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Abstract

Many kernel methods suffer from high time and
space complexities and are thus prohibitive in
big-data applications. To tackle the computation-
al challenge, the Nyström method has been ex-
tensively used to reduce time and space complex-
ities by sacrificing some accuracy. The Nyström
method speedups computation by constructing
an approximation of the kernel matrix using only
a few columns of the matrix. Recently, a variant
of the Nyström method called the modified
Nyström method has demonstrated significant
improvement over the standard Nyström method
in approximation accuracy, both theoretically
and empirically. In this paper, we propose
two algorithms that make the modified Nyström
method practical. First, we devise a simple
column selection algorithm with a provable error
bound. Our algorithm is more efficient and
easier to implement than and nearly as accurate
as the state-of-the-art algorithm. Second, with
the selected columns at hand, we propose an
algorithm that computes the approximation in
lower time complexity than the approach in the
previous work. Furthermore, we prove that the
modified Nyström method is exact under certain
conditions, and we establish a lower error bound
for the modified Nyström method.

1 Introduction

The kernel method is an important tool in machine
learning, computer vision, and data mining (Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004).
However, many kernel methods require matrix computa-
tions of high time and space complexities. For example,
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let m be the number of data instances. The Gaussian
process regression computes the inverse of anm×mmatrix
which takes time O(m3) and space O(m2); the kernel
PCA, Isomap, and Laplacian eigenmaps all perform the
truncated singular value decomposition which takes time
O(m2k) and space O(m2), where k is the target rank of
the decomposition. When m is large, it is challenging to
store the m × m kernel matrix in RAM to perform these
matrix computations. Therefore, these kernel methods are
prohibitive when m is large.

To overcome the computational challenge, Williams and
Seeger (2001) employed the Nyström method (Nyström,
1930) to generate a low-rank approximation to the original
symmetric positive semidefinite (SPSD) kernel matrix. By
using the Nyström method, eigenvalue decomposition and
some matrix inverse can be approximately done on only
a few columns of the SPSD matrix instead of on the
entire matrix, and the time and space costs are reduced
to O(m). The Nyström method has been widely used
to speedup various kernel methods, such as the Gaussian
process regression (Williams and Seeger, 2001), spectral
clustering (Fowlkes et al., 2004; Li et al., 2011), kernel
SVMs (Zhang et al., 2008; Yang et al., 2012), kernel PCA
(Zhang et al., 2008; Zhang and Kwok, 2010; Talwalkar
et al., 2013), kernel ridge regression (Cortes et al., 2010;
Yang et al., 2012), determinantal processes (Affandi et al.,
2013), etc.

To construct a low-rank matrix approximation, the Nyström
method requires a small number of columns (say, c
columns) to be selected from the kernel matrix by a column
sampling technique. The approximation accuracy is largely
determined by the sampling technique; that is, a better
sampling technique can result in a Nyström approximate
with a lower approximation error. In the previous work
much attention has been made on improving the error
bounds of the Nyström method: additive-error bound has
been explored by Drineas and Mahoney (2005); Shawe-
taylor et al. (2005); Kumar et al. (2012); Jin et al. (2012),
etc. Very recently, Gittens and Mahoney (2013) established
the first relative-error bound which is more interesting than
additive-error bound (Mahoney, 2011).
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However, the approximation quality cannot be arbitrarily
improved by devising a very good sampling technique. As
shown theoretically by Wang and Zhang (2013), no matter
what sampling technique is used to construct the Nyström
approximation, the incurred error (in the spectral norm or
the squared Frobenius norm) must grow with matrix sizem
at least linearly. Thus, the Nyström approximation can be
very rough when m is large, unless large number columns
are selected. As was pointed out by Cortes et al. (2010),
the tighter kernel approximation leads to the better learning
accuracy, so it is useful to find a kernel approximation
model that is more accurate than the Nyström method.

To improve the approximation accuracy, Wang and Zhang
(2013) proposed a new alternative called the modified
Nyström method and a sampling algorithm for the modified
Nyström method. The modified Nyström method can be
applied in the same way exactly as the standard Nyström
method to speedup kernel methods. The modified Nyström
method has an advantage that the error does not grow
with matrix size m. Therefore, by using the modified
Nyström method instead of the standard Nyström method,
a significantly smaller number of columns is needed to
attain the same accuracy as the standard Nyström method.

