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Abstract

We present a convex framework to learn se-
quential decisions and apply it to the prob-
lem of learning under a budget. We con-
sider the structure proposed in [1], where
sensor measurements are acquired in a se-
quence. The goal after acquiring each new
measurement is to make a decision whether
to stop and classify or to pay the cost of us-
ing the next sensor in the sequence. We in-
troduce a novel formulation of an empirical
risk objective for the multi stage sequential
decision problem. This objective naturally
lends itself to a non-convex multilinear for-
mulation. Nevertheless, we derive a novel
perspective that leads to a tight convex ob-
jective. This is accomplished by expressing
the empirical risk in terms of linear super-
position of indicator functions. We then
derive an LP formulation by utilizing hinge
loss surrogates. Our LP achieves or ex-
ceeds the empirical performance of the non-
convex alternating algorithm that requires
a large number of random initializations.
Consequently, the LP has the advantage of
guaranteed convergence, global optimality,
repeatability and computation efficiency.

1 Introduction

A majority of machine learning research has fo-
cused on improving performance of classification al-
gorithms. Recently, costs in learning have gained
importance, particularly the test time cost in deci-
sion making. This problem arises in classification
systems constrained by a measurement acquisition
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budget. In this setting, a collection of sensors with
varying costs is available to the decision system. The
objective is to learn a classifier that utilizes inex-
pensive sensing modalities for majority of decisions
and requests the expensive (and more informative)
sensors only for the few difficult decisions. Such a
strategy maintains classifier accuracy while reducing
the average acquisition cost per decision.

Several researchers ([2, 3, 1, 4]) have made significant
progress in developing algorithms to learn such de-
cisions systems with promising experimental results.
Due to the potentially high dimensional nature of
sensor data, a discriminative learning approach is
used to learn decision functions directly by minimiz-
ing an empirical risk objective over a training set.
However, the optimization problems are inherently
non-convex and most solutions resort to alternative
minimization schemes [2, 3, 1, 4]. While experimen-
tal results demonstrate good performance, lack of
global optimality prevents theoretical guarantees for
the algorithms and the solutions.

In this work, we focus on the sequential decision
framework studied in [1]. In this setting, the order
in which sensors are acquired is given.1 Typically,
earlier stages use cheap or fast sensors while later
stages can acquire expensive or slow sensors. The
decision function at each stage controls whether to
stop and classify if enough information has been ac-
quired for a confident decision or to continue and
acquire the next sensor measurement. (See Fig. 1)
The authors in [3] introduce a global ERM problem
and present an alternative minimization scheme to
learn a decision function at each stage of the system.

Our main contribution is a novel convex formula-
tion of the empirical risk problem. We reformulate
the empirical risk in [1] into maximization of sums

1For instance, such sequential decision problems arise
in security screening and medical applications. In these
scenarios, the objective is use a low cost modality (fast
x-ray scanner, cheap blood test, etc) to make most classi-
fications, and utilize an expensive modality (slow human
inspection, invasive surgery) for as few as possible.
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of indicator functions. This key transformation en-
ables us to introduce convex surrogates for the indi-
cator functions and, in turn, results in a convex opti-
mization problem. Without our transformation, di-
rect substitution of surrogates in the original empir-
ical risk results in a non-convex bilinear formulation
which is known to be NP-complete [5]. We upper-
bound this reformulated objective and reduce it to
a linear program (LP). This LP formulation learns
sequential decision systems on real data and has the
following advantages of convex programming:

Convergence: The linear program is guaranteed
to converge to a solution, whereas the alternating
optimization approach of [1] has no such guarantee.

Global Optimum: The linear program converges
to a globally optimal point, whereas the alternat-
ing optimization approaches of [1, 6, 7] at best can
only guarantee convergence to a local minimum if
the algorithm converges.

Repeatability: No random initialization is nec-
essary, whereas previous approaches ([1, 6, 7]) for
training sequential decisions all rely on multiple ran-
dom initializations in an attempt to find a “good”
local minimum.

Computational Efficiency: The linear program
does not rely on random initialization or alternating
optimization, allowing the solution to be found effi-
ciently with a single optimization problem, whereas
the alternating optimization approaches require re-
peatedly solving supervised learning problems. Ad-
ditionally, given that the algorithm is a convex func-
tion, online training using approaches such as sub-
gradient stochastic descent are feasible when the en-
tire data set is not available as a whole.
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Figure 1: Multi-Stage System consists of K stages.
Each stage is a classifier with a reject option. The sys-
tem incurs a penalty of ck at kth stage if it rejects to
seek more measurements. The kth classifier only sees
the first k sensing modalities in making a decision.

