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A Proofs

We begin by introducing some notation. Let x∗
h denote the optimal node at level h. That is the cell of x∗

h contains the
optimizer x∗. Also let f+ and x+ represent the best function value observed thus far and the associated node respectively.

A.1 Technical Lemmas

Lemma 1 (Lemma 5 of de Freitas et al. (2012)). Given a set of points x1:T := {x1, . . . ,xT } ∈ D and a Reproducing
Kernel Hilbert Space (RKHS) H with kernel κ the following bounds hold:

1. Any f ∈ H is Lipschitz continuous with constant �f�HL, where � · �H is the Hilbert space norm and L satisfies the
following:

L2 ≤ sup
x∈D

∂x∂x�κ(x, x�)|x=x�

and for κ(x,x�) = �κ(x− x�) we have
L2 ≤ ∂2

x�κ(x)|x=0.

2. The projection operator P1:T on the subspace span
t=1:T

{κ(xt, ·)} ⊆ H is given by

P1:T f := k�(·)K−1 �k(·), f�

where k(·) = k1:T (·) := [κ(x1, ·) · · ·κ(xT , ·)]� and K := [κ(xi,xj)]i,j=1:T ; moreover, we have that

�k(·), f� :=



�κ(x1, ·), f�

...
�κ(xT , ·), f�


 =



f(x1)

...
f(xT )


 .

Here P1:TP1:T = P1:T and �P1:T � ≤ 1 and �1−P1:T � ≤ 1.

3. Given tuples (xi, fi) with fi = f(xi), the minimum norm interpolation f̄ with f̄(xi) = f(xi) is given by f̄ = P1:T f .
Consequently its residual g := (1− P1:T )f satisfies g(xi) = 0 for all xi ∈ x1:T .

Lemma 2 (Lemma 6 of de Freitas et al. (2012)). Under the assumptions of Lemma 1 it follows that

|f(x)− P1:T f(x)| ≤ �f�HσT (x),

where σ2
T (x) = κ(x,x) − k�

1:T (x)K
−1k1:T (x) and this bound is tight. Moreover, σ2

T (x) is the posterior predictive
variance of a Gaussian process with the same kernel.

Lemma 3 (Adapted from Proposition 1 of de Freitas et al. (2012)). Let κ : RD × RD → R be a kernel that is twice
differentiable along the diagonal {(x,x) |x ∈ RD}, with L defined as in Lemma 1.1, and f be an element of the RKHS
with kernel κ. If f is evaluated at point x, then for any other point y we have σT (y) ≤ L�x− y�.

Proof. Let H be the RKHS corresponding to κ and f ∈ H an arbitrary element with g := (1−P1:T )f ; the residual defined
in lemma 1.3. Since g ∈ H, we have by Lemma 1.1, g is Lipschitz. Thus we have that for any point y:

|g(y)| ≤ L�g�H�y − x� ≤ L�f�H�y − x�, (2)

where the second inequality is guaranteed by Lemma 1.2. On the other hand, by Lemma 2, we know that for all y we have
the following tight bound:

|g(y)| ≤ �f�HσT (y) (3)

Now, given the fact that both inequalities (2) and (3) are bounding the same quantity and that the latter is a tight estimate,
we necessarily have that:

�f�HσT (y) ≤ L�f�H�y − x�.
Canceling �f�H gives us the result.
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Lemma 4 (Adapted from Lemma 5.1 of Srinivas et al. (2010)). Let f be a sample from a GP. Consider η ∈ (0, 1) and set
BT = 2 log(πT /η) where

�∞
i=1 π

−1
T = 1, πT > 0. Then,

|f(xT )− µT (xT )| ≤ B
1
2

T σT (xT ) ∀T ≥ 1

holds with probability at least 1− η.

Proof. For xT we have that f(x) ∼ N (µT (xT ),σT (xT )) since f is a sample from the GP. Now, if r ∼ N (0, 1), then

P(r > c) = e−c2/2(2π)−1/2

�
e−(r−c)2/2−c(r−c)dr

< e−c2/2P(r > 0) =
1

2
e−c2/2.

