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A Proof of Theorem 3

The error analysis for the uniform+adaptive2 algorithm
relies on Lemma 7, which guarantees the error incurred
by its uniform sampling step. The proof of Lemma 7 es-
sentially follows Gittens (2011). We prove Lemma 7 using
probability inequalities and some techniques of Boutsidis
et al. (2011); Gittens (2011); Gittens and Mahoney (2013);
Tropp (2012); the proof is in Appendix A.1.

Lemma 7 (Uniform Column Sampling). Given an m ×
n matrix A and a target rank k, let µk denote the matrix
coherence of A. By sampling

c =
µkk log(k/δ)

θ log θ − θ + 1
,

columns uniformly without replacement to construct C, the
following inequality∥∥A− PC,kA

∥∥2
F
≤

(
1 + δ−1θ−1

)∥∥A−Ak

∥∥2
F

.

holds with probability at least 1 − 2δ. Here δ ∈ (0, 0.5)
and θ ∈ (0, 1) are arbitrary real numbers.

The error analysis for the two adaptive sampling steps
of the uniform+adaptive2 algorithm relies on Lemma 8,
which follows immediately from (Wang and Zhang, 2013,
Corollary 7 and Section 4.5).

Lemma 8. Given an m × m symmetric matrix A and
a target rank k, we let C1 contain the c1 columns of A
selected by a column sampling algorithm such that the
following inequality holds:∥∥A− PC1A

∥∥2
F
≤ f

∥∥A−Ak

∥∥2
F
.

Then we select c2 = kfε−1 columns to construct C2 and
c3 = (c1+ c2)ε

−1 columns to construct C3, both using the
adaptive sampling according to the residual B1 = A −
PC1A and B2 = A − P[C1,C2]A, respectively. Let C =
[C1,C2,C3], we have that

P

{∥∥A−C
(
C†A(C†)T

)
CT
∥∥
F∥∥A−Ak

∥∥
F

≥ 1 + sε

}
≤ 1 + ε

1 + sε
,

where s is an arbitrary constant greater than 1.

Finally Theorem 3 is proved by combining Lemma 7 and
Lemma 8. The proof is in Appendix A.2.

A.1 Proof of Lemma 7

Proof. We use uniform column sampling to select c
column of A to construct C = AS. Here the n× c random
matrix S has one entry equal to one and the rest equal to
zero in each column, and at most one nonzero entry in each
row, and S is uniformly distributed among (nc ) such kind of

matrices. Applying Lemma 7 of Boutsidis et al. (2011), we
get∥∥A− PC,kA

∥∥2
F

≤
∥∥A−Ak

∥∥2
F
+
∥∥(A−Ak)S

∥∥2
F

∥∥(VT
A,kS)

†∥∥2
2
. (3)

Now we bound
∥∥(A−Ak)S

∥∥2
2

and
∥∥(VT

A,kS)
†
∥∥2
2

respec-
tively using the techniques of Gittens (2011); Gittens and
Mahoney (2013); Tropp (2012).

Let I ⊂ [n] be a random index set corresponding to S. The
support of I is uniformly distributing among all the index
sets in 2[n] with cardinality c. According to Gittens and
Mahoney (2013), the expectation of

∥∥(A − Ak)S
∥∥2
F

can
be written as

E
∥∥(A−Ak)S

∥∥2
F

= E
∥∥(A−Ak)I

∥∥2
F

= cE
∥∥(A−Ak)i

∥∥2
F

=
c

n

∥∥A−Ak

∥∥2
F

.

Applying Markov’s inequality, we have that

P
{∥∥(A−Ak)S

∥∥2
F
≥ c

nδ

∥∥A−Ak

∥∥2
F

}
≤

E
∥∥(A−Ak)S

∥∥2
F

c
nδ

∥∥A−Ak

∥∥2
F

= δ. (4)

Here δ ∈ (0, 0.5) is a real number defined later.