In the experimental section, we show that the pro-
posed LP approach allows for dramatic reductions in
average sensor acquisition cost while maintaining ex-
cellent classification performance on both synthetic
and real world datasets. Additionally, we show per-
formance that matches or exceeds non-convex op-
timization approaches while maintaining the previ-

ously mentioned advantages and clearly outperform-
ing naive approaches.

1.1 Related Work

Several researchers have explored efficient algo-
rithms for sequential learning and their applications
to learning with test time costs.

Learning sequential decisions has also been studied
extensively in unconstrained supervised learning. In
the discriminative setting, attempts have been made
to optimize the empirical risk formulated as a prod-
uct of indicators [6, 7]. In the generative setting,
the problem is loosely related to mixture of experts
framework [8, 9].Alternating minimization is used,
switching between learning the parameters of the
”latent” distribution and training local classifiers us-
ing standard learning methods.

In this paper, we take a discriminative learning ap-
proach to learning with test time budgets and extend
the work in [1] to a convex formulation. A related
work in a discriminative setting is the time efficient
feature extraction (TEFE) algorithm presented in
[10]. This is a myopic approach consisting multi-
ple stage of SVM classifiers. The decision whether
to advance to the next stage is based solely on the
margin of the current decision. These two meth-
ods are explained in more detail in the experiments
section. The detection cascade (see [11, 12, 2] and
references therein), a popular method in reducing
computation cost in object detection, can be consid-
ered as a special case of our multi-stage sequential
classifiers. However, detection cascades make partial
binary decisions at each stage, delaying a positive de-
cision until the final stage. Our approach can handle
multi-class problems and can make a full classifica-
tion decisions at any stage. More recently, to speed
up web page ranking problems, [4] introduced a gen-
eral tree of cost sensitive classifiers, where each node
is parametrized with boosted weak learners. In this
work, and in the cost sensitive cascade approach in
[2], the authors formulate a global empirical risk ob-
jective but again resort to alternative minimization
to deal with non-convexity.

In a Bayesian setting, [13, 14] model the problem
of learning with test time budgets as an POMDP,
[15, 16, 17] study cost sensitive decision trees, and
[18] use an expected utility criteria. However, all
these methods require estimating a probability like-
lihood that a certain feature value occurs given the
features collected so far. In contrast, our problem
domain deals with high dimensional measurements
(such as images consisting of thousands of pixels), so
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estimating probability densities reliably is not pos-
sible. An alterantive approach avoiding estimation
of probability distributions is to recast the problem
into an imitation learning framework [19], however
this requires a set of oracle actions to imitate and
generally requires low-quality missing data classifiers
to be learned in order to operate on the combinatori-
ally many feature sets acquired by the policy. Addi-
tionally, the problem has been studied as a reinforce-
ment learning problem [20, 21, 22], with the goal of
parametrizing the value of each feature. As in the
imitation learning framework, the missing data clas-
sifier is required, and additionally the reinforcement
learning approach imposes a notion of stationarity
and non-deterministic state transitions.

2 Budgeted Sequential Learning

We begin by introducing the sequential learning
problem, defining the empirical risk objective in
terms of indicator functions and highlighting the dif-
ficulties with this formulation.

Problem Statement Let (x, y) ∈ X × {1, 2, . . . C}
be distributed according to an unknown distri-
bution D. A data point has K features, x =
{x1, x2, . . . , xK}, and belongs to one of C classes in-
dicated by its label y. A kth feature is extracted
from a measurement acquired at kth stage. We de-
fine a truncated feature vector at kth stage: xk =
{x1, x2, . . . xk}.2 Let X k be the space of the first k
features such that xk ∈ X k.

The system has K stages, the order of the stages is
fixed, and kth stage acquires a kth measurement. At
each stage, k, there is a decision with a reject option,
fk. It can either classify an example, fk(xk) : X k →
{1, 2, . . . , C}, or delay the decision until the next
stage, fk(xk) = r and incur a penalty of ck+1. Here,
r indicates the “reject” decision. fk has to make
a decision using only the first k sensing modalities.
The last stage K is terminal, a standard classifier.
We define the system risk as,

R(f1, . . . , fK , x, y) =
K∑
k=1

Sk(xk)Rk(fk,xk, y) (1)

Here, Rk is the cost of classifying at kth stage, and
Sk(xk) ∈ {0, 1} is the binary state variable indicat-

2For simplicity we refer to xk as a feature, however xk

need not be a scalar feature and is often a set of features
associated with the kth stage

ing whether x is classified at the kth stage.