However, it is much more expensive to construct the
modified Nyström approximation than to construct the
standard standard Nyström approximation. Furthermore,
an efficient implementation of the modified Nyström
method keeps till open. In this paper we seek to make the
modified Nyström method efficient and practical.

Additionally, Kumar et al. (2009); Talwalkar and Ros-
tamizadeh (2010) showed that the standard Nyström
approximation is exact when the original kernel matrix
is low-rank. Wang and Zhang (2013) proved the lower
error bounds of the standard Nyström method. It is still
open whether the modified Nyström method has similar
properties. So we explore the theoretical properties of the
modified Nyström method in this paper.

In sum, this paper offers the following contributions:

• We devise a column selection algorithm with provable
error bound for the modified Nyström method. We
call it the uniform+adaptive2 algorithm. It is more
efficient and much easier to implement than the
near-optimal+adaptive algorithm of Wang and Zhang
(2013), yet its error bound is comparable with the
near-optimal+adaptive algorithm.

• We provide an efficient algorithm for computing the
intersection matrix of the modified Nyström method.
This algorithm can significantly reduce the time cost,
especially when the kernel matrix is sparse.

• We show that the modified Nyström approximation
exactly recovers the original matrix under some
conditions.

• We established a lower error bound for the modified
Nyström method. We conjecture that the lower error
bound is tight.

The remainder of this paper is organized as follows. In
Section 2 we define the notation used in this paper. In
Section 3 we formally define the Nyström approximation
methods and introduce some column sampling algorithms.
In Section 4 we present an efficient column sampling
algorithm and its error analysis. In Section 5 we devise an
algorithm that computes the modified Nyström approxima-
tion more efficiently. In Section 6 we empirically evaluate
our proposed two algorithms. In Section 7 we explore some
theoretical properties of the modified Nyström method.

2 Notation

The notation used in this paper follows that of Wang
and Zhang (2013). For an m×n matrix A = [aij ],
we let a(i) be its i-th row, aj be its j-th column,
‖A‖F = (

∑
i,j a

2
ij)

1/2 be its Frobenius norm, and
‖A‖2 = maxx6=0 ‖Ax‖2/‖x‖2 be its spectral norm.

Letting ρ = rank(A), we write the condensed singular
value decomposition (SVD) of A as A = UAΣAVT

A,
where the (i, i)-th entry of ΣA ∈ Rρ×ρ is the i-th largest
singular value of A. We also let UA,k and VA,k be the
first k (< ρ) columns of UA and VA, respectively, and
ΣA,k be the k × k top sub-block of ΣA. Then the m × n
matrix Ak = UA,kΣA,kV

T
A,k is the “closest” rank-k

approximation to A.

Based on SVD, the matrix coherence of the columns of A
relative to the best rank-k approximation to A is defined
by µk = n

k maxj
∥∥V(j)

A,k

∥∥2
2
. Let A† = VAΣ−1A UT

A be the
Moore-Penrose inverse of A. When A is nonsingular, the
Moore-Penrose inverse is identical to the matrix inverse.
Given another m× c matrix C, we define PCA = CC†A
as the projection of A onto the column space of C and
PC,kA = C · argminrank(X)≤k ‖A − CX‖F as the rank
restricted projection. It is obvious that ‖A − PCA‖F ≤
‖A− PC,kA‖F .

Finally, we discuss the time complexities of the matrix
operations mentioned above. For an m×n general matrix
A (assume m ≥ n), it takes O(mn2) flops to compute
the full SVD and O(mnk) flops to compute the truncated
SVD of rank k (< n). The computation of A† takes
O(mn2) flops. It is worth mentioning that although
multiplying an m×n matrix by an n×p matrix takes mnp
flops, it can be performed in full parallel by partitioning
the matrices into blocks. Thus, the time and space expense
of large-scale matrix multiplication is not a challenge in
real-world applications. We denote the time complexity
of such a matrix multiplication by TMultiply(mnp), which
can be tremendously smaller than O(mnp) in parallel
computing environment (Halko et al., 2011). An algorithm
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can still be efficient even if it demands large-scale matrix
multiplications.

3 Previous Work

In Section 3.1 we introduce the standard and modified
Nyström methods and discuss their advantages and disad-
vantages. In Section 3.2 we describe some commonly used
column sampling algorithms.