Now we establish the bound for E
∥∥Ω†2∥∥22 as follows. Let

λi(X) be the i-th largest eigenvalue of X. Following the
proof of Lemma 1 of Gittens (2011), we have∥∥(VT

A,kS)
†∥∥2

2
= λ−1k

(
VT

A,kSSTVA,k

)
= λ−1k

( c∑
i=1

Xi

)
≤ λ−1min

( c∑
i=1

Xi

)
, (5)

where the random matrices X1, · · · ,Xc are chosen uni-
formly at random from the set

{(
VT

A,k

)
i

(
VT

A,k

)T
i

}n
i=1

without replacement. The random matrices are of size
k × k. We accordingly define

R = max
i
λmax(Xi) = max

i

∥∥(VT
A,k

)
i

∥∥2
2
=
k

n
µk,

where µk is the matrix coherence of A, and define

βmin = λmin

(
E

c∑
i=1

Xi

)
= λmin

(
cEX1

)
= λmin

( c
n

VT
A,kVA,k

)
=

c

n
.

Then we apply Lemma 9 and obtained the following
inequality:

P
[
λmin

( c∑
i=1

Xi

)
≤ θc

n

]
≤ k

[
eθ−1

θθ

] c
kµk

, δ,(6)
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where θ ∈ (0, 1] is a real number, and it follows that

c =
µkk log(k/δ)

θ log θ − θ + 1
.

Applying (5) and (6), we have

P
{∥∥(VT

A,kS)
†∥∥2

2
≥ n

θc

}
≤ δ. (7)

Combining (4) and (7) and applying the union bound, we
have the following inequality:

P
{∥∥(A−Ak)S

∥∥2
F
≥ c

nδ

∥∥A−Ak

∥∥2
F

or
∥∥(VT

A,kS)
†∥∥2

2
≥ n

θc

}
≤ 2δ. (8)

Finally, from (3) and (8) we have that the inequality∥∥A− PC,kA
∥∥2
F
≤

(
1 + δ−1θ−1

)∥∥A−Ak

∥∥2
F

holds with probability at least 1− 2δ, by which the lemma
follows.

Lemma 9 (Theorem 5.1.1 of Tropp (2012)). We are given
l independent random d × d SPSD matrices X1, · · · ,Xl

with the property

λmax(Xi) ≤ R for i = 1, · · · , l.

We define Y =
∑l
i=1 Xi and βmin = λmin

(
EY
)
. Then

for any θ ∈ (0, 1], the following inequality holds:

P
{
λmin(Y) ≤ θβmin

}
≤ k

[
eθ−1

θθ

] βmin
R

.

A.2 Proof of the Theorem

Proof. The matrix C1 consists of c1 columns selected by
uniform sampling, and C2 ∈ Rm×c2 and C3 ∈ Rm×c3 are
constructed by adaptive sampling. We set δ = 1/

√
5 and

θ =
√
5/4 for Lemma 7, then we have

f = 1 + δ−1θ−1 = 5,

c1 =
µkk log(k/δ)

θ log θ − θ + 1
= 8.7µkk log(

√
5k).

Then we set

c2 = kfε−1 = 5kε−1,

c3 = (c1 + c2)ε
−1,

according to Lemma 8. Letting s > 1 be an arbitrary
constant, we have that

P

{∥∥A−CUCT
∥∥
F∥∥A−Ak

∥∥
F

≤ 1 + sε

}

≥ P

{∥∥A−CUCT
∥∥
F∥∥A−Ak

∥∥
F

≤ 1 + sε

∣∣∣∣∣
∥∥A− PC1A

∥∥2
F∥∥A−Ak

∥∥2
F

≤ f

}

· P

{∥∥A− PC1A
∥∥2
F∥∥A−Ak

∥∥2
F

≤ f

}

≥
(
1− 1 + ε

1 + sε

)(
1− 2δ

)
.

where the last inequality follows from Lemma 7 and
Lemma 8.

Repeating the sampling procedure for t times and letting
C[i] and U[i] be the i-th sample, we obtain an upper error
bound on the failure probability:

P

{
min
i∈[t]

{∥∥A−C[i]U[i]C
T
[i]

∥∥
F∥∥A−Ak

∥∥
F

}
≥ 1 + sε

}

≤
(
1−

(
1− 1 + ε

1 + sε

)(
1− 2δ

))t
=

(
1 +

(s− 1)(1− 2δ)

ε−1 + 1 + 2δ(s− 1)

)−t
, p.

