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A  Proofs

We begin by introducing some notation. Let x; denote the optimal node at level h. That is the cell of x} contains the
optimizer x*. Also let f* and x™ represent the best function value observed thus far and the associated node respectively.

A.1 Technical Lemmas

Lemma 1 (Lemma 5 of de Freitas et al. (2012)). Given a set of points x1.7 := {X1,...,xr} € D and a Reproducing
Kernel Hilbert Space (RKHS) H with kernel k the following bounds hold:

1. Any f € H is Lipschitz continuous with constant || |3 L, where || - ||« is the Hilbert space norm and L satisfies the
following:

L? < sup OxOy ki, ') | xexr
xeD

and for k(x,x') = k(x — x') we have
12 < 02R(x) =0

2. The projection operator Py.7 on the subspace span{x(xy,-)} C H is given by
t=1:T

Purf =k ()K ' (k(), f)

where k() = ky.p(+) := [k(x1,-) - k(xp, )] and K = [r(x;, X;)l; j=1.7+ moreover, we have that

(r(x1,°), f) fxa)
(k(-), f) = E =
(r(x1,), f) f(xr)

Here Pl:TPI:T = Pl:T and ||P1:T|| S 1 and || 1 _PI:T” S 1.

3. Given tuples (x;, f;) with f; = f(x;), the minimum norm interpolation f with f(x;) = f(x;) is given by f = Py.7f.
Consequently its residual g := (1 — Py.7) f satisfies g(x;) = 0 for all x; € xy.7.

Lemma 2 (Lemma 6 of de Freitas et al. (2012)). Under the assumptions of Lemma 1 it follows that

[f(x) = Prr f()] < |[fllnor(x),
2 2

where 02(x) = k(x,%) — k{.7(x)K " ky.7(x) and this bound is tight. Moreover, 02.(X) is the posterior predictive
variance of a Gaussian process with the same kernel.

Lemma 3 (Adapted from Proposition 1 of de Freitas et al. (2012)). Let x : RP x RP? — R be a kernel that is twice
differentiable along the diagonal {(x,x)|x € RP}, with L defined as in Lemma 1.1, and f be an element of the RKHS
with kernel k. If [ is evaluated at point x, then for any other point'y we have or(y) < L||x — y||.

Proof. Let H be the RKHS corresponding to x and f € H an arbitrary element with g := (1 —Py.7) f; the residual defined
in lemma 1.3. Since g € ‘H, we have by Lemma 1.1, g is Lipschitz. Thus we have that for any point y:

lg)I < Lliglally — Il < Ll flllly — I, 2

where the second inequality is guaranteed by Lemma 1.2. On the other hand, by Lemma 2, we know that for all y we have
the following tight bound:

lg(¥)| < [ fllzor(y) 3)

Now, given the fact that both inequalities (2) and (3) are bounding the same quantity and that the latter is a tight estimate,
we necessarily have that:

[fllsor(y) < LiLfllslly — ||

Canceling || f||# gives us the result. O
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Lemma 4 (Adapted from Lemma 5.1 of Srinivas et al. (2010)). Let f be a sample from a GP. Consider n) € (0,1) and set
Br = 2log(nr/n) where 3" | 7' = 1, i > 0. Then,
1
|f(x1) = pr(x7)| < Bfor(xr) VT > 1

holds with probability at least 1 — 7).
Proof. For xr we have that f(x) ~ N (ur(x7), o7 (xT)) since f is a sample from the GP. Now, if  ~ A/(0, 1), then
P(r>c¢) = 6*62/2(%)71/2 / o= (r=0)*/2—c(r—c) g
< 678/2]}»(7, >0) = %67(;2/2.
Thus we have that
(100> o) > B <5

By symmetry and the union bound, we have that P (| f(x) — pr(x)| > B%/ 2UT(X)) < e~ Br/2_ By applying the union
bound again, we derive

P(1£60) ~ pr(x)] > B 2or(x) VT > 1) < Z e 2,
By substituting By = 2log(77/n), we obtain the result. As in Srinivas et al. (2010), we can set 77 = 7272 /6. O