Rk(xk, y, fk) = 1fk(xk)6=yi + α

k∑
j=1

cj (2)

Sk(xk) =

{
1, f j(xj) = r ∧ fk(xk) 6= r, ∀j < k

0, else

If x is classified at stage k, the penalty is the sum
of previous rejection penalties c1 + . . . + ck plus a
penalty of 1 if the example is misclassified at stage
k. The rejection penalty ck can be thought of as the
acquisition cost of feature k, with the parameter α
controlling the tradeoff between average acquisition
cost and budget. Small values of α penalize misclas-
sification over acquisition cost, whereas large values
of α encourage low acquisition cost at the expense
of classification accuracy.

If the distributionD is known the problem reduces to
a POMDP and the optimal strategy is to minimize
the expected risk,

min
f1,...,fK

ED
[
R(f1, . . . , fK ,x, y)

]
(3)

Empirical Risk Problem However, in our set-
ting, the probability model D is not known and can-
not be estimated due to high-dimensionality of the
data. Instead, our task is to find multi-stage de-
cision rules based on a given training set with full
measurements: (x1, y1), (x2, y2), . . . , (xN , yN ).

We formulate an expected risk minimization prob-
lem that approximates the expected risk with a sam-
ple average over the training set:

min
f1,...,fK

N∑
i=1

R(f1, . . . , fK ,xi, yi) (4)

Following the decomposition in [1], we simplify the
empirical risk by decomposing the reject and the
classification decisions:

fk(xk) =

{
dk(xk), gk(xk) ≤ 0

reject, gk(xk) > 0
(5)

As in [1], we assume that at each stage, our system
has a fixed stage classifier, dk : X k → {1, . . . C}.3
And our goal is only to learn a binary reject decision
function for each stage, gk : X k → R. An example,
xi is rejected at stage k, if gk(xk) is greater than
zero, and classified by dk(xk) otherwise.

3Since the last stage is a terminal decision the reject
decision at stage gK(x) := −1.

3

989



Using this decomposition of reject decisions, the em-
pirical risk minimization in (4) can be expressed in
terms of indicator functions, 1[·]. The resulting em-
pirical risk is a product of indicator functions:

R(g1, . . . , gK ,x, y) = (7)

K∑
k=1

1dk(xk)6=yi + α
k∑
j=1

ck


︸ ︷︷ ︸

stage risk, Rk(·)

1gk(xk)≤0

k−1∏
j=1

1gj(xj)>0︸ ︷︷ ︸
state of xi, S

k(·)

Stage risk Rk denotes the cost of acquiring features
up the stage k and making an error at that stage.
The second term denotes at which stage xi is classi-
fied. The system only pays a penalty Rk at stage k
only if the state, Sk. is non-zero.

Difficulty in Minimizing Empirical Risk Op-
timizing the product of indicator functions in (7),
min

∑
iR(g1, . . . , gK ,xi, yi), is a computationally

challenging problem. The fundamental difficulty
arises due to dependency between decision functions
g1, . . . , gK . For example, the cost of making a de-
cision with g1 for a particular example depends on
the outputs of g2, . . . , gK , and similarly, the distri-
bution of examples operated by gK is dependent on
the decisions of classifiers g1, . . . , gK−1.

One previously proposed approach to solving this
problem is approximate block coordinate descent,
where each individual binary reject function is solved
while holding the rest of the system fixed, yielding a
supervised learning problem at each step [1]. Unfor-
tunately, this approach does not have any optimality
or convergence guarantees and can be computation-
ally expensive.

Previous solutions proposed for learning sequential
decision functions introduce loss functions in place
of the indicators and find a local minima of the re-
sulting bilinear problem [6, 7]. However, directly re-
placing indicators with upper-bounding surrogates,
such as hinge or logistic losses, yields a bilinear func-
tion, making global optimization intractable. As
previously shown, the bilinear separation problem
is NP-complete [5] and a global minima cannot be
efficiently found. Instead, a local minima is found

using alternating optimization, with each alternat-
ing optimization solved as a quadratic program.