Taking logarithm of both sides of the equality and applying
log(1 + x) ≈ x when x is small, we have

t =

[
log
(
1 +

(1− 2δ)(s− 1)

ε−1 + 1 + 2δ(s− 1)

)]−1
log

1

p

≈ ε−1 + 1 + 2δ(s− 1)

(1− 2δ)(s− 1)
log

1

p
.

Setting s = 2, we have that t ≈ (10ε−1 + 18) log(1/p).

Hence by sampling totally

c =
(
1 + ε−1

)(
5kε−1 + 8.7µkk log(

√
5k)
)

columns and repeating the procedure for

t ≥ (10ε−1 + 18) log(1/p)

times, the algorithm attains the upper error bound∥∥A−C
(
C†A(C†)T

)
CT
∥∥
F
≤
(
1 + 2ε

)∥∥A−Ak

∥∥
F

with probability at least 1− p. Substituting 2ε by ε′ yields
the error bound in the theorem.

Time complexity and space complexity of Algorithm 1 is
calculated as follows. The uniform sampling costs O(m)
time; the first adaptive sampling round costs O(mc21) +
TMultiply(m

2c1) time; the second adaptive sampling
round costs O(m(c1 + c2)

2) + TMultiply(m
2(c1 + c2))

time; computing the intersection matrix costs O(mc2) +
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TMultiply(m
2c) time in general. So the total time

complexity is O(mc2) + TMultiply(m
2c) without using

Theorem 4, or O(m(c1 + c2)
2) + TMultiply(m

2c) using
Theorem 4. As for the space complexity, the Moore-
Penrose inverse of an m× c matrix demandsO(mc) space,
and multiplying a c×m matrix C† by an m×m matrix A
costsO(mc) space by partition A into small blocks of size
smaller than m × c and loading one block into RAM at a
time to perform matrix multiplication.

B Proof of Theorem 4

Proof. Let C ∈ Rm×c consists of a subset of columns of
A. By row permutation C can be expressed as

PC =

[
W
A21

]
.

Then according to Lemma 10, the Moore-Penrose inverse
of C can be written as

C† = W−1(Ic + STS
)−1 [

Ic ST
]
P,

where S = A21W
−1. Then the intersection matrix of

modified Nyström approximation to A can be expressed
as

U = C†A
(
C†
)T

= W−1(Ic + STS
)−1 [

Ic ST
]
PAPT[

Ic
S

] (
Ic + STS

)−1
W−1

= W−1(Ic + STS
)−1 [

Ic ST
][

W AT
21

A21 A22

] [
Ic
S

] (
Ic + STS

)−1
W−1

= W−1(Ic + STS
)−1(

W + AT
21S + (AT

21S)
T

+ STA22S
)(

Ic + STS
)−1

W−1

, T1

(
W + T2 + TT

2 + T3

)
TT

1 .

Here the intermediate matrices are computed by

T0 = AT
21A21,

T1 = W−1(Ic + STS
)−1

= W−1
(
Ic + W−1T0W

−1
)−1

,

T2 = AT
21S = AT

21A21W
−1 = T0W

−1,

T3 = STA22S = W−1
(
AT

21A22A21

)
W−1.

The matrix inverse operations are on c × c matrices which
costs O(c3) time. The matrix multiplication AT

21A22A21

requires time TMultiply

(
(m− c)2c

)
.

Lemma 10 (The Moore Penrose Inverse of Partitioned
Matrices (Ben-Israel and Greville, 2003, Page 179)). Given
a matrix X ∈ Rm×n of rank of at least c which has a
nonsingular c × c submatrix X11. By rearrangement of
columns and rows by permutation matrices P and Q, the
submatrix X11 can be bought to the top left corner of X,
that is,

PXQ =

[
X11 X12

X21 X22

]
.

Then the Moore-Penrose inverse of X is

X† = Q

[
Ic
TT

] (
Ic + TTT

)−1
X−111(

Ic + SST
)−1 [

Ic ST
]
P,

where T = X−111 X12 and S = X21X
−1
11 .

