternatively, we can sample one element in Z with Q
integrated out, i.e., using the following probability.

P(Zl|X, Z,i, a) X P(X|Z, CV)P(ZZ|Z,“ a)
:/P(X,Q|Z,a)dQP(Zi\Z,i,a)
Q

oc/P(X|Q)P(Q\Z)dQP(ZZ-|Z,i,a)
Q

Iy ( V(2)*
(%) L+ VS, XiXT|™

n—zi-v)
|14
2

71+u *

3)

Since Z; is discrete and the Wishart distribution is
conjugate, it is easy to update Z and €2 based on Egs.
(1) and (2), or update Z based on Eq. (3). We will
use the latter one as our “default” Gibbs sampler.

To update the hyperparameter o, we compute

P(a|X, Z) x P(X|Z)P(Z|a)P(a)
a#cluster(Z)I‘(a) P(a)

o) @

This is a univariate distribution and we sample from
it using slice sampling [8].

With the conditional probability defined above, we
have a Gibbs sampler for drawing samples from the
posterior distribution of the latent variables Z.

4.2 Split-merge Metropolis-Hastings updates

As mentioned in [5], the above-proposed Gibbs sam-
pler may be inefficient. Because the Gibbs sam-
pler updates the cluster membership incrementally,
the Markov chain must pass through a series of low-
probability states to traverse between two isolated pos-
terior modes. This leads to slow convergence and slow
movement between two posterior modes. To tackle
this limitation, we incorporate into our Gibbs sampler
a split-merge Metropolis-Hastings procedure as pro-
posed in [5] for the updating of the group membership
Z. This split-merge Metropolis-Hastings procedure
splits or merges the clusters using a restricted Gibbs
sampling scan [5]. To exploit the major changes from
the Metropolis-Hastings step, and the minor refine-
ment from the Gibbs sampling step, we update Z by
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Algorithm 1

Algorithm 2

a® ~ Gamma(1, 1)
Z©) ~ CRP(a®)
for m =1to M do
if m is odd then
for i =1 to p do
Z™ ~ P(Zi|X, 277 a(m-1)
end for
else
Update Z(™=1) by split-merge MH procedure
end if
al™ ~ P(a|X, Z™)
end for

Figure 2: Illustration of different clustering results
that both make sense.

alternating between the Gibbs sampler and the split-
merge Metropolis-Hastings procedure. The whole pro-
cedure is summarized in Algorithm 2. See [5] for more
details of the split-merge Metropolis-Hastings proce-
dure.

When the data X is generated from a GGM with vari-
ables that can be clustered into disjoint groups, then
the posterior distribution is very much likely to have
multiple modes, corresponding to different clustering
assignments. For example, the graphical model in Fig-
ure 2 has 16 variables belonging to 4 groups, shown in
4 different colors. In this figure, the left part shows the
most natural way of clustering the variables, while it
also makes sense to cluster them in the way as shown
on the right part of the figure. For this graphical
model, there are 15 reasonable ways to cluster the
16 variables, which are expected to have much higher
probabilities than all the others.

Most of the time, we are more interested in such
reasonable clusterings, especially the finest clustering,
than in the posterior probability of one clustering. By
the finest clustering, we mean that the one in which
no cluster can be further divided into two disjoint sub-
clusters (e.g. the clustering on the left in Fig. 2). This
being said, rather than running the Markov chain for
long enough until convergence, finding the posterior
mode that corresponds to the finest clustering is good
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a® ~ Gamma(1,1)
Z(O) = (]"25""p)
for m=1to M do
for i =1 to p do
72 ~ P(Zi)X, 27 alm1)y

end for
if 3(z1,...,2p) st fori=1,...,p
P(Z; = 2| X, 2" am=1) > 1 — ¢ then
break
end if
al™ ~ P(alX, Z(m)
end for

output Z(™)

enough for our inference purpose. In practice, we start
the Markov chain from a clustering that treats each
variable as a single cluster and run the Algorithm
1 without split-merge procedure until it hits a local
mode. We then report this state as our clustering of
the variables. This method to some extent can be
viewed as a greedy algorithm for finding the finest clus-
ters, and we summarize it as Algorithm 2. Although
greedy, as we shall see in the following section, it per-
forms pretty well and efficiently on the synthetic data
generated by both us and others as well as the real
data.