3 Convex Sequential Learning

Rather than directly substituting surrogate func-
tions for indicators in (7) and attempting to solve
the previously described bilinear optimization prob-
lem, we reformulate the empirical risk objective. By
doing so, the risk is transformed from a product of
indicator functions to a maximization of sums of
indicators. As a result, introducing convex upper-
bounding surrogates no longer results in a computa-
tionally difficult bilinear problem, but instead yields
a convex minimization problem, allowing for glob-
ally optimal solutions to be efficiently found.

In reformulating the empirical risk, we find it useful
to define the quantities:

πki = 1dk(xk
i )=yi

+ α

K∑
j=k+1

cj (8)

The value πki is composed of two terms, an indica-
tor, representing if xki is correctly classified at stage
k, and the sum of the penalties after stage k, which
are not incurred if xki is classified at stage k. These
values represent the empirical risk “savings” if the
observation xi is classified at stage k as opposed
to the worst case outcome. In this case, all sen-
sor measurements are acquired incurring a penalty
of
∑K
i=1 ck and the observation is incorrectly clas-

sified. The empirical penalty of classifying the ob-
servation xi at stage k can therefore be expressed
1 + α

∑K
i=1 ck − πki .

Theorem 3.1. The risk in (7) is equal to (6).

Proof. We transform the risk in (7) with respect to
the “savings” gained:

R(g1, . . . , gK ,x, y) = 1 + α
K∑
k=1

ck

−
K∑
k=1

πk

1gk(xk
i )≤0

k−1∏
j=1

1gj(xj
i )>0

 .

R(g1, . . . , gK ,x, y) = 1 + α
K∑
k=1

ck︸ ︷︷ ︸
maximum
possible
cost

−
K∑
k=1

πk︸ ︷︷ ︸
savings of
all stages

+ max
k∈{1,...,K}

[
k−1∑
j=1

πj1gj(xj)>0︸ ︷︷ ︸
savings lost from
stages before k

+

 K∑
j=k+1

πk

1gk(xk)≤0︸ ︷︷ ︸
savings lost for
stages after k

]
(6)

4
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The product of indicators can be expressed as a min-
imization over the indicators, or equivalently a max-
imization over negative indicators:

R(g1, . . . , gK ,x, y) = 1 + α

K∑
k=1

ck +

K∑
k=1

(
πk

max
(
−1gk(xk)≤0,−1g1(x1)>0, . . . ,−1gk−1(xk−1)>0

) )
.

Next we change the sign of the indicators by chang-
ing the inequality directions:

R(g1, . . . , gK , x, y) = 1 + α
K∑
k=1

ck −
K∑
k=1

πk+

K∑
k=1

πk max
(
1gk(xk)>0,1g1(x1)≤0, . . . ,1gk−1(xk−1)≤0

)
Note that this form of the empirical risk is a max-
imization of linear functions, and substituting the
indicators with convex surrogates yields a convex
upper-bounding function. We further simply this
expression to the form presented in (6) by taking
advantage of dependencies of the indicator functions
(see Supplementary for additional details).

The reformulated empirical risk in (6) has the fol-
lowing interpretation. If we fix a k in the maxi-
mization term then, for an example x and decisions
g1, . . . , gK , we incur the penalty of the maximum
possible cost minus the savings of all stages, plus
the savings lost from stages before k and savings
lost for stages after k. Therefore, for a fixed k, this
empirical risk is a linear combination of indicators as
opposed to a product of indicators as in (7). Recall
that for a particular x, only a single Sk

∗
(xk

∗
) is 1,

and this k∗ is the maximizer in (6).

The empirical risk formulation in (6) has a dis-
tinct advantage over the product of indicator for-
mulation (7). Consider the upper-bounding convex
surrogate function L(z) ≥ 1z≤0. Replacing indica-
tors with the surrogate function L(·) in (7) yields
a bilinear expression, a fundamentally difficult op-
timization problem. In contrast, by expressing the
risk as a maximization of sums of indicator func-
tions, replacing the indicator functions in (6) with
a convex surrogate functions yields a globally con-
vex upper-bounding surrogate to the empirical risk
function. We denote the upper-bounding risk with
surrogate L(·) in place of the indicator function as
R̂L(g1, . . . , gK ,x, y) and the resulting convex opti-
mization problem over the training set and a suitable

family of functions G:

min
g1,...,gK∈GK

N∑
i=1

R̂L(g1, . . . , gK ,xi, yi) (9)

4 Learning Sequential Decisions as a
Linear Program

For an upper-bounding convex surrogate function,
we use a hinge-loss function L(z) = max (0, 1− z).
Replacing indicators in (6) with hinge-loss functions
yields a linear program upper-bound of the empirical
risk minimization problem.