Since each node’s UCB and LCB are only evaluated at most once, we give the following shorthands in notation. Let N (x)
be the number of evaluations of confidence bounds by the time the UCB of x is evaluated (line 12 of Algorithm 3) and let
T(x) = |D;| be the time the UCB of x is evaluated. Define U(x) = L{N(x) (x|Drx)) = u(xX|Drx)) + Bn)0(X|Drx))
and L(x) = Ly (x) (X|Dr(x)) = i(X|D1(x)) = Bn(x) 0 (X|Drix)

Lemma 5. Consider B(x*, p) and vin(0,1) as in Assumpnons 2 and 3. Suppose L(x}) < f(x}) < U(x}). Ifx} €
B(x*, p) and 5(h) < eo then there exists a constant ¢ such that L(x},) > f* — ¢Bn(x:)Y 5,

Proof. If x}, is not evaluated then f(x*) r(x}) > f*—08(h) > f* —eo which implies that x* € B(x*, p). Therefore,

>U
[* = collxt —x*||* > f(xT) > Up(x}) > f* — 6(h) which in turn implies that ||x* — x*|| < %’:). Similarly
)- T

F* = eollxp — x*| > f(x5) > f* — d(h an

herefore ||x} — x*|| < . By the triangle inequality, we have

o(h
It = xhll < It = g ) < 20/ 20

6(h

By Lemma 3, we have that OT(x}) (x3) <2L . By the definition of L7, we can argue that

. . o(h
* o(h
> ["—=6(h) —4Bnx:)L iz)
. b C’}/h
= f —cy” _4BN(x;‘I)L s

Note that since y € (0,1), v < /2. Assume that B; = b. Let & = ¢/b+ 4L, /- Since By > By VN > 1, we have the
statement.

If x; is evaluated then the statement is trivially true. O
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Definition 1. Ler 7 := 2, &), := EBn(xs)7" and I, = {(h, i) : f(xni) +e€> [}
Lemma 6. Assume that hy.x = n°. For a node x, ; at level h, By (x,, ;) = O(\/E)

Proof. Assume that there are n; nodes expanded at the end of iteration i of the outer loop (the while loop). In the i + 1t*
iteration of the outer loop, there can be at most A, (n;) additional expansions added. Thus the total number of expansions
at the end of iteration ¢ is at most n;—1 + Amax(n;—1). We can prove by induction that n; < iT. Since any node
at level h would be expanded after at most 2" iterations, at the time of expansion of any node at level h, we have that
n < (2*”)1%6 = 27 where n is the total number of expansions. Thus, there would be at most 2 X 27" evaluations.
Hence,

B < \/2 log(r2277 2 /67) < \/2 log(27712) + 2log(72/61) = O(Vh).

O

Lemma 7. After a finite number of node expansions, an optimal node xj, € B (x*, p) is expanded such that cB N(x; ) h <
€o. Also Yh > hg, we have that EBN(xZ)'_yh < e and X}, € B(x*, p).

Proof. Since it is clear that BaMSOO would expand every node after a finite number of node expansions, we only have to
show that there exists an h that satisfies the conditions. By Lemma 6, we have that Vi B N(xp) = O(\/ﬁ) Since ¥ < 1,

there exists an hg such that EBN(x;)'?h < €y Yh > hg. Since f(x}) > f*—d(h) > f*— EBN(x;;ﬁh > f* — €g, we have
by Assumption 2 that, x; € B(x*, p). O

H 5(H) P2 (pja-pjaym
Lemma8. > "  |I, |§C<BN( )) A (P/A=DIIH for some constant C for all H > hy,.

.
XH

Proof. By Lemma 7, we know that §(H) = ¢B (x;,)’VH < €g if H > hg. Therefore, by Assumption 2, we have that
Xsmy = {x€x:f(x) > f*—6(H)} C B( , p). Again by Assumption 2, we have that

fr=0(H) < f(x) < f* = eallx — x5 Vx € X501y

5() Pl
ThllSXS(H) gB(l‘*, s ) =B .’E*, + .