5 EXPERIMENTAL RESULTS

5.1 Synthetic Data

Here we present three experiments on synthetic data.
The first experiment illustrates the relationship be-
tween posterior modes and clusterings. The second
one shows how well our method performs compared to
some simple generic methods in a variety of settings.
The third experiment evaluates our method using the
synthetic data proposed in [9] and compares it with
the method in [9].

5.1.1 Modes and Clusterings

Suppose that our model consists of p variables of ¢ clus-
ters. To generate the data, we first assign each variable
to one of the ¢ clusters with probability 1/¢. Then, we
add an edge between two variables by probability P,, if
they are in the same cluster or otherwise, by probabil-
ity Pous. For each edge (4, j), we set ©;; = 0.3. Finally,
to make sure that the precision matrix is positive def-
inite, we set its diagonal element to the absolute value
of the minimum eigenvalue of the current €2 plus 0.2.

We show a simple example to illustrate that the pos-
terior modes correspond to all reasonable clusterings.
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Model Comparison

Model Comparison

Model Comparison
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Figure 3: Performance comparison of our method NPC and the others in terms of the average Rand index. From
left to right, (a) p = 50, n = 100, and the number of clusters ranging from 4 to10; (b) p = 50, ¢ = 6, and the
number of samples ranging from 40 to 240; (c¢) The data is generated according to [9], with p = 20, ¢ = 5, and
the number of samples ranging from 10 to 1000. SC.Glasso, SC.Cov and SC.Prc stand for spectral clustering
with three different similarity matrices, and DPVC for the method in [9)].

Using the above-mentioned data generation method,
we construct a Gaussian graphical model (GGM) with
p = 12 variables and ¢ = 4 clusters with sizes 2, 3, 3,
and 4. We set P, = 1 and P, = 0, so the GGM
has 4 fully connected components without any inter-
component edges. Then we generate n = 50 i.i.d.
samples from this GGM. We run the Gibbs sampler
for 1000 times starting from different starting points
of (o, Z) drawn from their prior distributions. At each
time we run the Gibbs sampler until it gets trapped at
one mode of the posterior distribution, i.e., when the
Markov chain has a very small chance (say, < 0.001)
to traverse to another state. For all the 1000 simula-
tions, the Markov chain always reaches one of the 15
partitions listed in Table 1, which also lists the fre-
quency the Markov chain dwelling in each mode. The
15 modes are exactly all the possible combinations of
the 4 true clusters, showing that the posterior modes
and reasonable clusterings are closely related.

5.1.2 Finding the Finest Clustering

Now we consider an example where we are interested
in recovering the finest clustering. We generate the
synthetic data using a GGM with p = 50, P, = 1
and P,y = 0. We vary the experiment settings with
different number of sample and number of clusters to
test our method. For comparison, we have also im-
plemented the spectral clustering [13] method. To use
spectral clustering, we employ three different similar-
ity measures to define the relationship between vari-
ables: the empirical covariance matrix calculated from
the sample data, the empirical precision matrix and
the precision matrix generated by Glasso. Starting
from the spectrum of these matrices, we perform di-

Table 1: Frequency of getting trapped at the posterior
modes. The first row represents the true clustering
according to which we generate our data. Different
colors indicate different clusters.

Ad AbA AdAA  truth
A AMA AAA AAAA 1857
A AAAD AAA ANAA  3.5%
A ANA ALD AMAD  10.2%
A AND AMA AMAD  3.1%
AD AMA AMAD AAAAN 757
A AMA ALD AAAD  3.3%
AA AAAD MMM AAAL 327
AA AAA AND AAAAN 217
AD AMA AL 1.0%
AD ALA ANA 2.0%
AD MDA MAD  3.0%
D AL AN 2.3%
AD ANA AAAD  3.0%
LY AAA AAAN 237
A AbA AAAA 37T

mensionality reduction and then use k-means to clus-
ter the variables in the transformed space.

First, we set the number of clusters to 6, and then
vary the number of samples from 80 to 240. For each
set of samples, we conduct 10 independent simula-
tions and compute the average Rand index, which is
a widely-used measure for clustering similarity. Rand
index ranges from 0 to 1, with 1 indicating the per-
fect match. As shown in Fig. 3(a), our method out-
performs spectral clustering regardless of the number
of samples, while the accuracy for both methods im-
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Figure 4: Visualization of the clustering result on equity data. Each stock is colored according to its true sector
classification and this figure shows the clustering result obtained by our method.

proves as more samples are used. Note that spectral
clustering requires a predefined value for the number
of clusters, for which we uses 4, the ground truth here.