C The Proof of Theorem 5

Proof. Suppose that rank(W) = rank(A). We have that
rank(W) = rank(C) = rank(A) because

rank(A) ≥ rank(C) ≥ rank(W). (9)

Thus there exists a matrix X such that[
AT

21

A22

]
= CXT =

[
WXT

A21X
T

]
,

and it follows that A21 = XW and A22 = A21X
T =

XWXT . Then we have that

A =

[
W (XW)T

XW XWXT

]
=

[
I
X

]
W
[

I XT
]

, (10)

CW†CT =

[
W

XW

]
W† [ W (XW)T

]
=

[
I
X

]
W
[

I XT
]

. (11)

Here the second equality in (11) follows from WW†W =
W. We obtain that A = CW†C. Then we show that
A = CC†A(C†)TCT .

Since C† = (CTC)†CT , we have that

C† =
(
W(I + XTX)W

)†
W [I , XT ],

and thus

C†A(C†)TW

=
(
W(I + XTX)W

)†
W(I + XTX)

[
W(I + XTX)

W
(
W(I + XTX)W

)†
W
]

=
(
W(I + XTX)W

)†
W(I + XTX)W,



Shusen Wang, Zhihua Zhang

where the second equality follows from Lemma 11 because
(I + XTX) is positive definite. Similarly we have

WC†A(C†)TW

= W
(
W(I + XTX)W

)†
W(I + XTX)W = W.

Thus we have

CC†A(C†)TC =

[
I
X

]
WC†A(C†)TW

[
I XT

]
=

[
I
X

]
W
[
I XT

]
. (12)

It follows from Equations (10) (11) (12) that A =
CW†CT = CC†A(C†)TCT .

Conversely, when A = CW†CT , we have that
rank(A) ≤ rank(W†) = rank(W). By applying
(9) we have that rank(A) = rank(W).

When A = CC†A(C†)TCT , we have rank(A) ≤
rank(C). Thus there exists a matrix X such that[

AT
21

A22

]
= CXT =

[
WXT

A21X
T

]
,

and therefore A21 = XW. Then we have that

C =

[
W
A21

]
=

[
I
X

]
W,

so rank(C) ≤ rank(W). Apply (9) again we have
rank(A) = rank(W).

Lemma 11. XTVX
(
XTVX

)†
XT = XT for any

positive definite matrix V.

Proof. Since the positive definite matrix V have a decom-
position V = BTB for some nonsingular matrix B, so we
have

XTVX
(
XTVX

)†
XT

= (BX)T
(
BX

(
(BX)T (BX)

)†)
(BX)TB(BTB)−1

= (BX)T
(
(BX)T

)†
(BX)T (BT )−1

= (BX)T (BT )−1

= XT .

D Proof of Theorem 6

In Section D.1 we provide two key lemmas, and then in
Section D.2 we prove Theorem 6 using the two lemmas.

D.1 Key Lemmas

Lemma 12. For an m×m matrix B with diagonal entries
equal to one and off-diagonal entries equal to α, the error
incurred by the modified Nyström method is lower bounded
by

‖B− B̃mod
c ‖2F

≥ (1− α)2(m− c)
(
1 +

2

c
− (1− α)1 + o(1)

αcm/2

)
.

Proof. Without loss of generality, we assume the first c
column of B are selected to construct C. We partition B
and C as:

B =

[
W BT

21

B21 B22

]
and C =

[
W
B21

]
.

Here the matrix W can be expressed by W = (1 −
α)Ic+α1c1

T
c . We apply the Sherman-Morrison-Woodbury

formula

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1

to compute W−1, yielding

W−1 =
1

1− α
Ic −

α

(1− α)(1− α+ cα)
1c1

T
c . (13)

We expand the Moore-Penrose inverse of C by Lemma 10
and obtain

C† = W−1(Ic + STS
)−1 [

Ic ST
]

where

S = B21W
−1 =

α

1− α+ cα
1m−c1

T
c .

It is easily verified that STS =
(

α
1−α+cα

)2
(m− c)1c1Tc .

