A Alternative Mixed Graphical Models

It is instructive to compare our class of mixed MRF distributions (5) with the models derived from the marginal distribution $P(Z)$ and the conditional distribution $P(Y \mid Z)$.

Suppose that we model the conditional distribution $P(Y \mid Z)$ as in the conditional distribution form of (6). Therefore, this alternative distribution has the same form of conditional distribution $P(Y \mid Z)$ as . However, instead of assuming that each node-conditional distribution is drawn from an exponential family, which would then lead to our joint mixed MRF distribution in (5) for $P(Y, Z)$, we model the random vector Z separately as following a Markov Random Field (MRF) distribution:

$$
\begin{align*}
& P(Z)=\exp \left\{\sum_{r^{\prime} \in V_{Z}} \theta_{r^{\prime}}^{z} B_{Z}\left(Z_{r^{\prime}}\right)+\sum_{r^{\prime} \in V_{Z}} C_{Z}\left(Z_{r^{\prime}}\right)\right. \\
& \left.+\sum_{\left(r^{\prime}, t^{\prime}\right) \in E_{Z}} \theta_{r^{\prime} t^{\prime}}^{z z} B_{Z}\left(Z_{r^{\prime}}\right) B_{Z}\left(Z_{t^{\prime}}\right)-A_{Z}\left(\theta^{z}, \theta^{z z}\right)\right\} \tag{10}
\end{align*}
$$

Note that the log-partition function $A_{Z}(\cdot)$ here is defined as

$$
\begin{aligned}
\log \sum_{Z \in \mathcal{Z}^{l}} \exp \{ & \sum_{r^{\prime} \in V_{Z}} \theta_{r^{\prime}}^{z} B_{Z}\left(Z_{r^{\prime}}\right)+\sum_{r^{\prime} \in V_{Z}} C_{Z}\left(Z_{r^{\prime}}\right) \\
& \left.+\sum_{\left(r^{\prime}, t^{\prime}\right) \in E_{Z}} \theta_{r^{\prime} t^{\prime}}^{z z} B_{Z}\left(Z_{r^{\prime}}\right) B_{Z}\left(Z_{t^{\prime}}\right)\right\}
\end{aligned}
$$

which is dependent only on the parameters θ^{z} and $\theta^{z z}$.
Given the specifications of the conditional distribution $P(Y \mid Z)$ and the marginal distribution $P(Z)$, we can then specify the joint distribution simply as $P(Y, Z)=$ $P(Y \mid Z) P(Z)$, so that

$$
\begin{align*}
& P(Y, Z ; \theta)=\exp \left\{\sum_{r \in V_{Y}} \theta_{r}^{y} B_{Y}\left(Y_{r}\right)+\sum_{r^{\prime} \in V_{Z}} \theta_{r^{\prime}}^{z} B_{Z}\left(Z_{r^{\prime}}\right)\right. \\
& +\sum_{(r, t) \in E_{Y}} \theta_{r t}^{y y} B_{Y}\left(Y_{r}\right) B_{Y}\left(Y_{t}\right)+\sum_{\left(r^{\prime}, t^{\prime}\right) \in E_{Z}} \theta_{r^{\prime} t^{\prime}}^{z z} B_{Z}\left(Z_{r^{\prime}}\right) B_{Z}\left(Z_{t^{\prime}}\right) \\
& +\sum_{\left(r, r^{\prime}\right) \in E_{Y Z}} \theta_{r r^{\prime}}^{y z} B_{Y}\left(Y_{r}\right) B_{Z}\left(Z_{r^{\prime}}\right)+\sum_{r \in V_{Y}} C_{Y}\left(Y_{r}\right)+\sum_{r^{\prime} \in V_{Z}} C_{Z}\left(Z_{r^{\prime}}\right) \\
& \left.-A_{Y \mid Z}\left(\left\{\theta_{r}(Z)\right\}_{r \in V_{Y}}, \theta^{y y}\right)-A_{Z}\left(\theta^{z}, \theta^{z z}\right)\right\} \tag{11}
\end{align*}
$$

Note that this distribution is distinct from our mixed MRF distribution in (5). In particular, the logpartition function of (11) is not $A_{Y \mid Z}(\cdot)+A_{Z}(\cdot)$ as $A_{Y \mid Z}$ is a function on random vector Z.
The form of $P(Y, Z)$ in (11) is thus much more complicated than that in (5) due to the complicated nonlinear term $A_{Y \mid Z}\left(\left\{\theta_{r}(Z)\right\}_{r \in V_{Y}}, \theta^{y y}\right)$. On the other
hand, an important benefit of this modeling approach is that the conditions for normalizability of (11) can be characterized simply as those on the marginal $P(Z)$ (10) and those on the conditional $P(Y \mid Z)(6)$. In other words, so long as (10) and (6) are well-defined, the joint distribution (11) always exists and is well-defined as well.