Proposition 4.1. For L(z) = max (0, 1− z) and
GK limited to linear functions of the data, the prob-
lem in (9) is equivalent to the linear problem:

min
g1,...,gK ,γ1,...,γN
β1
1 ,...,β

K
N ,κ

1
1,...,κ

K
N

N∑
i=1

γi, subject to: (10)

k−1∑
j=1

πji κ
j
i +

 K∑
j=k+1

πji

βki ≤ γi,

1− gk(xki ) ≥ βki , 1 + gk(xki ) ≥ κki
βki ≥ 0, κki ≥ 0, ∀k ∈ [K], ∀i ∈ [N ]

To convert the maximization over k in (6) to a set
of linear constraints in (10), we introduce auxiliary
variables γi. Similarly, to express the hinge loss,
we introduce the auxilary variables, βki , κ

k
i and their

corresponding contraints. For simplicity of notation,
we eliminate the constant terms in the objective of
(6). We restrict the family of rejection decision func-
tions GK to be linear functions, however non-linear
functions can also be trained with the proposed lin-
ear program through the use of expanded basis func-
tions, φ(x). (See Suppl. for more details)

This linear programming formulation has multiple
advantages over the existing non-convex alternating
optimization approach [1]. The proposed program
is a convex minimization problem, so a global op-
timum can efficiently be found. In contrast, pre-
vious approaches to solving problems of this form
have only been shown to converge to a local mini-
mum [6, 7] or cannot even guarantee convergence of
any form [1]. As a result, these approaches rely on
random initialization to improve performance, de-
creasing repeatability and reliability while increasing
computation time. Finally, the proposed approach
is computationally efficient when compared to non-
convex approaches. Only a single linear program

5
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needs to be solved to return a solution, whereas al-
ternating approaches require repeatedly solving su-
pervised learning problems. The linear program is
of similar order complexity compared to each of it-
eration of alternating optimization approaches. The
number of variables in the linear program is of the
order O(KN), whereas each iteration of the alter-
nating approach proposed in [1] requires solving K
supervised learning problems with N training exam-
ples in each problem. Furthermore, the linear pro-
gram can be efficiently solved with state of the art
primal-dual methods, with an expected number of it-
erations O(

√
n log n), where n is the number of vari-

ables [23]. Finally, stochastic subgradient descent
methods can be shown to converge to the global
minimum [24], allowing for the sequential decision
functions to be learned in the case where the train-
ing data is not available in aggregate and is instead
only available in a streaming or batch setting.4

Budget Constraints: Our goal is to learn a set of
sequential decision functions that minimize classifi-
cation error subject to an average budget constraint.
In order to learn decisions for different average bud-
gets, we sweep over values of α, yielding multiple
decision functions of varying error rates and aver-
age budgets. Note that a system matching a desired
budget may not be learned, however any point in the
convex hull of the error/budget points from learned
systems is achievable by a randomized system. We
therefore take the lower convex hull of the points in
the space of average error vs. average cost to learn
decision systems for any average budget constraint.

VC-Dimension: As shown in [7, 1], the VC-
dimension of cascades is relatively small, growing
on the order of K log(K)D, where D is the maxi-
mum VC-dimension of the rejection decision func-
tions g1, . . . , gK [25]. Intuitively, this implies that
the rejection cascade does not dramatically increase
complexity and that generalization error of the en-
tire classification system is comparable to the gener-
alization error of each individual classifier d1, . . . , dK

(see [25, 7] for an in-depth analysis).