3.1 The Nyström Methods

Given an m ×m symmetric matrix A, one needs to select
c (� m) columns of A to form a matrix C ∈ Rm×c to
construct the standard or modified Nyström approximation.
Without loss of generality, A and C can be permuted such
that

A =

[
W AT

21

A21 A22

]
and C =

[
W
A21

]
, (1)

where W is of size c × c. The standard Nyström
approximation is defined by

Ãnys
c , CUnysCT = CW†CT ,

and the modified Nyström approximation is

Ãmod
c , CUmodCT = C

(
C†A(C†)T

)
CT .

Here the c × c matrices Unys , W† and Umod ,
C†A(C†)T are called the intersection matrices. We see
that the only difference between the two models is their
intersection matrices.

For the approximation CUCT constructed by either of the
methods, given a target rank k, we hope the error ratio

f = ‖A−CUCT ‖ξ/‖A−Ak‖ξ, (ξ = F or 2),

is as small as possible. However, Wang and Zhang (2013)
showed that for the standard Nyström method, whatever a
column selection algorithm is used, the ratio f must grow
with the matrix size m when c is fixed.

Lemma 1 (Lower Error Bound of the Standard Nyström
Method (Wang and Zhang, 2013)). Whatever a column
sampling algorithm is used, there exists an m × m SPSD
matrix A such that the error incurred by the standard
Nyström method obeys:

∥∥A−CW†CT
∥∥2
F
≥ Ω

(
1 +

mk

c2

)
‖A−Ak‖2F ,∥∥A−CW†CT

∥∥
2
≥ Ω

(m
c

)
‖A−Ak‖2.

Here k is an arbitrary target rank, and c is the number of
selected columns.

Thus, when the matrix size m is large, the standard
Nyström approximation is very inaccurate unless a large
number of columns are selected. By comparison, when
using an algorithm in Wang and Zhang (2013) for the
modified Nyström method, the error ratio f remains
constant for a fixed c and a growing m. Therefore,
the modified Nyström method is more accurate than the
standard Nyström method.

However, the accuracy gained by the modified Nyström
method is at the cost of higher time and space complexities.
Computing the intersection matrix Unys = W† only takes
time O(c3) and space O(c2), while computing Umod =
C†A(C†)T naively takes time O(mc2) + TMultiply(m

2c)
and space O(mc) 1.

3.2 Sampling Algorithms for the Nyström Methods

The column selection problem has been widely studied
in the theoretical computer science community (Boutsidis
et al., 2011; Mahoney, 2011; Guruswami and Sinop, 2012)
and the numerical linear algebra community (Gu and
Eisenstat, 1996; Stewart, 1999), and numerous algorithms
have been devised and analyzed. Here we focus on
some theoretically guaranteed algorithms studied in the
theoretical computer science community.

In the previous work much attention has been paid
on improving column sampling algorithms such that
the Nyström approximation is more accurate. Uniform
sampling is the simplest and most time-efficient column
selection algorithm, and it has provable error bounds
when applied to the standard Nyström method (Gittens,
2011; Jin et al., 2012; Kumar et al., 2012; Gittens and
Mahoney, 2013). To improve the approximation accuracy,
many importance sampling algorithms have been proposed,
among which the adaptive sampling of Deshpande et al.
(2006) (see Algorithm 2) and the leverage score based
sampling of Drineas et al. (2008) are widely studied.
The leverage score based sampling has provable bounds
when applied to the standard Nyström method (Gittens and
Mahoney, 2013), and the adaptive sampling has provable
bounds when applied to the modified Nyström method
(Wang and Zhang, 2013). Besides, quadratic Rényi entropy
based active subset selection (De Brabanter et al., 2010)
and k-means clustering based selection (Zhang and Kwok,
2010) are also effective algorithms, but they do not have
additive-error or relative-error bound.

Particularly, Wang and Zhang (2013) proposed an algorith-
m for the modified Nyström method by combining the near-
optimal column sampling algorithm (Boutsidis et al., 2011)
and the adaptive sampling algorithm (Deshpande et al.,

1The matrix multiplication can be done blockwisely, that is,
loading two small blocks into RAM to perform multiplication at
a time. So the space cost of the matrix multiplication is O(mc)
rather than O(m2) (Wang and Zhang, 2013).
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Algorithm 1 The Uniform+Adaptive2 Algorithm.
1: Input: an m ×m symmetric matrix A, target rank k, error

parameter ε ∈ (0, 1], matrix coherence µ.
2: Uniform Sampling. Uniformly sample

c1 = 8.7µk log
(√

5k
)

columns of A without replacement to construct C1;
3: Adaptive Sampling. Sample

c2 = 10kε−1

columns of A to construct C2 using adaptive sampling
algorithm 2 according to the residual A− PC1A;

4: Adaptive Sampling. Sample

c3 = 2ε−1(c1 + c2)

columns of A to construct C3 using adaptive sampling
algorithm 2 according to the residual A− P[C1, C2]A;

5: return C = [C1,C2,C3] and U = C†A(C†)T .