B Proof of Theorem 1

This theorem can be understood as the extension of Proposition 2 in (Yang et al., 2012); the only difference here is that we allow the heterogeneous types of nodeconditional distributions. We follow the proof policy of that paper: Define $Q(X)$ as

$$
Q(X):=\log (P(X) / P(\mathbf{0}))
$$

for any $X=\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{p}$ where $\mathbf{0}$ indicates a zero vector (The number of zeros vary appropriately in the context below). For any X, also denote $\bar{X}_{r}:=\left(X_{1}, \ldots, X_{r-1}, 0, X_{r+1}, \ldots, X_{p}\right)$.
Now, consider the following general form for $Q(X)$:

$$
\begin{align*}
Q(X)= & \sum_{t_{1} \in V} X_{t_{1}} G_{t_{1}}\left(X_{t_{1}}\right)+\ldots+ \tag{12}\\
& \sum_{t_{1}, \ldots, t_{k} \in V} X_{t_{1}} \ldots X_{t_{k}} G_{t_{1}, \ldots, t_{k}}\left(X_{t_{1}}, \ldots, X_{t_{k}}\right),
\end{align*}
$$

since the joint distribution on X has factors of size k at most. It can then be seen that

$$
\begin{align*}
& \exp \left(Q(X)-Q\left(\bar{X}_{r}\right)\right)=P(X) / P\left(\bar{X}_{r}\right) \\
= & \frac{P\left(X_{r} \mid X_{1}, \ldots, X_{r-1}, X_{r+1}, \ldots, X_{p}\right)}{P\left(0 \mid X_{1}, \ldots, X_{r-1}, X_{r+1}, \ldots, X_{p}\right)} \tag{13}
\end{align*}
$$

where the first equality follows from the definition of $Q(X)$. Now, consider simplifications of both sides of (13). Given the form of $Q(X)$ in (12), we have

$$
\begin{align*}
& Q(X)-Q\left(\bar{X}_{r}\right)= \tag{14}\\
& X_{1}\left(G_{1}\left(X_{1}\right)+\sum_{t=2}^{p} X_{t} G_{1 t}\left(X_{1}, X_{t}\right)+\ldots+\right. \\
& \left.\quad \sum_{t_{2}, \ldots, t_{k} \in\{2, \ldots, p\}} X_{t_{2}} \ldots X_{t_{k}} G_{1, t_{2}, \ldots, t_{k}}\left(X_{1}, \ldots, X_{t_{k}}\right)\right)
\end{align*}
$$

Also, given the exponential family form of the nodeconditional distribution specified in the theorem,

$$
\begin{align*}
& \log \frac{P\left(X_{r} \mid X_{1}, \ldots, X_{r-1}, X_{r+1}, \ldots, X_{p}\right)}{P\left(0 \mid X_{1}, \ldots, X_{r-1}, X_{r+1}, \ldots, X_{p}\right)}= \tag{15}\\
& E_{r}\left(X_{V \backslash r}\right)\left(B_{r}\left(X_{r}\right)-B_{r}(0)\right)+\left(C_{r}\left(X_{r}\right)-C_{r}(0)\right)
\end{align*}
$$

Setting $X_{t}=0$ for all $t \neq r$ in (13), and using the expressions for the left and right hand sides in (14)
and (15), we obtain,

$$
\begin{aligned}
& X_{r} G_{r}\left(X_{r}\right) \\
= & E_{r}(\mathbf{0})\left(B_{r}\left(X_{r}\right)-B_{r}(0)\right)+\left(C_{r}\left(X_{r}\right)-C_{r}(0)\right) .
\end{aligned}
$$

