
Group Nearest Shrunken Centroids

APPENDIX A. Proofs of the
Theorems

APPENDIX A.1. Proof of Theorem 3.1

Proof. It is not di�cult to observe that

argminµ
k

,µ
mk

L = ({ 1

n

P

n

i=1

x

ik

, k = 1, ...,K},
{argminµ

mk

L
m

, k = 1, ...,K}),
(A.1)

where

L
m

:=
1

2n
m

K

X

k=1

X

i2C

m

kx⇤
ik

�µ

mk

k2
k

+�

K

X

k=1

!
mk

kµ
mk

k
k

.

(A.2)
The solution path to Equation (A.2) could be achieved
by using Karush-Kuhn-Tucker conditions, presented as
the following lemma:
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It is not di�cult to verify that the solution to Equa-
tions (A.3) and (A.4) can be presented as:
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This complete the proof.

APPENDIX A.2. Proof of Theorem 3.2

Under assumption (A1) to (A3), we provide the fol-
lowing two Lemmas, which are necessary to prove the
estimation consistency result.
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Lemma A.3. Under assumptions (A1) and (A2), for
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Combining Lemma A.2 and Lemma A.3, we have The-
orem 3.2 which estimates the rate of convergence of
e
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to µ
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. We prove Theorem 3.2 as follows:

Proof. For any m 2 {1, . . . ,M} and large enough n
m

,
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, 8✏ > 0, we could use Lemma A.2 and
Lemma A.3:
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, 8✏ > 0, similarly we have
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The followings are straight forward calculations.

APPENDIX A.3. Proof of Theorem 3.3

Proof. Using Equation (3.11) and assumption (A4),
we have
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Using the same argument as in Theorem 3.2, we fur-
ther have for m 2 {1, 2},
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This completes the proof.

APPENDIX A.4. Proof of Theorem 3.4

Proof. Denote A = { bS = S}, then by Theorem 3.3,

P(A) = 1� o(1),

and according to the proof in Theorem 3.3, we have
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Using the same techniques in (Bickel and Levina
2004)’s proof on theorem 2, we could prove that,
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This completes the proof.

APPENDIX B. The General Trend
by Changing �

The minimum averaged misclassification errors for
gNSC and NSC are highlighted in bold for both cross
validation procedures. The results are shown in Table
3 and Table 4.

Table 3: Leave experiment out cross validation method
is used on the GPL96 data. Averaged misclassification
errors and the corresponding averaged gene numbers
across tissue types are provided with standard devia-
tions included. We highlight the minimum values in
bold.

� gNSC gene number NSC gene number

1.0 0.158(0.3644) 10982(1.3) 0.301(0.0823) 8611(23.39)
2.5 0.150(0.3682) 10189(74.07) 0.240(0.0834) 5778(21.62)
3.5 0.175(0.3715) 8376(16.51) 0.149(0.0479) 4495(17.26)
4.0 0.168(0.3488) 7380(15.94) 0.150(0.0487) 3975(14.49)
5.5 0.085(0.1054) 5179(13.48) 0.251(0.0455) 2888(9.89)
6.5 0.089(0.0505) 3901(22.50) 0.275(0.0925) 2251(9.53)
7.0 0.120(0.0505) 3515(26.12) 0.275(0.0925) 2081(10.43)
8.5 0.120(0.0505) 2265(40.39) 0.245(0.0950) 1594(10.72)

10.0 0.120(0.0505) 1182(38.05) 0.222(0.0962) 1196(10.38)
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Table 4: 10-fold cross validation method is used on
the GPL96 data. Averaged misclassification errors and
the corresponding averaged gene numbers across tissue
types are provided with standard deviations included.
We highlight the minimum values in bold.