2006). The error bound of the algorithm is the strongest
among all the feasible algorithms for the Nyström methods.
We show it in the following lemma.

Lemma 2 (The Near-Optimal+Adaptive Algorithm (Wang
and Zhang, 2013)). Given a symmetric matrix A ∈ Rm×m
and a target rank k, the algorithm samples totally c =
O(kε−2) columns of A to construct the approximation.
We run the algorithm t ≥ (2ε−1 + 1) log(1/p) times
(independently in parallel) and choose the sample that
minimizes ‖A−C

(
C†A(C†)T

)
CT
∥∥
F

, then the inequality∥∥A−C
(
C†A(C†)T

)
CT
∥∥
F
≤ (1 + ε)‖A−Ak‖F

holds with probability at least 1 − p. The algorithm costs
O
(
mc2 +mk3ε−2/3

)
+ TMultiply

(
m2c

)
time and O(mc)

space in computing C and U.

The near-optimal+adaptive algorithm is effective and
efficient, but its implementation is very complicated.
Its main component—the near-optimal column selection
algorithm—consists of three steps: approximate SVD via
random projection (Boutsidis et al., 2011; Halko et al.,
2011), the dual-set sparsification algorithm (Boutsidis
et al., 2011), and the adaptive sampling algorithm (Desh-
pande et al., 2006). Without careful implementation of the
first two steps, the time and space costs roar, making the
near-optimal+adaptive algorithm inefficient.

4 An Efficient Column Sampling Algorithm
for the Modified Nyström Method

In this paper we propose a column sampling algorithm
which is efficient, effective, and very easy to imple-
ment. The algorithm consists of a uniform sampling
step and two adaptive sampling steps, so we call it the
uniform+adaptive2 algorithm. The algorithm is described
in Algorithm 1 and analyzed in Theorem 3.

Algorithm 2 The Adaptive Sampling Algorithm.
1: Input: a residual matrix B ∈ Rm×n and number of selected

columns c (< n).
2: Compute sampling probabilities pj = ‖bj‖22/‖B‖2F for j =

1, · · · , n;
3: Select c indices in c i.i.d. trials, in each trial the index j is

chosen with probability pj ;
4: return an index set containing the indices of the selected

columns.

The idea behind the uniform+adaptive2 algorithm is quite
intuitive. Since the modified Nyström method is the
simultaneous projection of A onto the column space of
C and the row space of CT , the approximation error will
get lower if span(C) better approximates span(A). After
the initialization by uniform sampling, the columns of A
far from span(C1) have large residuals and are thus likely
to get chosen by the adaptive sampling. After two rounds
of adaptive sampling, columns of A are likely to be near
span(C).

It is worth mentioning that our uniform+adaptive2 algo-
rithm is similar to the adaptive-full algorithm of (Kumar
et al., 2012, Figure 3). The adaptive-full algorithm consists
of a random initialization followed by multiple adaptive
sampling steps. Obviously, using multiple adaptive
sampling steps can surely reduce the approximation error.
However, the update of sampling probability in each step is
expensive, so we choose to do only two steps. Importantly,
the adaptive-full algorithm of (Kumar et al., 2012, Figure 3)
is merely a heuristic scheme without theoretical guarantee,
whereas our uniform+adaptive2 algorithm has a strong
error bound which is nearly as good as the state-of-the-art
algorithm of Wang and Zhang (2013) (See Theorem 3).

Theorem 3 (The Uniform+Adaptive2 Algorithm.). Given
an m×m symmetric matrix A and a target rank k, we let
µk denote the matrix coherence of A. Algorithm 1 samples
totally

c = O
(
kε−2 + µkε

−1k log k
)

columns of A to construct the approximation. We run
Algorithm 1

t ≥ (20ε−1 + 18) log(1/p)

times (independently in parallel) and choose the sample
that minimizes ‖A − C

(
C†A(C†)T

)
CT
∥∥
F

, then the
inequality∥∥A−C

(
C†A(C†)T

)
CT
∥∥
F
≤
(
1 + ε

)∥∥A−Ak

∥∥
F

holds with probability at least 1 − p. The algorithm
costs O

(
mc2

)
+ TMultiply

(
m2c

)
time and O(mc) space

in computing C and U.