Thus we have that

P
�
f(x)− µT (x) > B

1/2
T σT (x)

�
= P(r > B

1/2
T ) <

1

2
e−BT /2.

By symmetry and the union bound, we have that P
�
|f(x)− µT (x)| > B

1/2
T σT (x)

�
< e−BT /2. By applying the union

bound again, we derive

P
�
|f(x)− µT (x)| > B

1/2
T σT (x) ∀T ≥ 1

�
<

∞�

T=1

e−BT /2.

By substituting BT = 2 log(πT /η), we obtain the result. As in Srinivas et al. (2010), we can set πT = π2T 2/6.

Since each node’s UCB and LCB are only evaluated at most once, we give the following shorthands in notation. Let N(x)
be the number of evaluations of confidence bounds by the time the UCB of x is evaluated (line 12 of Algorithm 3) and let
T (x) = |Dt| be the time the UCB of x is evaluated. Define U(x) = UN(x)(x|DT (x)) = µ(x|DT (x)) +BN(x)σ(x|DT (x))
and L(x) = LN(x)(x|DT (x)) = µ(x|DT (x))−BN(x)σ(x|DT (x)).

Lemma 5. Consider B(x∗, ρ) and γin(0, 1) as in Assumptions 2 and 3. Suppose L(x∗
h) ≤ f(x∗

h) ≤ U(x∗
h). If x∗

h ∈
B(x∗, ρ) and δ(h) < �0 then there exists a constant c̄ such that L(x∗

h) ≥ f∗ − c̄BN(x∗
h)
γ

h
2 .

Proof. If x∗
h is not evaluated then f(x+) ≥ UT (x

∗
h) ≥ f∗−δ(h) ≥ f∗− �0 which implies that x+ ∈ B(x∗, ρ). Therefore,

f∗ − c2�x+ − x∗�2 ≥ f(x+) ≥ UT (x
∗
h) ≥ f∗ − δ(h) which in turn implies that �x+ − x∗� ≤

�
δ(h)
c2

. Similarly

f∗ − c2�x∗
h − x∗�2 ≥ f(x∗

h) ≥ f∗ − δ(h). Therefore �x∗
h − x∗� ≤

�
δ(h)
c2

. By the triangle inequality, we have

�x+ − x∗
h� ≤ �x+ − x∗�+ �x∗

h − x∗� ≤ 2

�
δ(h)

c2
.

By Lemma 3, we have that σT (x∗
h)
(x∗

h) ≤ 2L
�

δ(h)
c2

. By the definition of LT , we can argue that

L(x∗
h) ≥ U(x∗

h)− 4BN(x∗
h)
L

�
δ(h)

c2

≥ f∗ − δ(h)− 4BN(x∗
h)
L

�
δ(h)

c2

= f∗ − cγh − 4BN(x∗
h)
L

�
cγh

c2
.

Note that since γ ∈ (0, 1), γ < γ1/2. Assume that B1 = b. Let c̄ = c/b+ 4L
�

c
c2

. Since BN > B1 ∀N > 1, we have the
statement.

If x∗
h is evaluated then the statement is trivially true.
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Definition 1. Let γ̄ := γ
1
2 , δ̄h := c̄BN(x∗

h)
γ̄h, and I�h = {(h, i) : f(xh,i) + � ≥ f∗}.

Lemma 6. Assume that hmax = n�. For a node xh,i at level h, BN(xh,i) = O(
√
h).

Proof. Assume that there are ni nodes expanded at the end of iteration i of the outer loop (the while loop). In the i+ 1th

iteration of the outer loop, there can be at most hmax(ni) additional expansions added. Thus the total number of expansions
at the end of iteration i is at most ni−1 + hmax(ni−1). We can prove by induction that ni ≤ i

1
1−� . Since any node

at level h would be expanded after at most 2h iterations, at the time of expansion of any node at level h, we have that
n < (2h)

1
1−� = 2

h
1−� where n is the total number of expansions. Thus, there would be at most 2 × 2

h
1−� evaluations.