Setting $X_{u}=0$ for all $u \notin\{r, t\}$,

$$
\begin{aligned}
& X_{r} G_{r}\left(X_{r}\right)+X_{r} X_{t} G_{r t}\left(X_{r}, X_{t}\right) \\
= & E_{r}\left(\mathbf{0}, X_{t}, \mathbf{0}\right)\left(B_{r}\left(X_{r}\right)-B_{r}(0)\right)+\left(C_{r}\left(X_{r}\right)-C_{r}(0)\right)
\end{aligned}
$$

Combining these two equations yields

$$
\begin{align*}
& X_{r} X_{t} G_{r t}\left(X_{r}, X_{t}\right) \\
= & \left(E_{r}\left(\mathbf{0}, X_{t}, \mathbf{0}\right)-E_{r}(\mathbf{0})\right)\left(B_{r}\left(X_{r}\right)-B_{r}(0)\right) \tag{16}
\end{align*}
$$

Similarly, from the same reasoning for node t, we have

$$
\begin{aligned}
& X_{t} G_{t}\left(X_{t}\right)+X_{r} X_{t} G_{r t}\left(X_{r}, X_{t}\right) \\
= & E_{t}\left(\mathbf{0}, X_{r}, \mathbf{0}\right)\left(B_{t}\left(X_{t}\right)-B_{t}(0)\right)+\left(C_{t}\left(X_{t}\right)-C_{t}(0)\right)
\end{aligned}
$$

and at the same time,

$$
\begin{align*}
& X_{r} X_{t} G_{r t}\left(X_{r}, X_{t}\right) \\
= & \left(E_{t}\left(\mathbf{0}, X_{r}, \mathbf{0}\right)-E_{t}(\mathbf{0})\right)\left(B_{t}\left(X_{t}\right)-B_{t}(0)\right) \tag{17}
\end{align*}
$$

Therefore, from (16) and (17), we obtain

$$
\begin{align*}
& E_{t}\left(\mathbf{0}, X_{r}, \mathbf{0}\right)-E_{t}(\mathbf{0}) \\
= & \frac{E_{r}\left(\mathbf{0}, X_{t}, \mathbf{0}\right)-E_{r}(\mathbf{0})}{B_{t}\left(X_{t}\right)-B_{t}(0)}\left(B_{r}\left(X_{r}\right)-B_{r}(0)\right) . \tag{18}
\end{align*}
$$

Since (18) should hold for all possible combinations of X_{r}, X_{t}, for any fixed $X_{t} \neq 0$,

$$
\begin{align*}
& E_{t}\left(\mathbf{0}, X_{r}, \mathbf{0}\right)-E_{t}(\mathbf{0}) \\
= & \theta_{r t}\left(B_{r}\left(X_{r}\right)-B_{r}(0)\right) . \tag{19}
\end{align*}
$$

Plugging (19) back into (17),

$$
\begin{aligned}
& X_{r} X_{t} G_{r t}\left(X_{r}, X_{t}\right) \\
= & \theta_{r t}\left(B_{r}\left(X_{r}\right)-B_{r}(0)\right)\left(B_{t}\left(X_{t}\right)-B_{t}(0)\right) .
\end{aligned}
$$

More generally, we can show that

$$
\begin{aligned}
& X_{t_{1}} \ldots X_{t_{k}} G_{t_{1}, \ldots, t_{k}}\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)= \\
& \theta_{t_{1}, \ldots, t_{k}}\left(B_{t_{1}}\left(X_{t_{1}}\right)-B_{t_{1}}(0)\right) \ldots\left(B_{t_{k}}\left(X_{t_{k}}\right)-B_{t_{k}}(0)\right)
\end{aligned}
$$

Thus, the k-th order factors in the joint distribution as specified in (12) are tensor products of $\left(B_{r}\left(X_{r}\right)-\right.$ $\left.B_{r}(0)\right)$, thus proving the statement of the theorem.