Remark 1. Theoretically, Algorithm 1 requires to compute
the matrix coherence of A in order to determine c1,
c2, and c3. However, computing the matrix coherence
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Table 1: Comparisons between the two sampling algo-
rithms in time complexity, space complexity, the number
of selected columns, and the hardness of implementation.

Uniform+Adaptive2 Near-Optimal+Adaptive
Time O

(
mc2

)
+ TMultiply

(
m2c

)
O
(
mc2 +mk3ε−2/3

)
+TMultiply

(
m2c

)
Space O

(
mc
)

O
(
mc
)

#columns O
(
kε−2 + µkε

−1k log k
)

O
(
kε−2)

Implement Easy to implement Hard to implement

takes time O(m2k) and is thus impractical; even the fast
approximation approach of Drineas et al. (2012) is not
feasible here because A is a square matrix. The use
of the matrix coherence here is merely for theoretical
analysis; setting the parameter µ in Algorithm 1 to be
exactly the matrix coherence does not certainly result in the
highest accuracy. According to our off-line experiments,
the resulting approximation accuracy is not sensitive to
the value of µ. So we strongly suggest the users to set
µ in Algorithm 1 to be a constant rather than actually
computing the matrix coherence.

Table 1 presents comparisons between the near-
optimal+adaptive algorithm of Wang and Zhang (2013) and
our uniform+adaptive2 algorithm. The time complexity
of our algorithm is lower than the near-optimal+adaptive
algorithm, and the space complexities of the two
algorithms are the same. To attain the same error bound,
our algorithm needs to select c = O

(
kε−2+µkε

−1k log k
)

columns, which is a little larger than that of the near-
optimal+adaptive algorithm. When ε → 0, we have that
O
(
kε−2 + µkε

−1k log k
)

= O
(
kε−2). Therefore, the

error bound of our algorithm is nearly as good as the
near-optimal+adaptive algorithm because ε is usually set
to be a very small value.

5 Fast Computation of the Intersection
Matrix

Naively computing the intersection matrix U =
C†A(C†)T takes timeO(mc2)+TMultiply(m

2c), which is
much more expensive than computing W† for the standard
Nyström method. In this section we propose a more
efficient algorithm for computing the intersection matrix,
which only takes time O(c3) + TMultiply

(
(m − c)2c

)
.

The algorithm is described in Theorem 4. The algorithm
is obtained by expanding the Moore-Penrose inverse of
C using the theorem in (Ben-Israel and Greville, 2003,
Page 179).

Theorem 4. For an m × m symmetric matrix A, when
the submatrix W is nonsingular, the intersection matrix of
the modified Nyström method U = C†A(C†)T can be
computed in time O(c3) + TMultiply

(
(m − c)2c

)
by the

Table 2: A summary of the datasets for the Nyström
approximation.

Dataset #Instance #Attribute Source
Letters 15, 000 16 Michie et al. (1994)

Abalone 4, 177 8 Frank and Asuncion (2010)
Wine Quality 4, 898 12 Cortez et al. (2009)

following formula:

U = C†A(C†)T = T1

(
W + T2 + TT

2 + T3

)
TT

1 ,

where the intermediate matrices are computed by

T0 = AT
21A21, T1 = W−1(Ic + W−1T2

)−1
,

T2 = T0W
−1, T3 = W−1(AT

21A22A21

)
W−1.

The four intermediate matrices are all of size c× c, and the
matrix inverse operations are on c× c small matrices.

Remark 2. Since the submatrix W is not in general
nonsingular, before using the algorithm, the user should
first test the rank of W, which takes time O(c3).
Empirically, for graph Laplacian and the radial basis
function (RBF) kernel (Genton, 2001), the submatrix W
is usually nonsingular, and the algorithm is useful; for the
linear kernel, W is often singular, so the algorithm does
not work.

6 Experiments

In this section we empirically evaluate our two algorithms
proposed in Section 4 and 5. In Section 6.1 we compare
the sampling algorithms for the modified Nyström method
in terms of approximation error and time expense. In
Section 6.2 we illustrate the effect of our algorithm for
computing the intersection matrix U = C†A(C†)T .