Hence,

BN(xh,i) ≤
�
2 log(π22

2h
1−�+2/6η) ≤

�
2 log(2

2h
1−�+2) + 2 log(π2/6η) = O(

√
h).

Lemma 7. After a finite number of node expansions, an optimal node x∗
h0

∈ B(x∗, ρ) is expanded such that c̄BN(x∗
h0

)γ̄
h
0 ≤

�0. Also ∀h > h0, we have that c̄BN(x∗
h)
γ̄h ≤ �0 and x∗

h ∈ B(x∗, ρ).

Proof. Since it is clear that BaMSOO would expand every node after a finite number of node expansions, we only have to
show that there exists an h0 that satisfies the conditions. By Lemma 6, we have that ∀h BN(x∗

h)
= O(

√
h). Since γ̄ < 1,

there exists an h0 such that c̄BN(x∗
h)
γ̄h ≤ �0 ∀h > h0. Since f(x∗

h) > f∗ − δ(h) > f∗ − c̄BN(x∗
h)
γ̄h ≥ f∗ − �0, we have

by Assumption 2 that, x∗
h ∈ B(x∗, ρ).

Lemma 8.
�H

h=0 |I
δ̄(H)
h | ≤ C

�
BN(x∗

H)

�D/2

γ(D/4−D/α)H for some constant C for all H > h0.

Proof. By Lemma 7, we know that δ̄(H) = c̄BN(x∗
H)γ̄

H < �0 if H > h0. Therefore, by Assumption 2, we have that
χδ̄(H) = {x ∈ χ : f(x) ≥ f∗ − δ̄(H)} ⊆ B(x∗, ρ). Again by Assumption 2, we have that

f∗ − δ̄(H) ≤ f(x) ≤ f∗ − c2�x− x∗�22 ∀x ∈ χδ̄(H).

Thus χδ̄(H) ⊆ B
�
x∗,

�
δ̄(H)
c2

�
= B

�
x∗,

�
c̄B

N(x∗
H)

γH/2

c2

�
.

Since each cell (h, i) contains a �-ball of radius νδ(h) centered at xh,i we have that each cell contains a
ball B(xh,i, (νδ(h))

1/α) = B(xh,i, (
νc
c1
)1/αγh/α). By the argument of volume, we have that |I δ̄(H)

h | ≤

C1

�
BN(x∗

H)

�D/2

γHD/4−hD/α for some constant C1. Finally,

H�

h=0

|I δ̄(H)
h | ≤ C1

H�

h=0

�
BN(x∗

H)

�D/2

γHD/4−hD/α

= C1

�
BN(x∗

H)

�D/2

γHD/4
H�

h=0

γ−hD/α

= C1

�
BN(x∗

H)

�D/2

γHD/4
H�

h=0

�
γD/α

�h−H

≤ C1

�
BN(x∗

H)

�D/2

γHD/4
∞�

h=0

�
γD/α

�h−H

= C1

�
BN(x∗

H)

�D/2

γHD/4 γ−DH/α

1− γD/α

=
C1

1− γD/α

�
BN(x∗

H)

�D/2

γHD/4−DH/α

=
C1

1− γD/α

�
BN(x∗

H)

�D/2

γ(D/4−D/α)H .
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Setting C = C1

1−γD/α gives us the desired result.

Lemma 9. Suppose L(x∗
h) ≤ f(x∗

h) ≤ U(x∗
h). If x∗

h is not evaluated (that is U(x∗
h) < f+) then f+ is δ(h)-optimal.

Proof. f+ > U(x∗
h) ≥ f(x∗

h) > f∗ − δ(h).

A.2 Main Results

A.2.1 Simple Regret

Let h∗
n be the deepest level of an expanded optimal node with n node expansions. This following lemma is adapted from

Lemma 2 of Munos (2011).

Lemma 10. Suppose L(x) ≤ f(x) ≤ U(x) for all x whose confidence region are evaluated. Whenever h ≤ hmax(n) and

n ≥ Chmax(n)
�h

i=h0

�
BN(x∗

i )

�D/2

γ(D/4−D/α)i + n0 for some constant C, we have h∗
n ≥ h.

