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A Selecting the Graphs H+ and H− in Algorithm 5

Algorithm 6: Find graphs H+ and H−

• Inputs: X, Ê and F̂
• for ! = 1, . . . , L

– Estimate a graph Ĝ(!) using random subsamples such that
∗ (i, j) ∈ E(Ĝ(!)) ∀ (i, j) ∈ Ê
∗ (i, j) /∈ E(Ĝ(!)) ∀ (i, j) ∈ F̂

• Qij ← Fraction of times the edge (i, j) appears in the graphs Ĝ(1), . . . , Ĝ(L)

• Find H+ s.t. (i, j)∈E(H+) for Qij≥α+

• Find H− s.t. (i, j)∈E(H−) for Qij≥α−

• return H+ and H−

In this section, we discuss the algorithm to estimate the graphs H+ and H− in Algorithm 2. The main idea,
outlined in Algorithm 6 above, is to use stability selection [21] to estimate edges in the unknown graph G∗.
We first estimate multiple different graphs using L (30 in our simulations) randomly subsampled measurements
(Line 1). The graphs are estimated in such a way that all edges in Ê are in the estimated graph and all edges in
F̂ are not in the estimated graph. This is done so that the graphs estimated are consistent with prior estimates
of G∗. Next, for each edge (i, j) ∈ V × V , we compute the fraction of times it appears in one of the estimated
graphs. We store all these values in the matrix Qij . We choose H− so that it contains all edges for which
Qij ≥ α−. We choose H+ so that it contains all edges for which Qij ≥ α+. Both α− and α+ influence the
performance of the active learning algorithm. We conservatively choose them so that α− = 1.0 and α+ = 0.1.

B Proof of Theorem 4.1

In this section, we analyze Algorithm 3. The proof methodology is motivated from [24]. Throughout this section,
we assume that Ĝ = CIT(Xn, η, τn), where CIT is outlined in Algorithm 1. We are interested in finding conditions
under which Ĝ = G∗ with high probability. To this end, define the set Bη as follows

Bη = {(i, j, S) : i, j ∈ V, i '= j, S ⊆ V \{i, j}, |S| ≤ η} . (8)

The following concentration inequality follows from [24] and [4]

Lemma B.1. Under Assumptions (A1) and (A3), there exists constants c1 and c2 such that for 0 < ε < 1,

sup
(i,j,S)∈Bη

P
(
||ρij|S |− |ρ̂ij|S || > ε

)
≤ c1 exp

(
−c2(n− η)ε2

)
, (9)

where C1 is a constant, and n is the number of vector valued measurements made of Xi, Xj, and XS.

Proof. Applies Lemma 2 from [24] to the result in Lemma 18 in [4].

Let pe = P(Ĝ '= G), where the probability measure P is with respect to PX . Recall that we threshold the empirical
conditional partial correlation ρ̂ij|S to test for conditional independence, i.e., ρ̂ij|S ≤ τn =⇒ Xi ⊥⊥ Xj|XS . An
error may occur if there exists two distinct vertices i and j such that either ρij|S = 0 and |ρ̂ij|S | > λn or
|ρij|S | > 0 and |ρ̂ij|S | ≤ τn. Thus, we have

pe ≤ P(E1) + P(E2) , (10)

P(E1) = P




⋃

(i,j)/∈G

{∃ S s.t. |ρ̂ij|S | > λn}



 (11)

P(E2) = P




⋃

(i,j)∈G

{∃ S s.t. |ρ̂ij|S | ≤ λn}



 . (12)
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We will find conditions under which P(E1) → 0 and P(E2) → 0 which will imply that Pe → 0. The term P(E1),
probability of including an edge in Ĝ that does not belong to the true graph, can be upper bounded as follows:

P(E1) ≤ P




⋃

(i,j)/∈G

{∃ S s.t. |ρ̂ij|S | > τn}



 ≤ P




⋃

(i,j)/∈G,S⊂V \{i,j}

{|ρ̂ij|S | > τn}



 (13)

≤ pη+2 sup
(i,j,S)∈Bη

P
(
|ρ̂ij|S | > τn

)
(14)

≤ c1p
η+2 exp

(
−c2(n− η)τ2n

)
= c1 exp

(
(η + 2) log(p)− c2(n− η)τ2n

)
(15)

The terms pη+2 comes from the fact that there are at most p2 number of edges and the algorithm searches over
at most pη number of separators for each edge. Choosing τn such that τn > c1(η + 2) log p/(n− η) ensures that
P(E1)→ 0 as p→∞.