� gNSC gene number NSC gene number

1.0 0.141(0.0945) 10982(0.52) 0.145(0.0892) 8538(8.36)
2.5 0.143(0.0892) 10054(19.97) 0.136(0.0906) 5670(11.14)
3.0 0.144(0.0843) 9188(26.95) 0.140(0.0900) 4975(9.88)
4.0 0.146(0.0806) 7154(26.06) 0.137(0.0899) 3871(9.17)
5.0 0.139(0.0866) 5502(21.33) 0.139(0.0852) 3057(7.86)
5.5 0.181(0.0866) 4874(17.54) 0.144(0.0882) 2735(7.77)
7.0 0.182(0.0923) 3356(15.22) 0.156(0.0852) 2009(5.86)
8.5 0.184(0.0911) 2021(14.62) 0.164(0.0827) 1503(5.53)

10.0 0.189(0.0920) 1052(11.19) 0.170(0.0858) 1143(4.97)

APPENDIX C. QQ Plots of the Data

For each gene in each sample class we present the
Quantile-to-Quantile plot (QQ plot) to visualize the
normality. Three of them are shown in Figure 4.

Figure 4: Non-Gaussian Data. The two rows are QQ-
plot and empirical cdf plot of three di↵erent genes.

APPENDIX D. Heatplots of gNSC
on GPL96

To illustrate our result more clearly, we randomly pick
12 tissue types and 100 gene pathways for visualiza-
tion. Figure 5(a) presents the negative “shrinkage
amount,” i.e. (1 � �!

mk

kbµ
mk

k
k

) shown in Equation (3.5),
of the combination of one certain gene pathway in-
dexed by k and one certain tissue type indexed by m.
closer the color to green, the lower the negtive shrink-
age amount is. The Figure 1 presents the significant
associations, i.e. the threshold term (1 � �!

mk

kbµ
mk

k
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)
+

,
between gene pathways and tissue types: red color
suggests that the corresponding pathway and tissue
type are estimated to be associated, while green sug-
gests not. Moreover, the expression levels in one block
are summarized to be the mean of all gene expression
values confined in this block and the result can be ob-
served in Figure 5(b). Figures 5(a) and 1 illustrate the
statistical significance levels and Figure 5(b) illustrates
the biological expression levels. A detailed index for
all gene pathways are presented in the Appendix F.

(a) (b)

Figure 5: Heatplots for gNSC. The 100 pathways in
this figure are randomly chosen.

APPENDIX E. Heatplot of the
Keyword-Gene
Relevance
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Figure 6: NSC Results of Keywords v.s. Genes.
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APPENDIX F. Gene Pathways

Table 5: The index of all gene pathways IDs.

ID Pathway name

PTWY1 landis erbb2 breast preneoplastic up
PTWY2 waesch anaphase promoting complex
PTWY3 sanchez mdm2 targets
PTWY4 naderi breast cancer prognosis dn
PTWY5 begum targets of pax3 foxo1 fusion and pax3
PTWY6 der ifn alpha response dn
PTWY7 negative regulation of cytokine biosynthetic process
PTWY8 aldo keto reductase activity
PTWY9 xu hgf signaling not via akt1 6hr
PTWY10 valk aml cluster 15
PTWY11 nam fxyd5 targets dn
PTWY12 creighton akt1 signaling via mtor dn
PTWY13 gargalovic response to oxidized phospholipids green up
PTWY14 appierto response to fenretinide up
PTWY15 chiaradonna neoplastic transformation kras cdc25 dn
PTWY16 yao temporal response to progesterone cluster 8
PTWY17 tonks targets of runx1 runx1t1 fusion granulocyte up
PTWY18 ebauer targets of pax3 foxo1 fusion dn
PTWY19 zhan v2 late di↵erentiation genes
PTWY20 hu angiogenesis dn
PTWY21 shipp dlbcl vs follicular lymphoma dn
PTWY22 mori mature b lymphocyte dn
PTWY23 ca↵arel response to thc dn
PTWY24 nucleotide metabolic process
PTWY25 yang breast cancer esr1 bulk dn
PTWY26 hoegerkorp cd44 targets temporal dn
PTWY27 vesicle membrane
PTWY28 nikolsky breast cancer 1q21 amplicon
PTWY29 naderi breast cancer prognosis up
PTWY30 rickman head and neck cancer f
PTWY31 myllykangas amplification hot spot 9
PTWY32 scheidereit ikk targets
PTWY33 radaeva response to ifna1 dn
PTWY34 zhang interferon response
PTWY35 regulation of t cell activation
PTWY36 finetti breast cancers kinome gray
PTWY37 positive regulation of lymphocyte activation
PTWY38 cortical cytoskeleton
PTWY39 rna polymerase ii transcription mediator activity
PTWY40 meiotic cell cycle
PTWY41 kim response to tsa and decitabine dn
PTWY42 vitamin transport
PTWY43 regulation of rho gtpase activity
PTWY44 brain development
PTWY45 regulation of binding
PTWY46 ginestier breast cancer znf217 amplified up
PTWY47 zhan multiple myeloma subgroups
PTWY48 proteasome complex
PTWY49 organic anion transmembrane transporter activity
PTWY50 krishnan furin targets dn