Now we express the matrix constructed by the modified
Nyström method in a partitioned form:

B̃mod
c = CC†B

(
C†
)T

CT

=

[
W
B21

]
W−1(Ic + STS

)−1 [
Ic ST

]
B[

Ic
S

] (
Ic + STS

)−1
W−1

[
W
B21

]T
=

[ (
Ic + STS

)−1

B21W
−1
(
Ic + STS

)−1

] [
Ic ST

]
B

[
Ic
S

][ (
Ic + STS

)−1

B21W
−1
(
Ic + STS

)−1

]T
. (14)

We then compute the submatrices
(
Ic + STS

)−1
and

B21W
−1(Ic +STS

)−1
respectively as follows. We apply
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the Sherman-Morrison-Woodbury formula to compute(
Ic + STS

)−1
, yielding

(
Ic + STS

)−1
=

(
Ic +

( α

1− α+ cα

)2
(m− c)1c1

T
c

)−1

= Ic − γ11c1
T
c , (15)

where

γ1 =
m− c

mc+
(
1−α
α

)2
+ 2(1−α)c

α

.

It follows from (13) and (15) that

W−1(Ic + STS
)−1

= (γ2Ic − γ31c1
T
c )(Ic − γ11c1

T
c )

= γ2Ic + (γ1γ3c− γ1γ2 − γ3)1c1
T
c (16)

where

γ2 =
1

1− α
and γ3 =

α

(1− α)(1− α+ αc)
.

Then we have that

B21W
−1(Ic + STS

)−1
= α

(
γ1γ3c

2 − γ3c− γ1γ2c+ γ2
)
1m−c1

T
c

, γ1m−c1
T
c , (17)

where

γ = α
(
γ1γ3c

2 − γ3c− γ1γ2c+ γ2
)

=
α(αc− α+ 1)

2αc− 2α− 2α2c+ α2 + α2cm+ 1
. (18)

Since B21 = α1m−c1
T
c and B22 = (1 − α)Im−c +

α1m−c1
T
m−c, it is easily verified that

[
Ic ST

]
B

[
Ic
S

]
=
[

Ic ST
] [ W BT

21

B21 B22

] [
Ic
S

]
= (1− α)Ic + λ1c1

T
c , (19)

where

λ =
α(3αm− αc− 2α+ α2c− 3α2m+ α2 + α2m2 + 1)

(αc− α+ 1)2

It follows from (14), (15), (17), and (19) that

B̃mod
c

=

[
Ic − γ11c1

T
c

γ1m−c1
T
c

](
(1− α)Ic + λ1c1

T
c

)[
Ic − γ11c1

T
c

γ1m−c1
T
c

]T
,

[
B̃11 B̃T

21

B̃21 B̃22

]
,

where

B̃11 = (1− α)Ic +
[
(1− γ1c)

(λ− λγ1c− (1− α)γ1)− (1− α)γ1
]
1c1

T
c

= (1− α)Ic + η11c1
T
c ,

B̃21 = ÃT
12 = γ(1− γ1c)(1− α+ λc)1m−c1

T
c

= η21m−c1
T
c ,

B̃22 = γ2c(1− α+ λc)1m−c1
T
m−c

= η31m−c1
T
m−c,

where

η1 = (1− γ1c)(λ− λγ1c− (1− α)γ1)− (1− α)γ1,
η2 = γ(1− γ1c)(1− α+ λc),

η3 = γ2c(1− α+ λc),

By dealing with the four blocks of B̃mod
c respectively, we

finally obtain that

‖B− B̃mod
c ‖2F

= ‖W − B̃11‖2F + 2‖B21 − B̃21‖2F + ‖B22 − B̃22‖2F
= c2(α− η1)2 + 2c(m− c)(α− η2)2

+ (m− c)(m− c− 1)(α− η3)2 + (m− c)(1− η3)2

= (m− c)(α− 1)2
(
α4c2m2 − 4α4c2m+ 4α4c2

+ 2α4cm2 − 4α4cm+ α4c+ α4m− α4 + 4α3c2m

− 8α3c2 + 2α3cm+ 2α3c− 2α3m+ 2α3 + 4α2c2

+ 2α2cm− 7α2c+ α2m+ 4αc− 2α+ 1
)
/
(
2αc

− 2α− 2α2c+ α2 + α2cm+ 1
)2

= (m− c)(α− 1)2
(
1 +

2

c
− (1− α)

c

(
6αc− 6α

− 12α2c+ 6α3c+ 6α2 − 2α3 + 3α2c2 − 3α3c2

+ 2α3c2m+ 3α2cm− 3α3cm+ 2
)
/
(
2αc− 2α

− 2α2c+ α2 + α2cm+ 1
)2)

= (m− c)(α− 1)2
(
1 +

2

c
−
(
1 + o(1)

) 1− α
αcm/2

)
.