Regularization and Kernelization: Two issues
that arise in the linear program formulated are
whether the solution is unique and whether overfit-
ting occurs. In this paper, we focus on linear rejec-
tion functions which generally avoid these problems.
If the set of training examples is full-rank with re-

4Although training with streaming data is possible,
LP packages tend to solve the problem faster than
stochastic subgradient descend methods, so online train-
ing methods are not employed in the experiments.

spect to the dimension of the data and the costs
c1, . . . , cK are all nonzero, the solution is unique.
Due to the limited complexity of the linear func-
tion class and large training sets with respect to
the dimension of the data, overfitting tends not
to occur. However, in the case where uniqueness
and overfitting arise, the natural solution is to in-
clude regularization in the objective function, such
as the L2 norm. Regularization immediately re-
moves non-unique solutions, with the optimal so-
lution now the minimum-norm solution of the un-
regularized problem (for sufficiently small regular-
ization coefficients). The L2 regularization term in
combination with hinge-losses also allows trade-off
between decision ”error” and margins, preventing
overfitting. Furthermore, addition of the L2 norm
to the objective allows the problem to be kernelized,
as the dual problem is entirely in the space of in-
ner products φ(xk)φ(xk) for some expanded basis
function φ(·). Although the problem can be kernel-
ized by transforming the optimization from a linear
program to a quadratic program, empirically we find
linear functions to be sufficiently powerful for strong
performance without the need for regularization.

5 Experiments

We compare our LP approach to the discriminative
myopic strategy and non-convex (alternating mini-
mization) algorithm presented in [1].

Discriminative Myopic Strategy: The discrim-
inative myopic strategy rejects observations by
thresholding classification confidence at each stage:

gkmyop =

{
−1 if σdk(xk) ≤ tk

1 otherwise

where σdk(xk) is the confidence of the classifier dk

on observation xk and tk is a constant threshold.
In practice, we fix choose the threshold tk at each
stage k to reject a constant fraction of examples.
This strategy does not consider future cost when re-
jecting, instead looking only at current uncertainty
and is therefore considered myopic [1].

Alternating Minimization Algorithm: The
non-convex algorithm attempts to minimize the em-
pirical risk of the system as formulated in (7) using
alternating minimization [1]. After a random ini-
tialization, the algorithm attempts to optimize each
rejection decision gk by fixing all other rejection de-
cision functions and minimizing the empirical risk
(7). The resulting optimization problem for learning

6
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Dataset Classes Training Size Test Size Stage 1 Stage 2 Stage 3 Stage 4
synthetic 2 1000 1000 Sensor 1 Sensor 2 Sensor 3 -
MNIST 10 60000 10000 4 × 4 image 7 × 7 image 14 × 14 image 28 × 28 image
landsat 6 4435 2000 Band 1 Band 2 Band 3 Band 4
letter 26 16000 4000 Pixel Count Moments Edge Features -
pima 2 768 - Weight, Age,. . . Glucose Insulin -
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Figure 3: Comparison of error vs. average budget trade-off between a myopic approach, a non-convex optimization
approach, and our linear programming algorithm. Our linear programming approach clearly out performs the myopic
approach, and generally matches or exceeds the non-convex approach with the added benefit of reduced computational
cost, repeatability, and guaranteed convergence. In the case of the pima dataset, the LP is outperformed by the non-
convex approach for small budgets due to the discreteness of the first stage data.

each gk is equivalent to a weighted binary supervised
learning problem. As with our linear program, this
algorithm attempts to minimize the empirical risk,
however convergence and global optimality cannot
be guaranteed. Additionally, this algorithm can be
computationally expensive, as multiple initialization
and passes through the system may be required. As
in the LP, the average system budget is controlled by
a trade-off parameter α. In the experimental results
shown, for each parameter α, the alternating opti-
mization algorithm is randomly initialized 5 times,
with each initialization running through the system
for 10 iterations (or fewer if the system converges
and ceases to change between iterations). Training
of each rejection function gk is done by solving a
weighted logistic regression problem.

Performance Metric: To evaluate performance of
the sequential decision systems, we compare average
acquisition cost vs. system error. For the myopic
approach, this is achieved by sweeping the threshold
tk. For both our linear programming approach and
the alternating minimization algorithm, the system
is trained for varying values of α, yielding systems
of varying average acquisition cost and error. Small
values of α lead to a system with lower error rates
but higher average acquisition cost, whereas large
values of α result in systems with low average ac-
quisition cost at the expense of increased system er-
ror. The lower convex hull of the learned systems is
shown, as any average budget and error in the con-
vex hull of systems is achievable through a random-
ized system (where each observation is randomly

sent to one of the systems with varying weight).