APPENDIX G. Context Analysis

Microarray data often have text documents of samples
(e.g. sample description, experiment description, etc.).
We propose a new “index-gene relevance” approach to
applying NSC or gNSC to context analysis.

More precisely, we encode relationships between repre-
sentative medical terms, and pertaining genes in ma-
trix form, to which we apply NSC or gNSC. The pro-
cedure of creating the index-gene relevance matrix in-
cludes four steps: preparing documents for each mi-
croarray sample; creating a tf-idf (defined later) based
term-document matrix; creating an index-document
matrix; and lastly combining text information with
the microarray data. We describe the details of these
steps below.

Step 1. Document Preparation. In order to use the
text information e�ciently, we extract the biologi-
cally meaningful words and phrases from the text
description files and map them into existing knowl-
edge sources. For each sample, we produce a text file
with sample specific information, in which “meaning-
ful phrases” and related words are organized into rows.
Rather than describing the semantic criteria by which

Table 6: Document Preparation

Procedure

1: Download the file GPL96 family.soft.gz (www.
affymetrix.com) with text description of the sam-
ples and the experiments information of the sam-
ples.
2: Retrieve sample information (GSM files, de-
scription of the specific sample information in-
volved in one entire experiment) for all experiments
from the GPL96 family.soft file.
3: Extract the biologically meaningful sample and
experiment information from GSM files. Sample ti-
tle, sample source, sample organism, sample char-
acteristics and sample description are extracted.
4: Use MetaMap to map all the information ex-
tracted from previous step to several knowledge
sources, including GO, MSH, HUGO, OMIM and
NCI. MetaMap can break the input text into sev-
eral phrases by its lexical/syntactic analysis and
then map those phrases to the knowledge source.
5: We denote each phrase together with its all re-
lated words (all the words are lower-cased) as a
block (one row in the file) in the text document
file, which has the same name as the original GSM
files.

we extract “meaningful phrases,” we simply provide
an example.

To utilize the text information of GPL96 data, we pre-
pare the sample documents in five steps as shown in
Table 6.

Step 2. TF-IDF based Term-doc Matrix. “Term
frequency-inverse document frequency” (tf-idf) (Wu,
Luk, Wong and Kwok 2008) is one of the most com-
monly used relevance weighting factors in today’s in-
formation retrieval and text mining systems, and is our
preferred relevance metric. The tf-idf value increases
proportionally to the number of times a word appears
in a specific document, but is o↵set by the frequency
of the word in the corpus. This provides a good mea-
sure of relevance which controls for the fact that some
words are generally more common than others.

Let doc
i

be the text document of sample i and Doc =
{doc

i

: i = 1, 2, · · · , n} be the set of all documents.
Each document is represented as a list of words:

doc = (w
1

, ..., w
N

doc

),

where w
i

(i = 1, 2, · · · , N
doc

) are the words in the doc
document, including repetition. N

doc

is the total num-
ber of words in doc. We extract all distinct words from
all documents and use W to represent the set of all
words:

W = [
doc2Doc

[N

doc

j=1

{doc(j)}, (G.1)
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where doc(j) is the j-th word of doc. Note that W
here is a set of word where each elements is unique.
For each extracted term w and the document doc, we
define the term-count tc(w, doc) to be the number of
times that the term w appears in doc.

To prevent the bias towards longer documents, the
term-frequency(tf) is defined as:

tf(w, doc) =
tc(w, doc)

|doc| , (G.2)

where |doc| = N
doc

is the length (total number of
words) of the document doc.

