
Mixed Graphical Models via Exponential Families

A Alternative Mixed Graphical
Models

It is instructive to compare our class of mixed MRF
distributions (5) with the models derived from the
marginal distribution P (Z) and the conditional dis-
tribution P (Y |Z).

Suppose that we model the conditional distribution
P (Y |Z) as in the conditional distribution form of (6).
Therefore, this alternative distribution has the same
form of conditional distribution P (Y |Z) as . However,
instead of assuming that each node-conditional dis-
tribution is drawn from an exponential family, which
would then lead to our joint mixed MRF distribution
in (5) for P (Y, Z), we model the random vector Z sep-
arately as following a Markov Random Field (MRF)
distribution:
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Note that the log-partition function AZ(·) here is de-
fined as
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which is dependent only on the parameters ✓z and ✓zz.

Given the specifications of the conditional distribution
P (Y |Z) and the marginal distribution P (Z), we can
then specify the joint distribution simply as P (Y, Z) =
P (Y |Z)P (Z), so that
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Note that this distribution is distinct from our mixed
MRF distribution in (5). In particular, the log-
partition function of (11) is not AY |Z(·) + AZ(·) as
AY |Z is a function on random vector Z.

The form of P (Y, Z) in (11) is thus much more com-
plicated than that in (5) due to the complicated non-

linear term AY |Z
⇣
{✓r(Z)}r2VY

, ✓yy
⌘
. On the other

hand, an important benefit of this modeling approach
is that the conditions for normalizability of (11) can
be characterized simply as those on the marginal P (Z)
(10) and those on the conditional P (Y |Z) (6). In other
words, so long as (10) and (6) are well-defined, the
joint distribution (11) always exists and is well-defined
as well.

B Proof of Theorem 1

This theorem can be understood as the extension of
Proposition 2 in (Yang et al., 2012); the only di↵erence
here is that we allow the heterogeneous types of node-
conditional distributions. We follow the proof policy
of that paper: Define Q(X) as

Q(X) := log(P (X)/P (0)),

for any X = (X1, . . . , Xp) 2 X1 ⇥ . . . ⇥ Xp where 0
indicates a zero vector (The number of zeros vary ap-
propriately in the context below). For any X, also
denote X̄r := (X1, . . . , Xr�1, 0, Xr+1, . . . , Xp).

Now, consider the following general form for Q(X):
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since the joint distribution on X has factors of size k
at most. It can then be seen that

exp(Q(X) � Q(X̄r)) = P (X)/P (X̄r)
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where the first equality follows from the definition of
Q(X). Now, consider simplifications of both sides of
(13). Given the form of Q(X) in (12), we have

Q(X) � Q(X̄r) = (14)
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Also, given the exponential family form of the node-
conditional distribution specified in the theorem,

log
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Er(XV \r)(Br(Xr) � Br(0)) + (Cr(Xr) � Cr(0)).

Setting Xt = 0 for all t 6= r in (13), and using the
expressions for the left and right hand sides in (14)



Eunho Yang, Yulia Baker, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu

and (15), we obtain,
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Setting Xu = 0 for all u 62 {r, t},
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Since (18) should hold for all possible combinations of
Xr, Xt, for any fixed Xt 6= 0,
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Thus, the k-th order factors in the joint distribution
as specified in (12) are tensor products of (Br(Xr) �
Br(0)), thus proving the statement of the theorem.

C Proof of Theorem 2

We can simply start from the definition of the log par-
tition function in the Manichean MRF joint distribu-

tion in (5):
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Simply this can be represented as
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Hence, we can conclude as in the statement since the
term
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is the conditional log-partition function
AY |Z(✓̄y(Z), ✓̄yy) by definition.

D Proof of Corollary 1

The conditional distribution P (Y |Z = z) for
any particular assignment of the random vari-
ables Z is normalizable by assumption. It
can then be shown that the log-partition func-
tion of the joint distribution is precisely given by

EZ0

h
exp

�
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 i
. This expres-

sion is also finite and well-defined since there are only
finitely many configurations of Z.

E Proof of Theorem 3

Suppose that neither conditions (a) nor (b) are satis-
fied. Then, either Xr or Xt can possibly take values
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approaching both 1 and �1. Also, for some ↵,� � 0
such that �Cr(Xr) = O(X↵

r ) and �Ct(Xt) = O(X�
t ),

we have (↵� 1)(� � 1) < 1. We will show that under
these conditions, the necessary condition for normaliz-
ability detailed in Proposition 1 will be violated, that
is:

Cr(Xr) + ✓rtXrXt + Ct(Xt) � 0, (20)

for su�ciently large Xr and Xt, from which we can
conclude that the joint (5) is not normalizable. Note
that we ignore the node-wise terms ✓rXr and ✓tXt

without loss of generality in our asymptotic argu-
ment since they are asymptotically smaller than the
quadratic term.

Consider the following sequences of values taken by the
random variables Xr, Xt, where Xr = a� and Xt = a�

for arbitrary positive a and some fixed positive con-
stants � and �. We then have XrXt = a�+� and
X↵

r + X�
t = a↵� + a��. As we increase a, Xr and Xt

will approach infinity, however, if �+� > max{↵�,��},
then Cr(Xr) + ✓rtXrXt + Ct(Xt) will not be less than
or equal to 0: in other words, the necessary condition
for normalizability detailed in Proposition 1 will be
violated.

(case 1: ↵ or � is less than or equal to 1)
Consider the case where ↵  1. If we sim-
ply set � = max{�, 1} and � = 1, then
� + � > max{↵�,��}, so that the necessary
condition for normalizability detailed in Propo-
sition 1 will be violated as discussed above. By
symmetry, the same will hold when �  1. Thus,
in this case, (20) always holds.

(case 2: Both ↵ and � is larger than 1) In this
case, the condition � + � > max{↵�,��} can be
rewritten as � > (↵ � 1)� and �

��1 > �. Hence,

as long as (↵ � 1)� < �
��1 , we can always find �

and � satisfying � + � > max{↵�,��}, so that the
necessary condition for normalizability detailed in
Proposition 1 will be violated. By symmetry, the
same will hold when �  1. The earlier (case 1) also
can be absorbed in this condition (↵� 1)� < �

��1 ,

which is equivalent as (↵� 1)(� � 1) < 1.

Therefore, if (↵ � 1)(� � 1) < 1, then the condition
(20) always holds, so that from Proposition 1, the joint
distribution in (5) will not be normalizable.