We implement all of the compared algorithms in MATLAB
and conduct experiments on a workstation with Intel
Xeon 2.40GHz CPUs, 24GB RAM, and 64bit Windows
Server 2008 system. To compare the running time, all
the computations are carried out in a single thread in
MATLAB.

6.1 Comparisons among the Sampling Algorithms

We mainly compare our uniform+adaptive2 algorithm
(Algorithm 1) with the near-optimal+adaptive algorith-
m (Wang and Zhang, 2013); the two algorithms are the only
provable algorithms for the modified Nyström method. We
also employ the uniform sampling and the leverage-score
based sampling (Drineas et al., 2008; Gittens and Mahoney,
2013) as baselines (they are widely used but not provable
for the modified Nyström method). For all of the four
algorithms, columns are sampled without replacement.
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Figure 1: Results on the RBF kernel of the Letters dataset. Here the matrix coherence of the kernel matrix is µ10 = 62.05,
µ20 = 34.87, and µ50 = 19.16.
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Figure 2: Results on the RBF kernel of the Abalone dataset. Here the matrix coherence of the kernel matrix is µ10 = 3.28,
µ20 = 3.02, and µ50 = 2.64.

The experiment settings follows Wang and Zhang (2013).
We report the approximation error and running time of
each algorithm on each dataset. The approximation error
is defined by

Approximation Error =
‖A−CUCT ‖F
‖A−Ak‖F

,

where k is a fixed target rank and U is the intersection
matrix.

We test the algorithms on three datasets summarized in
Table 2. For each dataset we generate an RBF kernel matrix
A with aij = exp

(
− 1

2σ2 ‖xi−xj‖22
)
, where xi and xj are

data instances and σ is the parameter defining the scale of
the kernel. We set σ = 0.2 in our experiments. For each
dataset we fix a target rank k = 10, 20, or 50, and vary c
in a very large range. We run each algorithm for 20 times
and report the the minimum approximation error of the 20
repeats. We also report the average elapsed time of column
selection and the computation of the c × c intersection
matrix, respectively. Here we report the average elapsed
time rather than the total time of the 20 repeats because the
20 repeats can be performed in parallel. The results are
depicted in Figures 1, 2, and 3.

The empirical results in the figures show that our
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Figure 3: Results on the RBF kernel of the Wine Quality dataset. Here the matrix coherence of the kernel matrix is
µ10 = 16.17, µ20 = 12.13, and µ50 = 9.30.

uniform+adaptive2 algorithm achieves accuracy
comparable with the state-of-the-art algorithm—the
near-optimal+adaptive algorithm of Wang and Zhang
(2013). Especially, when c is large, those two algorithms
have virtually the same accuracy, which is in accordance
with our analysis in the last paragraph of Section 4: large
c implies small error term ε, and the error bounds of the
two algorithms coincide when ε is small. We can also
see that our uniform+adaptive2 algorithm works nearly
as good as the near-optimal+adaptive algorithm when the
matrix coherence µk is small (e.g. Figure 2); when the
matrix coherence is large (e.g. Figure 1), the error of our
algorithm is a little worse than the near-optimal+adaptive
algorithm. Furthermore, our uniform+adaptive2 algorithm
is much more accurate than uniform sampling and the
leverage-score based sampling in most cases.

As for the running time, we can see that our algorithm
performs column selection very efficiently and the elapsed
time grows slowly in c. By comparison, our algorithm
is much more efficient than the other two nonuniform
sampling algorithms.

6.2 Effect of the Fast Computation of the Intersection
Matrix

To illustrate the effect of our algorithm for computing the
intersection matrix U = C†A(C†)T , we generate a kernel
matrix of the Letters Dataset (Michie et al., 1994) which
has 15, 000 instances and 16 attributes. We first generate
a dense RBF kernel matrix with scale parameter σ = 0.2,
and then obtain a sparse symmetric matrix by by truncating
the entries with small magnitude such that 1% entries are
nonzero. We illustrate in Figure 4 the speedup induced
by our algorithm. In both cases, our algorithm is faster

than the naive approach, and the speedup is particularly
significant when A is sparse.

7 Theoretical Analysis for the Modified
Nyström Method

In Section 7.1 we show that the modified Nyström
approximation is exact when A is low-rank. In Section 7.2
we provide a lower error bound of the modified Nyström
method.