Since each cell (h,i) contains a (-ball of radius vd(h) centered at xj,; we have that each cell contains a
ball B(xpq, (v6(h))/*) = B(xpu (£)/*yh/®). By the argument of volume, we have that M) <

D/
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Setting C' = 1_27})/0 gives us the desired result. O

Lemma 9. Suppose L(x;) < f(x}) <U(x}). If x}, is not evaluated (that is U(x},) < f+) then f* is §(h)-optimal.

Proof. T >U(x}) > f(x5) > f*—d(h). O

A.2 Main Results

A.2.1 Simple Regret

Let h}, be the deepest level of an expanded optimal node with n node expansions. This following lemma is adapted from
Lemma 2 of Munos (2011).

Lemma 10. Suppose L(x) < f(x) < U(x) for all x whose confidence region are evaluated. Whenever h < hyax(n) and
D/2 )
n > Chmax(n) S0 (BN<xf)) A (P/A=D/)t 1y for some constant C, we have h > h.

i=hgo

Proof. We prove the statement by induction. By Lemma 7, we have that after n node expansions, anode x;, € B (x*, p)is

expanded. Also Vh > hg, we have that cB N(x;ﬁh <eandxj € B (x*, p). For h = hy, the statement is trivially satisfied.

D/2 .
Thus assume that the statement is true for h. Let n be such that n > Chyax(n) ?:,30 BN(X,_‘) ,Y(D/4—D/u)z + np.

By the inductive hypothesis we have that iy, > h. Assume h;, = h since otherwise the proof is finished. As long as the
optimal node at level A+ 1 is not expanded, all nodes expanded at the level are 6 (h+1)-optimal by Lemma 5. By Lemma 8,

D/2
x* )) ~A(P/4=D/a)(h+1) node expansions, the optimal node at level i + 1 will be

h+1

we know that after C'hyax(n) (B N (

. h41
expanded since there are at most ZiIO

If(hﬂ)’ §(h + 1)-optimal nodes at or beneath level h + 1. Thus b > h+1. O

Theorem 1. Suppose L(x) < f(x) < U(x) for all x whose confidence region is evaluated. Let us write h(n) to be the
smallest integer h > hg such that

h D/2 4
Chunax(n) Y (BN(X*)) (D/A=D/a)i | s

i
i=hg

Then the loss is bounded as

rr < d(min{h(n), hmax(n) + 1})

and b}, > min{h(n) — 1, hAmax(n)}.

Proof. From Lemma 8, and the definition of h(n) we have that

h(n)—1 D/2 ‘
Chimas(n) 3> (Byg)) 1P/ gy <

i=hg

By Lemma 10, we have that b} > h(n) — 1if h(n) — 1 < hmax(n) and b > hpax(n) otherwise. Therefore h) >
min{h(n) — 1, hmax(n)}-

By Lemma 9, we know that if x}..  , is not evaluated then f* is d(h;, +1)-optimal. If x}.  , is evaluated, then f (xz +1)
is 6(h’ 4 1)-optimal. Thus 7, < é(min{h(n), Amax(n) + 1}). O

Proof of Corollary 1. Suppose L(x) < f(x) < U(x) for all x whose confidence region is evaluated. By Lemma 4, we
know that this holds with probability at least 1 — 7.
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By the definition of h(n) we have that

h(n) D/2 )
n < Chuax(n) Y (BN(X*)) (D/4=D)i | o
i=ho

D/2 h(n) _
< Chuax(n) (BN (i ))> S 44 g
e i=ho
D/2 —dh(n) __ 1
—dho Y
< Chpax(n) <BN(x2(n>)> 0 077_61 7 +ng

“4)

If h(n) < hmax(n) + 1, then by Theorem 1, we have that b}, > h(n) — 1. After n expansions, the optimal node Xh(n)—1

has been expanded which suggests that its children’s confidence bounds have been evaluated. Hence, NV (x;(n)) < 2n

since there have only been n expansions. Therefore,
(4) < Kne (Baa) /%y~

for some constant K which implies that

1—e 1

2a _a —e
A < gUdgi-eap="a" = g4 [2log(4m*n?/6n)] " n~ 7 .

By Theorem 1, we have that

1

r, < cmin {Kl/d [2log(4m*n?/6n)] e n_%,v("ﬂ)e} =0 (n_% logﬁ(ff/n)) .