Proof. We prove the statement by induction. By Lemma 7, we have that after n0 node expansions, a node x∗
h0

∈ B(x∗, ρ) is
expanded. Also ∀h > h0, we have that c̄BN(x∗

h)
γ̄h ≤ �0 and x∗

h ∈ B(x∗, ρ). For h = h0, the statement is trivially satisfied.

Thus assume that the statement is true for h. Let n be such that n ≥ Chmax(n)
�h+1

i=h0

�
BN(x∗

i )

�D/2

γ(D/4−D/α)i + n0.
By the inductive hypothesis we have that h∗

n ≥ h. Assume h∗
n = h since otherwise the proof is finished. As long as the

optimal node at level h+1 is not expanded, all nodes expanded at the level are δ̄(h+1)-optimal by Lemma 5. By Lemma 8,

we know that after Chmax(n)
�
BN(x∗

h+1)

�D/2

γ(D/4−D/α)(h+1) node expansions, the optimal node at level h+ 1 will be

expanded since there are at most
�h+1

i=0

���I δ̄(h+1)
i

��� δ̄(h+1)-optimal nodes at or beneath level h+1. Thus h∗
n ≥ h+1.

Theorem 1. Suppose L(x) ≤ f(x) ≤ U(x) for all x whose confidence region is evaluated. Let us write h(n) to be the
smallest integer h ≥ h0 such that

Chmax(n)

h�

i=h0

�
BN(x∗

i )

�D/2

γ(D/4−D/α)i + n0 ≥ n.

Then the loss is bounded as

rn ≤ δ(min{h(n), hmax(n) + 1})

and h∗
n ≥ min{h(n)− 1, hmax(n)}.

Proof. From Lemma 8, and the definition of h(n) we have that

Chmax(n)

h(n)−1�

i=h0

�
BN(x∗

i )

�D/2

γ(D/4−D/α)i + n0 < n.

By Lemma 10, we have that h∗
n ≥ h(n) − 1 if h(n) − 1 ≤ hmax(n) and h∗

n ≥ hmax(n) otherwise. Therefore h∗
n ≥

min{h(n)− 1, hmax(n)}.

By Lemma 9, we know that if x∗
h∗
n+1 is not evaluated then f+ is δ(h∗

n+1)-optimal. If x∗
h∗
n+1 is evaluated, then f

�
x∗
h∗
n+1

�

is δ(h∗
n + 1)-optimal. Thus rn ≤ δ(min{h(n), hmax(n) + 1}).

Proof of Corollary 1. Suppose L(x) ≤ f(x) ≤ U(x) for all x whose confidence region is evaluated. By Lemma 4, we
know that this holds with probability at least 1− η.
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By the definition of h(n) we have that

n ≤ Chmax(n)

h(n)�

i=h0

�
BN(x∗

i )

�D/2

γ(D/4−D/α)i + n0

≤ Chmax(n)

�
B

N
�
x∗
h(n)

�
�D/2 h(n)�

i=h0

γ−di + n0

≤ Chmax(n)

�
B

N
�
x∗
h(n)

�
�D/2

γ−dh0
γ−dh(n) − 1

γ−d − 1
+ n0 (4)

If h(n) ≤ hmax(n) + 1, then by Theorem 1, we have that h∗
n ≥ h(n) − 1. After n expansions, the optimal node x∗

h(n)−1

has been expanded which suggests that its children’s confidence bounds have been evaluated. Hence, N
�
x∗
h(n)

�
< 2n

since there have only been n expansions. Therefore,

(4) ≤ Kn� (B2n)
D/2

γ−dh(n)

for some constant K which implies that

γh(n) ≤ K1/dB
2α

4−α

2n n− 1−�
d = K1/d

�
2 log(4π2n2/6η)

� α
4−α n− 1−�

d .

By Theorem 1, we have that

rn ≤ cmin
�
K1/d

�
2 log(4π2n2/6η)

� α
4−α n− 1−�

d , γ(n+1)�
�
= O

�
n− 1−�

d log
α

4−α (n2/η)
�
.