C Proof of Theorem 2

We can simply start from the definition of the log partition function in the Manichean MRF joint distribu-
tion in (5):

$$
\begin{aligned}
& A(\theta)=\sum_{Y, Z} \exp \left\{\sum_{r \in V_{Y}} \theta_{r}^{y} B_{Y}\left(Y_{r}\right)+\sum_{r^{\prime} \in V_{Z}} \theta_{r^{\prime}}^{z} B_{Z}\left(Z_{r^{\prime}}\right)+\right. \\
& \sum_{(r, t) \in E_{Y}} \theta_{r t}^{y y} B_{Y}\left(Y_{r}\right) B_{Y}\left(Y_{t}\right)+\sum_{\left(r^{\prime}, t^{\prime}\right) \in E_{Z}} \theta_{r^{\prime} t^{\prime}}^{z z} B_{Z}\left(Z_{r^{\prime}}\right) B_{Z}\left(Z_{t^{\prime}}\right)+ \\
& \left.\sum_{\left(r, r^{\prime}\right) \in E_{Y Z}} \theta_{r r^{\prime}}^{y z} B_{Y}\left(Y_{r}\right) B_{Z}\left(Z_{r^{\prime}}\right)+\sum_{r \in V_{Y}} C_{Y}\left(Y_{r}\right)+\sum_{r^{\prime} \in V_{Z}} C_{Z}\left(Z_{r^{\prime}}\right)\right\}
\end{aligned}
$$

Simply this can be represented as

$$
\begin{aligned}
& \sum_{Y, Z}\left[\operatorname { e x p } \left\{\sum_{r^{\prime} \in V_{Z}} \theta_{r^{\prime}}^{z} B_{Z}\left(Z_{r^{\prime}}\right)+\sum_{\left(r^{\prime}, t^{\prime}\right) \in E_{Z}} \theta_{r^{\prime} t^{\prime}}^{z z} B_{Z}\left(Z_{r^{\prime}}\right) B_{Z}\left(Z_{t^{\prime}}\right)\right.\right. \\
& \left.+\sum_{r^{\prime} \in V_{Z}} C_{Z}\left(Z_{r^{\prime}}\right)\right\} \exp \left\{\sum_{r \in V_{Y}} \theta_{r}^{y} B_{Y}\left(Y_{r}\right)+\sum_{r \in V_{Y}} C_{Y}\left(Y_{r}\right)\right. \\
& \left.\left.+\sum_{(r, t) \in E_{Y}} \theta_{r t}^{y y} B_{Y}\left(Y_{r}\right) B_{Y}\left(Y_{t}\right)+\sum_{\left(r, r^{\prime}\right) \in E_{Y Z}} \theta_{r r^{\prime}}^{y z} B_{Y}\left(Y_{r}\right) B_{Z}\left(Z_{r^{\prime}}\right)\right\}\right] \\
& =\sum_{Z}\left[\operatorname { e x p } \left\{\sum_{r^{\prime} \in V_{Z}} \theta_{r^{\prime}}^{z} B_{Z}\left(Z_{r^{\prime}}\right)+\sum_{\left(r^{\prime}, t^{\prime}\right) \in E_{Z}} \theta_{r^{\prime} t^{\prime}}^{z z} B_{Z}\left(Z_{r^{\prime}}\right) B_{Z}\left(Z_{t^{\prime}}\right)\right.\right. \\
& \left.+\sum_{r^{\prime} \in V_{Z}} C_{Z}\left(Z_{r^{\prime}}\right)\right\} \sum_{Y} \exp \left\{\sum_{r \in V_{Y}} \theta_{r}^{y} B_{Y}\left(Y_{r}\right)+\sum_{r \in V_{Y}} C_{Y}\left(Y_{r}\right)\right. \\
& \left.\left.+\sum_{(r, t) \in E_{Y}} \theta_{r t}^{y y} B_{Y}\left(Y_{r}\right) B_{Y}\left(Y_{t}\right)+\sum_{\left(r, r^{\prime}\right) \in E_{Y Z}} \theta_{r r^{\prime}}^{y z} B_{Y}\left(Y_{r}\right) B_{Z}\left(Z_{r^{\prime}}\right)\right\}\right]
\end{aligned}
$$

Hence, we can conclude as in the statement since the term

$$
\begin{aligned}
& \sum_{Y} \exp \left\{\sum_{r \in V_{Y}} \theta_{r}^{y} B_{Y}\left(Y_{r}\right)+\sum_{r \in V_{Y}} C_{Y}\left(Y_{r}\right)\right. \\
& \left.+\sum_{(r, t) \in E_{Y}} \theta_{r t}^{y y} B_{Y}\left(Y_{r}\right) B_{Y}\left(Y_{t}\right)+\sum_{\left(r, r^{\prime}\right) \in E_{Y Z}} \theta_{r r^{\prime}}^{y z} B_{Y}\left(Y_{r}\right) B_{Z}\left(Z_{r^{\prime}}\right)\right\}
\end{aligned}
$$

is the conditional log-partition function $A_{Y \mid Z}\left(\bar{\theta}^{y}(Z), \bar{\theta}^{y y}\right)$ by definition.