Synthetic Example: To demonstrate the perfor-
mance of our algorithm, we first experiment on a
synthetic dataset. This dataset is based on the syn-
thetic dataset presented in [1]. We need to extend
this experiment to three dimensions. In the two
dimensional case, the regularized version of our al-
gorithm is exactly equivalent to the algorithm pre-
sented in [1] trained using an SVM, as no alternating
optimization required. As shown in Fig. 2(e), ob-
servations require different sensor measurements to
be correctly classified. Some data cannot be clas-
sified using any sensors, denoted by red x in the
figure. The goal when learning sequential decision
processes is to learn a system that does not acquire
new features for the x observations while acquiring
the necessary features to classify the rest of the data.
The myopic approach does not take into account the
future performance of the system, and therefore ac-
quires measurements for thex observations, whereas
the convex and non-convex decision systems do not
acquire new features for these observations, reducing
budget while mainaining classification accuracy.

Datasets: In addition, we compare performance
of the sequential decision systems on 4 real world
datasets used in [1]. For all examples, we assume the
cost of acquiring each new feature is 1, and there-
fore the average cost of the system is the number
of features acquired. For the MNIST dataset, lower
quality sensors are simulated by downsampling the
original 28× 28 images to resolutions of 4× 4, 7× 7,
and 14× 14. The goal is to correctly classifying the
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(d) 2nd and 3rd Sensors
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Figure 2: (a) Synthetic dataset used to compare per-
formance. (b,c,d) Projection of the data along different
axes. (e) The numbers represent the sensor measurement
required to distinguish between the two classes (for ex-
ample, an observation labeled 2 requires the second sen-
sor distinguish between classes). Points marked by x
represent data in a region where classification is never
better than random, regardless of the sensor measure-
ments acquired. (f) Comparison of the error vs. budget
tradeoff of the myopic approach, non-convex approach,
and LP approach. The LP approach is clearly superior
to the myopic approach, and matches the performance
of the non-convex approach which require a significant
number of random initializations.

digit using the lowest resolution sensor possible. The
3 other datasets are from the UCI repository [26].
The landsat dataset consists of 3 × 3 satellite im-
ages of the same area at four different hyperspectral
bands, with a goal of correctly classifying the type of
soil imaged. The letter dataset consists of features
extracted from hand written digits, with the first five
features generated from position and pixel counts,
the next 7 features in the second stage correspond
to more complex features such as spatial moments,
and the final 4 features in stage 3 correspond to the
most complex features, such as edge based features.
The objective for the pima dataset is to diagnose di-
abetes, with patient history information in the first
stage, a glucose test in the second stage, and an in-
sulin test in the final stage. Note that for the pima

Dataset
Target
Error

Myopic Non-Convex Convex

synthetic 0.21 96% 39% 37%
MNIST .11 81% 51% 33%
landsat .19 71% 42% 44%
letter .4 73% 51% 51%
pima .22 73% 48% 51%

Table 1: Average percentage of the budget required to
achieve a desired error rate. The target rate is chosen
to be close to the error achieved using the entire set of
features (the target error rates are approximately 95%
of the improvement gained using all features compared
to using only the initial features). The percentage of the
budget required is with respect to the maximum bud-
get. For example, if there are 3 stages and a budget of
50% indicates that on average, each example gains one
additional feature in order to achieve the target error.

dataset, we show performance on the entire dataset
due to the limited set size and lack of a benchmark
training/test split. For the MNIST, landsat, and
letter datasets, the benchmark splits are used, with
performance shown on the test sets. For all of these
datasets, the classifiers at each stage (d1, . . . , dK) are
linear functions trained using a standard multiclass
logistic regression approach.

Discussion: As seen in Figs. 2 and 3 and Table 1,
the linear programming formulation clearly outper-
forms the myopic approach. In general, the linear
programming approach matches or exceeds the per-
formance of the non-convex optimization approach
while offering numerous advantages, as discussed in
Section 4. Only in the case of the pima dataset does
the non-convex approach appear to outperform the
linear programming approach for a small set of bud-
get values. This is due to the fact that the linear
programming approach does not produce a system
for small budget values (apart from a system that
never acquires new measurements, where g1 < 0).
For smaller budgets, the system is instead created by
randomly sampling between a system with a higher
budget and a system that never acquires new sensor
measurements. We believe this effect arises because
the first stage of the pima dataset consists solely of
discrete features, and therefore partitioning of the
data into arbitrary-sized groups in the LP setting
(done by increasing the margins of some examples
while decreasing the margins of others) is difficult.
This is supported empirically, as once the budget
increases beyond 2 (where on average each example
sees the second real-valued sensor), performance of
the system matches the non-convex approach.
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