In addition, we introduce the inverse document fre-
quency for each word w which is a measure of the
general importance of w:

idf(w) = log
|Doc|

|{doc : w 2 doc}| , (G.3)

where |Doc| is the total number of documents which
equals the number of samples and |{doc : w 2 doc}| is
the number of documents in which the word w appears.
Based on tf-idf score we build the term-doc matrix
tdM :

tdM(w, doc) = tf(w, doc)idf(w). (G.4)

As we can see, tf-idf score is

1. highest when the term w appears many times
within a small number of documents;

2. lower when the term w appears fewer in a docu-
ment, or appears in too many documents;

3. lowest when the term appears in nearly all docu-
ments.

Step 3. Index-doc Matrix. The tf-idf based term-doc
matrix reflects how important a word is to a document
in the corpus. However, we are not only interested
in words but also biologically pertinent phrases with
multiple terms (e.g. “breast cancer,” “brain tumor,”
etc.). We measure the relevance of such phrases as
follows:

Let p
i

= (w
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i,|p
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number of terms. Let P = (p

1
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2

, · · · , p
N

) be the list
of all words and phrases. Let ind

i

be the index of p
i

such that words or phrases with same meaning (e.g.,
“brain” and “brains”) in the dictionary have the same
index. Therefore, each index can represent a synonym
word group. Let I = {ind⇤

1

, ind⇤
2

, · · · , ind⇤
M

} be the
set of indices, where each element is unique. Note that
since the indices of the words and phrases in the word

list P are not unique, M need not equal N . We build
a index-doc matrix, idM , based on the tf-idf score:

idM(ind⇤, doc) = max
i:ind
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(G.5)
where each element is the maximum of the mean tf-idf
score for words and phrases with same meaning.

Step 4. Gene-Index Relevance Matrix. In order to ap-
ply NSC to context analysis, we combine the text in-
formation with our microarray data. We generate the
relevance matrix of words/phrases with genes based on
the gene expression levels in microarray data and the
index-doc matrix generated above. Let the m-th syn-
onym group be the words or phrases with their index
= ind⇤

m

. We can use ind⇤
m

can represent this group.

The index-doc matrix we get from Step 3 can be seen
as a measure of relevance of synonym word groups and
samples, while the gene expression levels in microar-
ray data can be seen as a measure of gene-sample rel-
evance. We measure the connection of gene and syn-
onym groups by multiplying the elements of the above
two relevance matrix.

In mathematics, we measure the connection of the m
th

synonym group and the j
th

gene for a given sample i
as:

R
m

(g
j

, doc
i

) = idM(ind⇤
m

, doc
i

)⇥ x
ij

, (G.6)

where x
ij

is the expression level of j
th

gene in sample
i and idM is the index-doc matrix in Step 3.

To respect the structure of the NSC input data, we
collect the R matrices to form the gene-index relevance
matrix:

R = (R
1

, R
2

, · · · , R
M

). (G.7)

Here each synonym group is regarded as a sample class,
i.e. C

m

, in NSC.

By applying NSC to the gene-index relevance matrix,
we can select the most relevant genes with all words
and phrases in the dictionary. Moreover, we can triv-
ially generalize the NSC approach to context analysis
to the group version by first combining the pathway in-
formation with the microarray data before using gNSC
to the corresponding gene-index relevance matrix.

Remark G.1. As alluded to previously (cf. Remark

4.1), although the dimension of the gene-index rele-

vance matrix R is d ⇥ (n ⇥ M), which can grow pro-

hibitively large, our process can still be completed in

minutes. This e�ciency is due to the use of su�cient

statistics.
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Table 7: NSC(/gNSC) for Context Analysis

Algorithm

1: Extract the biological meaningful words and phrases
from the text description files of each microarray sam-
ple and map them into existing knowledge sources.
Prepare a text document file for each sample.
2: Calculate the term-frequency(tf) and the inverse
document frequency(idf) for each word w, then multi-
ply them to get the tf-idf score for each word and each
document. Build the term-doc matrix(tdM) based on
the score.
3: Divide the words into synonym groups and calculate
the index-doc matrix(idM), based on equation G.5, for
each synonym group and each document.
4: For gNSC, sort the genes in the microarray data by
pathways.
5: Calculate the R matrixes and bind them together to
get the gene-index relevance matrix.
6: Apply NSC or gNSC on the gene-index relevance
matrix to selection the significant genes or pathways
for each word or phrase in the dictionary.