Lemma 13 (Lemma 19 of Wang and Zhang (2013)). Given
m and k, we let B be an m

k ×
m
k matrix whose diagonal

entries equal to one and off-diagonal entries equal to α ∈
[0, 1). We let A be an m×m block-diagonal matrix

A = diag(B, · · · ,B︸ ︷︷ ︸
k blocks

). (20)

Let Ak be the best rank-k approximation to the matrix A,
then we have that

‖A−Ak‖F = (1− α)
√
m− k.
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D.2 Proof of the Theorem

Now we prove Theorem 6 using Lemma 12 and Lemma 13.

Proof. Let C consist of c column sampled from A and Ĉi

consist of ci columns sampled from the i-th block diagonal
matrix in A. Without loss of generality, we assume Ĉi

consists of the first ci columns of B. Then the intersection
matrix U is computed by

U = C†A
(
CT
)†

=
[
diag

(
Ĉ1, · · · , Ĉk

)]†
A
[
diag

(
ĈT

1 , · · · , ĈT
k

)]†
= diag

(
Ĉ†1B

(
Ĉ†1
)T
, · · · , Ĉ†kB

(
Ĉ†k
)T)

.

The modified Nyström approximation to A is

Ãmod
c = CUCT

= diag
(
Ĉ1Ĉ

†
1B
(
Ĉ†1
)T

ĈT
1 , · · · , ĈkĈ

†
kB
(
Ĉ†k
)T

ĈT
k

)
,

and thus the approximation error is

∥∥A− Ãmod
c

∥∥2
F

=

k∑
i=1

∥∥∥B − ĈiĈ
†
iB
(
Ĉ†i
)T

ĈT
i

∥∥∥2
F

≥ (1− α)2
k∑

i=1

(p− ci)
(
1 +

2

ci
− (1− α)

(1 + o(1)

αcip/2

))

= (1− α)2
( k∑

i=1

(p− ci)

+

k∑
i=1

2(p− ci)
ci

(
1− (1− α)(1 + o(1))

αp

))
≥ (1− α)2(m− c)

(
1 +

2k

c

(
1− k(1− α)(1 + o(1))

αm

))
,

where the former inequality follows from Lemma 12, and
the latter inequality follows by minimizing over c1, · · · , ck.
Finally we apply Lemma 13, and the theorem follows by
setting α→ 1.

E Supplementary Experiments

We have mentioned in Remark 1 that the resulting
approximation accuracy is insensitive to the parameter µ
in Algorithm 1, and setting µ to be exactly the matrix
coherence does not in general give rise to the highest
accuracy. To demonstrate this point of view, we conduct
experiments on an RBF kernel matrix of the Letters Dataset
with σ = 0.2, and we set k = 10.

We compare the uniform+adaptive2 algorithm with differ-
ent settings of µ; we also employ the adaptive-full algo-
rithm of Kumar et al. (2012), the near-optimal+adaptive
algorithm of Wang and Zhang (2013), and the uniform
sampling algorithm for comparison. The experiment

settings are the same to Section 6. Here the adaptive-
full algorithm also has three steps: one uniform sampling
and two adaptive sampling steps, and we set c1 = c2 =
c3 = c/3 according to Kumar et al. (2012). We plot the
approximation errors in Figure 5.
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Figure 5: Effect of the parameter µ in Algorithm 1.

We can see from Figure 5 that different settings of µ
does not have big influence on the approximation accuracy.
We can also see that it is unnecessary to set µ to be
exactly the matrix coherence; in this set of experiments, the
uniform+adaptive2 algorithm achieves the higher accuracy
when µ = 0.5 (the actual matrix coherence is µ10 =
62.05).