Second, we fix the number of samples to 100 and vary
the number of clusters from 4 to 10. Spectral clus-
tering is always fed with the true number of clusters
as the parameter. As shown in Fig. 3(b), our method
still has higher accuracy than spectral clustering in
all the experiments, showing that our nonparametric
Bayesian method can find the right number of clusters
automatically.

5.1.3 Comparison with a Factor Model

As mentioned before, Palla et al. [9] studies variable
clustering in a different setting. Although their model
is different from ours, the covariance structure is also a
block diagonal one. Using the data generation method
described in Palla et al’s paper, we generate a set of
synthetic data with p = 20 dimensions and ¢ = 5
equally-sized clusters (of 4 variables). For each clus-
ter we sample Y;, ~ N(0,1) for ¢ = 1,...,n and
z =1,...,¢c, then g; ~ N(0,1) for j = 1,...,p and
finally sample X;; ~ N(g;Y;.,,0.1) for i and j where
z; denotes the cluster of the jth variable. We gener-
ate the test data sets with n, the number of samples,
varying from 10 to 1000 and repeat 10 times for each
n. As shown in Fig. 3(c), except for some small n, our
method always has higher accuracy than the DPVC
method proposed in [9].

937

5.2 Real Data

To test the performance of our method on a real data
set, we apply our method to an equity dataset in the
“huge” package [16], which consists of 1245 daily clos-
ing prices from January 1, 2003 to January 1, 2008
for 452 equities in the S&P 500 index. The stocks
are divided into ten sectors including health care, util-
ities, energy, consumer staples, materials, telecommu-
nications, industrials, consumer discretionary, and fi-
nancials. Each sector has 6 to 70 stocks. Stocks in
the same sector are expected to be more correlated
with each other, and therefore tend to form a clus-
ter. We run our method to cluster these stocks based
upon their closing prices. We obtain 26 clusters with
size larger than 2, in total covering 413 stocks. Com-
pared to the crude manual 10-sector classification, our
clustering is more fine-grained. As shown in Fig. 4,
each stock is colored according to its true sector clas-
sification. Many clusters generated by our method
consist of stocks sharing the same color. Our algo-
rithm identifies 7 sectors with very little misclassifica-
tion. Further examination shows that our clustering
result is not only consistent with the true sector clas-
sification, but can also provide finer-grain classifica-
tion. For example, our method divides the financials
sector (in pink) into five small clusters, corresponding
to five sub-sectors: property & casualty insurance, real
estate investment trust, banks, diversified financial ser-
vice, and other insurance companies. Our method also
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clusters some stocks of different sectors into the same
group. For example, one of our clusters contains stock
in both the matertals and industrials sectors. This is
not due to bad clustering. Instead it is because some
stocks indeed belong to two different sectors. For ex-
ample, many stocks in in the industry sector belong to
industrial materials or industrial conglomerates.

In addition, our clustering result is very stable and
also accurate in terms of the Rand index. Running
our method 100 times starting from different initial
clusterings, the mean and the standard deviation of
the Rand Index are 0.89 and 0.007, respectively.

For comparison, we have also implemented the spec-
tral clustering using the precision matrix estimated by
Glasso as the similarity measure. This reflects the ba-
sic idea of clustering the variables based on the esti-
mated graph. This procedure requires specifying two
parameters, namely, the number of clusters and the
penalty parameter for Glasso. Among numerous tri-
als with the number of clusters ranging from 10 to 30
and different levels of sparsity of the estimated graph,
the clustering results vary substantially. The Rand
index ranges from 0.17 to 0.88, which are obtained
with K = 10 and an estimated graph of 5074 edges,
and K = 29 and a graph of 8600 edges, respectively.
This comparsion clearly shows the advantage of our
method: parameter-free and self-adaptive to the data.

6 CONCLUSIONS

We have presented a nonparametric model that can
cluster variables in a GGM into correlated groups, by
exploiting block structure in a GGM and making use of
an efficient MCMC algorithm. Our method performs
well on both synthetic and real data and can success-
fully identify the underlying block structure. In partic-
ular, our method does not need a predefined value for
the number of clusters. Instead it can automatically
determine this based upon the data. In the future we
will introduce sparsity-induced prior on the precision
matrix, so that we can estimate the block structure
and graph structure simultaneously.
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