D Proof of Corollary 1

The conditional distribution $P(Y \mid Z=z)$ for any particular assignment of the random variables Z is normalizable by assumption. It can then be shown that the log-partition function of the joint distribution is precisely given by $E_{Z^{\prime}}\left[\exp \left\{A_{Y \mid Z^{\prime}}\left(\left\{\theta_{r}\left(Z^{\prime}\right)\right\}_{r \in V_{Y}}, \theta^{y y}\right)\right\}\right]$. This expression is also finite and well-defined since there are only finitely many configurations of Z.

E Proof of Theorem 3

Suppose that neither conditions (a) nor (b) are satisfied. Then, either X_{r} or X_{t} can possibly take values
approaching both ∞ and $-\infty$. Also, for some $\alpha, \beta \geq 0$ such that $-C_{r}\left(X_{r}\right)=O\left(X_{r}^{\alpha}\right)$ and $-C_{t}\left(X_{t}\right)=O\left(X_{t}^{\beta}\right)$, we have $(\alpha-1)(\beta-1)<1$. We will show that under these conditions, the necessary condition for normalizability detailed in Proposition 1 will be violated, that is:

$$
\begin{equation*}
C_{r}\left(X_{r}\right)+\theta_{r t} X_{r} X_{t}+C_{t}\left(X_{t}\right) \geq 0 \tag{20}
\end{equation*}
$$

for sufficiently large X_{r} and X_{t}, from which we can conclude that the joint (5) is not normalizable. Note that we ignore the node-wise terms $\theta_{r} X_{r}$ and $\theta_{t} X_{t}$ without loss of generality in our asymptotic argument since they are asymptotically smaller than the quadratic term.

Consider the following sequences of values taken by the random variables X_{r}, X_{t}, where $X_{r}=a^{\gamma}$ and $X_{t}=a^{\delta}$ for arbitrary positive a and some fixed positive constants γ and δ. We then have $X_{r} X_{t}=a^{\gamma+\delta}$ and $X_{r}^{\alpha}+X_{t}^{\beta}=a^{\alpha \gamma}+a^{\beta \delta}$. As we increase a, X_{r} and X_{t} will approach infinity, however, if $\gamma+\delta>\max \{\alpha \gamma, \beta \delta\}$, then $C_{r}\left(X_{r}\right)+\theta_{r t} X_{r} X_{t}+C_{t}\left(X_{t}\right)$ will not be less than or equal to 0 : in other words, the necessary condition for normalizability detailed in Proposition 1 will be violated.
(case 1: α or β is less than or equal to 1)
Consider the case where $\alpha \leq 1$. If we simply set $\gamma=\max \{\beta, 1\}$ and $\delta=1$, then $\gamma+\delta>\max \{\alpha \gamma, \beta \delta\}$, so that the necessary condition for normalizability detailed in Proposition 1 will be violated as discussed above. By symmetry, the same will hold when $\beta \leq 1$. Thus, in this case, (20) always holds.
(case 2: Both α and β is larger than 1) In this case, the condition $\gamma+\delta>\max \{\alpha \gamma, \beta \delta\}$ can be rewritten as $\delta>(\alpha-1) \gamma$ and $\frac{\gamma}{\beta-1}>\delta$. Hence, as long as $(\alpha-1) \gamma<\frac{\gamma}{\beta-1}$, we can always find γ and δ satisfying $\gamma+\delta>\max \{\alpha \gamma, \beta \delta\}$, so that the necessary condition for normalizability detailed in Proposition 1 will be violated. By symmetry, the same will hold when $\beta \leq 1$. The earlier (case 1) also can be absorbed in this condition $(\alpha-1) \gamma<\frac{\gamma}{\beta-1}$, which is equivalent as $(\alpha-1)(\beta-1)<1$.

Therefore, if $(\alpha-1)(\beta-1)<1$, then the condition (20) always holds, so that from Proposition 1, the joint distribution in (5) will not be normalizable.