7.1 Theoretical Justifications
Kumar et al. (2009); Talwalkar and Rostamizadeh (2010)
showed that the standard Nyström method is exact when
rank(W) = rank(A). We show in Theorem 5 a similar
result for the modified Nyström approximations.
Theorem 5. For a symmetric matrix A defined in (1), the
following three statements are equivalent: (i) rank(W) =
rank(A), (ii) A = CW†CT , (iii) A = CC†A(C†)TCT .

Theorem 5 shows that the standard and modified Nyström
methods are equivalent when rank(W) = rank(A).
However, it holds in general that rank(A) � c ≥
rank(W), where the two models are not equivalent.

Furthermore, Umod = C†A(C†)T is the minimizer of the
following minimization problem

min
U
‖A−CUCT ‖F ,

so we have that∥∥A−C
(
C†A(C†)T

)
C
∥∥
F
≤
∥∥A−CW†C

∥∥
F
.

This shows that in general the modified Nyström method is
more accurate than the standard Nyström method.
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(a) Dense RBF kernel matrix.
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(b) Sparse RBF kernel matrix with 1% nonzero entries.

Figure 4: Effect of our fast computation of the intersection
matrix. The two matrices are both of size 15, 000 ×
15, 000, and we sample c columns uniformly to compute
the intersection matrix U = C†A(C†)T (the modified
Nyström) and U = W† (the standard Nyström). The time
for computing U is plotted in the figures.

7.2 Lower Error Bound of the Modified Nyström
Method

We establish in Theorem 6 a lower error bound of the
modified Nyström method. Theorem 6 shows that whatever
a column sampling algorithm is used to construct the
modified Nyström approximation, at least c ≥ 2kε−1

columns must be chosen to attain the 1 + ε bound.

Theorem 6 (Lower Error Bound of the Modified Nyström
Method). Whatever a column sampling algorithm is used,
there exists an m ×m SPSD matrix A such that the error
incurred by the modified Nyström method obeys:

∥∥A−CUCT
∥∥2
F
≥ m− c

m− k

(
1 +

2k

c

)
‖A−Ak‖2F .

Here k is an arbitrary target rank, c is the number of
selected columns, and U = C†A(C†)T .

Boutsidis et al. (2011) established a lower error bound for
the column selection problem, and the lower error bound is
tight because it is attained by the optimal column selection
algorithm of Guruswami and Sinop (2012). Boutsidis et al.
(2011) showed that whatever column sampling algorithm
is used, there exists an m× n matrix A such that the error
incurred by the projection of A onto the column space of

C is lower bounded by∥∥A−CC†A
∥∥2
F
≥ n− c

n− k

(
1 +

k

c

)
‖A−Ak‖2F ,(2)

where k is an arbitrary target rank, c is the number of
selected columns.

Interestingly, the modified Nyström approximation is the
projection of A onto the column space of C and the
row space of CT simultaneously, so there is a strong
resemblance between the modified Nyström approximation
and the column selection problem. As we see, the lower
error bound of the modified Nyström approximation in
Theorem 6 differs from (2) only by a factor of 2. So it is
a reasonable conjecture that the lower bound in Theorem 6
is tight, as well a the lower bound of the column selection
problem in (2). We leave it as an open problem.

8 Conclusions and Future Work
In this paper we have proposed two algorithms to make
the modified Nyström method more practical. First,
we have proposed a column selection algorithm called
uniform+adaptive2 and provided an relative-error bound
for the algorithm. The algorithm is highly efficient
and effective and very easy to implement. The error
bound of the algorithm is nearly as strong as that of
the state-of-the-art algorithm—the near-optimal+adaptive
algorithm—which is complicated. The experimental
results have shown that our uniform+adaptive2 algorithm
is more efficient than the near-optimal+adaptive algorithm,
while their accuracies are comparable. Second, we have
devised an algorithm for computing the intersection matrix
of the modified Nyström approximation; under certain
conditions, our algorithm can significantly improve the
time complexity. The speedup induced by this algorithm
has also been verified empirically.

Furthermore, we have proved that the modified Nyström
approximation can be exact when the original matrix is
low-rank. We have also established a lower error bound
for the modified Nyström method: at least c ≥ 2kε−1

columns must be chosen to attain the 1+ ε bound. We have
conjectured this lower error bound to be tight. Notice that
the best known algorithm for the modified Nyström method
requires at most c = kε−2 columns to attain the 1+ε bound,
so there is a gap between the lower and upper error bounds.
It remains an open problem that if there exists an algorithm
attaining the lower error bound.
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