Suppose we select τn < c3ρmin for a constant c3 < 1. The term P(E2), probability of not including an edge in Ĝ
that does belong to the true graph, can be upper bounded as follows:

P(E2) ≤ P




⋃

(i,j)∈G

{∃ S s.t. |ρ̂ij|S | ≤ τn}



 (16)

≤ P




⋃

(i,j)∈G,S⊂V \{i,j}

|ρij|S |− |ρ̂ij|S | > |ρij|S |− τn



 (17)

≤ pη+2 sup
(i,j,S)∈Bη

P
(
|ρij|S |− |ρ̂ij|S | > |ρij|S |− τn

)
(18)

≤ pη+2 sup
(i,j,S)∈Bη

P
(
||ρij|S |− |ρ̂ij|S || > ρmin − τn

)
(19)

≤ c1p
η+2 exp

(
−c2(n− η)(ρmin − τn)2

)
= c1 exp

(
(η + 2) log(p)− c4(n− η)ρ2min

)
. (20)

To obtain (20), we use the choice of τn so that (ρmin − τn) > (1− c3)ρmin. For an appropriate constant c5 > 0,
choosing n > η+c5ρ

−2
min(η+2) log(p) ensures P(E2)→ 0 as n, p→∞. We note that the choice of c5 only depends

on M . This concludes the proof.

C Proof of Theorem 6.1

In this section, we analyze Algorithm 4. Recall the assumption that there exists sets of vertices V1, V2, and
T such that there are no edges between V1\T and V2\T in G∗. Note that we only assume the existence of

these clusters and the corresponding graph decomposition. Now, let Ĝ be the graph estimated after Step 2 of
Algorithm 4, i.e., after drawing n0 measurements. Define the event D as

D = {Ĝ[V2] = G∗[V2] and ∀ i ∈ V1\T and ∀ j ∈ V2\T, (i, j) /∈ Ĝ} .

In words, D defines the event that after n0 measurements, the CIT algorithm is able to accurately identify all
the edges and the non-edges over V2 and all the non-edges that connect V1 and V2. Given that D is true, it is
easy to see that for any two-cluster decomposition of Ĝ over clusters V̂1 and V̂2 such that Ĝ[V̂2] = G∗[V̂2], we
have that V̂1 ⊆ V1 and V2 ⊆ V̂2.

Let Ĝ1 be the graph estimated in Step 5 of Algorithm 4 and let ĜF = Ĝ[V̂2]∪ Ĝ1 be the output of Algorithm 4.
Conditioning on D, and using the assumption that V̂1 = V1, we have

P(ĜF '= G∗) = P(ĜF '= G∗|D)P(D) + P(ĜF '= G∗|Dc)P(Dc) (21)

≤ P(ĜF '= G∗|D) + P(Dc) . (22)

We now make use of Theorem 4.1. Given the scaling of n0, it is clear that P(Dc)→ 0 as p→ ∞. Furthermore,
given that D holds, we only need to estimate the edges over V̂1 in Step 5 of Algorithm 4. Since V̂1 ⊆ V1 when
given D, it follows that P(ĜF '= G∗|D) → 0 as p → ∞ given the scaling of n0 + n1. This concludes the proof.
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D Proof of Theorem 6.3

Once V1 and V2 have been identified, by the global Markov property of graphical models, the graph learning can
be decomposed into two independent problems of learning the edges in G[V1] and learning the edges in G[V2].
Thus, pe(ψ) can be lower bounded by

max
Θ(G)

{
max

[
P(ψ(Xn

V1
) '= G[V1]),P(ψ(Xn

V2
) '= G[V2])

]}
,

where Θ(G) ∈ Gp,p1,p2,η,d(θ1, θ2). By definition, we know that G[V1] is sampled uniformly from Gp1,η,d. By
identifying that Gp1,0,d ⊆ Gp1,η,d, we can now make use of the results in [29] for degree bounded graphs. In
particular, we have from [29] that if

n ≤ max

{
log

(p1−d
2

)
− 1

4θ21
,
log

(p2−d
2

)
− 1

4θ22

}
,

then pe(ψ)→ 1 as n→∞. This leads to the necessary condition in the statement of the theorem and concludes
the proof.

E Numerical Results on Scale-Free Graphs

Tables 2 shows results for scale-free graphs. It is typical for scale-free graphs to contain a small number of vertices
that act as hubs and are connected to many other vertices in the graph. The inverse covariance is constructed as
in the Hub graph case. For this graphical model, the weak edges correspond to all edges that connect to vertices
with high degree. We again see that active learning results in superior performance than passive learning.

Table 2: Scale-free graph with p = 400 vertices
Oracle Results Model Selection Results

n Alg TPR FDR ED TPR FDR ED
200 Nonactive 0.405 (0.001) 0.059 (0.002) 247 (0.410) 0.382 (0.000) 0.033 (0.000) 251 (0.121)

Active 0.422 (0.001) 0.040 (0.002) 237 (0.402) 0.391 (0.000) 0.017 (0.000) 245 (0.100)
400 Nonactive 0.522 (0.002) 0.043 (0.002) 200 (0.341) 0.500 (0.000) 0.023 (0.000) 204 (0.107)

Active 0.545 (0.001) 0.036 (0.002) 189 (0.340) 0.509 (0.000) 0.001 (0.000) 197 (0.121)
600 Nonactive 0.605 (0.001) 0.0346 (0.001) 166 (0.361) 0.582 (0.000) 0.021 (0.000) 171 (0.123)

Active 0.634 (0.001) 0.0321 (0.001) 154 (0.378) 0.592 (0.000) 0.008 (0.000) 164 (0.131)


